[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6386412A - Manufacture of thin film dielectric material for capacitor - Google Patents

Manufacture of thin film dielectric material for capacitor

Info

Publication number
JPS6386412A
JPS6386412A JP23283486A JP23283486A JPS6386412A JP S6386412 A JPS6386412 A JP S6386412A JP 23283486 A JP23283486 A JP 23283486A JP 23283486 A JP23283486 A JP 23283486A JP S6386412 A JPS6386412 A JP S6386412A
Authority
JP
Japan
Prior art keywords
thin film
organic polymer
layer
film
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23283486A
Other languages
Japanese (ja)
Inventor
渡辺 康光
北野 正和
岡 和貴
山下 満弘
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP23283486A priority Critical patent/JPS6386412A/en
Publication of JPS6386412A publication Critical patent/JPS6386412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンデンサ用薄膜誘電体材料の製造方法に関
するものであり、産業上、有益に、小型・軽量化フィル
ムコンデンサを大量生産することを目的とする。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a thin film dielectric material for capacitors, and is useful for industrially mass producing small and lightweight film capacitors. purpose.

(従来の技術)(発明が解決しようとする問題点)半導
体技術の急速な進歩により、あらゆる産業界にマイクロ
エレクトロニクス化の波が急ピッチで浸透してきている
。その中にあって、コンデンサもまた例外ではない。
(Prior Art) (Problem to be Solved by the Invention) With the rapid advancement of semiconductor technology, the wave of microelectronics is rapidly permeating all industries. Capacitors are no exception.

コンデンサの静電容量は、誘電体の誘電率と電極面積に
比例し、電極間距離に反比例する。従って、コンデンサ
の小型化の基本は、誘電体を薄く。
The capacitance of a capacitor is proportional to the dielectric constant and electrode area, and inversely proportional to the distance between the electrodes. Therefore, the basis for miniaturizing capacitors is to make the dielectric thinner.

誘電率を高くすることであり、フィルムコンデンサの小
型化はプラスチックフィルム成型技術に依存するところ
が大きい。
The goal is to increase the dielectric constant, and miniaturization of film capacitors largely depends on plastic film molding technology.

従来のフィルムコンデンサは、有機高分子フィルム自身
を誘電体として用いているため、誘電率は2〜5程度で
低く、また、フィルム厚みを薄くするにも、技術的問題
より2μm程度が限度であると考えられる。従って、静
電容量を大きくするには何層にも多層巻きをしなければ
ならなかった。
Conventional film capacitors use the organic polymer film itself as a dielectric, so the dielectric constant is low at around 2 to 5. Also, due to technical issues, the film thickness can only be reduced to around 2 μm. it is conceivable that. Therefore, in order to increase the capacitance, it was necessary to wind the film in multiple layers.

また、最近では導電体上部に有機高分子を塗布して製造
するコンデンサも開発されているが、塗布膜厚みを1μ
m以下に薄くすれば、電気絶縁性などに問題が生じてく
る。
In addition, capacitors manufactured by coating organic polymers on the top of the conductor have recently been developed, but the thickness of the coating film is 1 μm.
If the thickness is reduced to less than m, problems will arise in electrical insulation.

一方、無機材料は有機高分子に比べて誘電率が高いが、
薄いフィルム状にすることが困難であるため、誘電率の
割りに静電容量が大きくとれない欠点があり、また、塗
布、焼成などの工程を経るため、加工費が高くつく。
On the other hand, inorganic materials have a higher dielectric constant than organic polymers, but
Since it is difficult to form into a thin film, it has the disadvantage that the capacitance cannot be large enough considering the dielectric constant, and processing costs are high because it requires steps such as coating and baking.

そこで9本発明は従来のこのような欠点を解決するため
、誘電体膜厚が薄く、誘電率が大きく。
Therefore, in order to solve these conventional drawbacks, the present invention has a thin dielectric film and a large dielectric constant.

かつ絶縁性のよいコンデンサを製造することを目的とし
ている。
The aim is to manufacture capacitors with good insulation.

(問題点を解決するための手段) 本発明者らは、前記コンデンサ用薄膜誘電体材料の産業
上、有益な製造方法を開発すべく鋭意研究を進めた結果
、有機高分子フィルムを支持体基板とし、その少なくと
も一方の面に下部電極としての導電性金属層、有機高分
子薄膜層、薄膜誘電体層、及び上部電極としての導電性
金属層を各層の必要パターンに応じて順次積層するとい
う本発明に到達したのである。
(Means for Solving the Problems) As a result of intensive research to develop an industrially useful manufacturing method for the thin film dielectric material for capacitors, the present inventors have discovered that an organic polymer film can be used as a support substrate. A conductive metal layer as a lower electrode, an organic polymer thin film layer, a thin film dielectric layer, and a conductive metal layer as an upper electrode are sequentially laminated on at least one surface according to the required pattern of each layer. The invention was achieved.

以下に3図面を参照して本発明を具体的に説明する。The present invention will be specifically described below with reference to three drawings.

まず、下部電極は、有機高分子フィルムの長手方向に、
必要な設計で非蒸着部分が存在するように電極形成され
る。導電性金属層としては、アルミニウム、亜鉛、金等
があげられ、好ましくはアルミニウムを用いるのがよい
。ただし、フィルムの長手方向とはフィルムの巻き取り
方向を意味し。
First, the lower electrode is placed in the longitudinal direction of the organic polymer film.
The electrode is formed so that a non-evaporated portion exists according to the necessary design. Examples of the conductive metal layer include aluminum, zinc, gold, etc., and aluminum is preferably used. However, the longitudinal direction of the film means the direction in which the film is wound.

フィルムの幅方向とは長手方向に交差する方向を意味す
る。有機高分子フィルム基板(1)上に(第1図)、導
電性金属層(2)を蒸着法、イオンプレーティング法あ
るいはスパッタリング法で成膜する(第2図)。その際
、フィルムの長手方向に。
The width direction of the film means the direction intersecting the longitudinal direction. A conductive metal layer (2) is formed on an organic polymer film substrate (1) (FIG. 1) by vapor deposition, ion plating or sputtering (FIG. 2). At that time, in the longitudinal direction of the film.

必要な設計で下部電極を成膜するために、オイルマージ
ン法、水溶性 マージン法、テープ マージン法あるい
は蒸着マスク法を用いる。
Oil margin method, water-soluble margin method, tape margin method, or vapor deposition mask method is used to deposit the lower electrode according to the required design.

この下部電極(2)上に、必要なパターンに応じて、任
意の幅で、それぞれの下部電極中央部分に非印刷部分が
残るように有機高分子薄膜N(3)を形成する(第3図
)。有機高分子薄膜層としては+  1 k Hzで測
定した誘電正接が1%以下であり。
On this lower electrode (2), an organic polymer thin film N (3) is formed with an arbitrary width according to the required pattern so that a non-printed part remains at the center of each lower electrode (Fig. 3). ). The organic polymer thin film layer has a dielectric loss tangent of 1% or less when measured at +1 kHz.

膜厚0.1〜0.7μmの範囲である熱可塑性樹脂。A thermoplastic resin having a film thickness in the range of 0.1 to 0.7 μm.

熱硬化性樹脂及び両者の混合物を用いるのがよい。It is preferable to use thermosetting resins and mixtures of both.

ただし、膜厚が0.1μm以下では十分な電気絶縁抵抗
が得られず、膜厚が0.7μm以上では断面積あたり大
きな静電容量が得られないので実用的でない。たとえば
、熱可塑性樹脂としては、ポリスチレン系、ポリエチレ
ン系、ポリアミド系、ポリイミド系、ポリスルホン系、
ポリプロピレン系。
However, if the film thickness is 0.1 μm or less, sufficient electrical insulation resistance cannot be obtained, and if the film thickness is 0.7 μm or more, a large capacitance per cross-sectional area cannot be obtained, which is not practical. For example, thermoplastic resins include polystyrene, polyethylene, polyamide, polyimide, polysulfone,
Polypropylene-based.

ボリアリレート系、ポリエステル系等があげられ。Examples include polyarylate type and polyester type.

熱硬化性樹脂としては、尿素系、メラミン系、フェノー
ル系、エポキシ系、不飽和ポリエステル系。
Thermosetting resins include urea, melamine, phenol, epoxy, and unsaturated polyester.

アルキド系、ウレタン系等があげられる。通常。Examples include alkyd type and urethane type. usually.

好ましくはポリエステル系樹脂を用いるのがよいが、耐
熱性を必要とする場合には、ポリアミド系。
Preferably, a polyester resin is used, but if heat resistance is required, a polyamide resin is used.

ポリイミド系、ポリスルホン系を用いるのがよい。It is preferable to use polyimide or polysulfone.

有機高分子層の形成方法としては、どのような方法を用
いてもよいが、コート法あるいは印刷法を用いるのが望
ましい。
Although any method may be used to form the organic polymer layer, it is preferable to use a coating method or a printing method.

その上に、薄膜誘電体層(4)を蒸着法、イオンプレー
ティング法あるいはスパッタリング法を用いて成膜する
(第4図)。その際、有機高分子薄膜層上に成膜するた
め、オイル マージンを用いてパターンを形成する。薄
膜誘電体層としては。
Thereon, a thin film dielectric layer (4) is formed using a vapor deposition method, an ion plating method, or a sputtering method (FIG. 4). At this time, an oil margin is used to form a pattern in order to form a film on the organic polymer thin film layer. As a thin film dielectric layer.

硫化亜鉛、酸化鉛、酸化珪素、酸化チタン、イツトリウ
ム酸化物等があげられ、好ましくは硫化亜鉛を用いるの
がよい。また、その膜厚は0.1〜0.8μmの範囲が
よい。ただし、膜厚が0.1μm以下では十分な電気絶
縁抵抗が得られず、膜厚が0.8μm以上では膜自身の
亀裂を生じ9歩留り率の低下を招く。
Examples include zinc sulfide, lead oxide, silicon oxide, titanium oxide, yttrium oxide, etc., and it is preferable to use zinc sulfide. Moreover, the film thickness is preferably in the range of 0.1 to 0.8 μm. However, if the film thickness is 0.1 μm or less, sufficient electrical insulation resistance cannot be obtained, and if the film thickness is 0.8 μm or more, the film itself will crack, resulting in a decrease in yield rate.

そして、その上に、上部電極としての導電性金属層を蒸
着法、イオンプレーティング法あるいはスパッタリング
法を用いて成膜する(第5図)。
Then, a conductive metal layer as an upper electrode is formed thereon using a vapor deposition method, an ion plating method, or a sputtering method (FIG. 5).

その際、下部電極露出部以外の部分に成膜するために、
オイル マージンを用いてパターンを形成する。また、
より高い電気絶縁抵抗及び誘電特性が望まれる場合には
、必要に応じて、薄膜誘電体層(4)と上部電極(5)
との間に有機高分子薄膜層を付加してもよい。
At that time, in order to form a film on parts other than the exposed part of the lower electrode,
Form a pattern using oil margins. Also,
If higher electrical insulation resistance and dielectric properties are desired, a thin film dielectric layer (4) and a top electrode (5) may be added as necessary.
An organic polymer thin film layer may be added between the two.

その後、スリッターにより切り出すことによって(6)
、コンデンサ用薄膜誘電体材料を得るのである(第6図
)。これらを所望の容量単位を得るため、任意の長さで
切り出すことによって巻き回し型コンデンサ、あるいは
単位容■を切り出し。
Then, by cutting it out with a slitter (6)
, a thin film dielectric material for capacitors is obtained (Fig. 6). In order to obtain the desired unit capacity, cut out a wound capacitor or unit capacity by cutting it to any length.

MHすることよってチップ型コンデンサを得るのである
A chip type capacitor is obtained by MH.

以上、有機高分子フィルムを支持体基板とし。In the above, an organic polymer film is used as a support substrate.

その少なくとも一方の面に、下部電極としての導電性金
属層、有機高分子薄膜層、薄膜誘電体層。
A conductive metal layer as a lower electrode, an organic polymer thin film layer, and a thin dielectric layer on at least one surface thereof.

及び上部電極としての導電性金属層を順次積ブしてなる
コンデンサ用薄膜誘電体材料を製造するに際して、薄膜
誘電体層、上部電極各層のパターン形成にオイル マー
ジン法を用いることにより。
In manufacturing a thin film dielectric material for a capacitor, which is formed by successively laminating conductive metal layers as an upper electrode, an oil margin method is used to pattern the thin film dielectric layer and each layer of the upper electrode.

連続大量生産が可能となり、産業上、有益であり。Continuous mass production becomes possible, which is industrially beneficial.

かつ歩留りのよい製造が可能となったのである。Moreover, it has become possible to manufacture with high yield.

(実施例) 以下に実施例を示して2本発明を図面を参照して具体的
に説明する。
(Example) The present invention will be specifically described below by showing two examples and referring to the drawings.

実施例1〜5 支持体基板(1)として、フィルム厚6μmのポリエス
テルフィルムを用い(第1図)、このフィルムの幅方向
に、18mのピッチ、輻4Hのパターンで、水溶性高分
子層として、ヒドロキシプロピルセルロース(TCI−
E、P、、東京化成)をフィルムの長手方向にグラビア
印刷法により1μm形成した。次に、この上全面に、A
Iを下部電極(2)として、真空蒸着法により0.06
μm蒸着し、水洗により水溶性高分子層ならびに水溶性
高分子層上のAIを同時に洗い出し、連続乾燥炉にて水
分を蒸発させた(第2図)。次に、有機高分子薄膜層(
3)として、それぞれの下部電極中央部分に2R,そし
て、下部電極の非蒸着部分中央部にも2Nの幅で非印刷
部分が残るように。
Examples 1 to 5 A polyester film with a film thickness of 6 μm was used as the support substrate (1) (Fig. 1), and a water-soluble polymer layer was formed in the width direction of this film in a pattern with a pitch of 18 m and a radius of 4H. , hydroxypropyl cellulose (TCI-
E, P, Tokyo Kasei) was formed to a thickness of 1 μm in the longitudinal direction of the film by gravure printing. Next, apply A to the entire surface of this.
0.06 by vacuum evaporation method using I as the lower electrode (2)
The water-soluble polymer layer and the AI on the water-soluble polymer layer were simultaneously washed out by washing with water, and the water was evaporated in a continuous drying oven (Fig. 2). Next, an organic polymer thin film layer (
As for 3), a non-printing portion with a width of 2R is left at the center of each lower electrode, and a non-printing portion with a width of 2N is left at the center of the non-evaporated portion of the lower electrode.

フィルムの長手方向にグラビア印刷法によりポリエステ
ル樹脂(バイロン200.東洋紡)を0.3μm形成し
た(第3図)。次いで、この非印刷部分の両端を1龍ず
つ隠し、有機高分子層上に成膜できるような形になるよ
うに、オイル マージンを用いて硫化亜鉛薄膜誘電体層
(4)をRFビイオンプレーティング法より形成した(
第4図)。
A polyester resin (Vylon 200. Toyobo) was formed to a thickness of 0.3 μm in the longitudinal direction of the film by gravure printing (Figure 3). Next, the zinc sulfide thin film dielectric layer (4) is coated with an RF bio-ion plate using an oil margin so that both ends of this non-printed area are hidden and the film is formed on the organic polymer layer. Formed by the ting method (
Figure 4).

すなわち、アルゴンをペルジャー内に導入し、真空度7
 X 10−’Torrに保ち、電圧2kV、周波数1
3.56MHzの高周波電界を100W印加しながら、
電子銃により硫化亜鉛蒸発母材を加熱蒸発させ、0.5
μm形成した。ただし、蒸発母材は純度99.99%の
微粉末をプレス成型し、800℃で6時間真空焼結を行
ったものを用いた。そして。
That is, argon is introduced into the Pelger and the degree of vacuum is 7.
X maintained at 10-'Torr, voltage 2kV, frequency 1
While applying a 3.56 MHz high frequency electric field of 100 W,
The zinc sulfide evaporation base material is heated and evaporated with an electron gun to 0.5
μm was formed. However, the evaporation base material used was one obtained by press-molding fine powder with a purity of 99.99% and performing vacuum sintering at 800° C. for 6 hours. and.

この上に、下部電極露出部2 mlと、その両端lfl
ずつ、計4鶴を隠すように、オイル マージンを用いて
上部電極(5)としてAIを0.06μm真空蒸着した
(第5図)。次に、スリッターにより。
On top of this, add 2 ml of the lower electrode exposed part and
AI was vacuum-deposited to a thickness of 0.06 μm as the upper electrode (5) using an oil margin so as to hide a total of 4 cranes (Figure 5). Next, by a slitter.

それぞれの下部電極中央部及び下部電極間中央部分を切
断しく6)1巻き取り、コンデンサ用薄膜誘電体材料を
得た。
The center portion of each lower electrode and the center portion between the lower electrodes were cut and wound 6) once to obtain a thin film dielectric material for a capacitor.

このコンデンサ用薄膜誘電体材料を素子巻機にかけて、
設計静電容量20nF(実施例1)、40nF(実施例
2)、60nF(実施例釦、80nF(実施例4)、1
00nF(実施例5)コンデンサ素子を形成した。゛こ
れらのコンデンサ素子に、亜鉛溶射により外部電極を形
成し、樹脂モールド後。
This thin film dielectric material for capacitors is passed through an element winding machine,
Design capacitance 20nF (Example 1), 40nF (Example 2), 60nF (Example button), 80nF (Example 4), 1
00 nF (Example 5) A capacitor element was formed.゛External electrodes are formed on these capacitor elements by zinc spraying, and then resin molded.

静電容量(lkHzで測定)、電気絶縁抵抗(30vで
測定)及び歩留り率を測定した。その結果を表1、に示
す。ただし9歩留り率はそれぞれサンプル100点を作
成し、その内で電気絶縁抵抗が5×109Ω以上のもの
を百分率で表したものである。
Capacitance (measured at 1kHz), electrical insulation resistance (measured at 30V) and yield rate were measured. The results are shown in Table 1. However, the yield rate is expressed as a percentage of 100 samples each having an electrical insulation resistance of 5×10 9 Ω or more.

(発明の効果) 本発明によれば1次の効果を得ることができる。(Effect of the invention) According to the present invention, first-order effects can be obtained.

(1)従来の金属化フィルムコンデンサと比較して、大
幅に小型化されたコンデンサ用薄膜誘電体材料を、産業
上、安価に製造できる。
(1) Compared to conventional metallized film capacitors, thin film dielectric materials for capacitors that are significantly smaller in size can be produced industrially and inexpensively.

(2)従来の薄膜コンデンサと比較して、電気絶縁抵抗
の大きい、誘電正接の小さなコンデンサ用薄膜誘電体材
料を1歩留りよく製造できる。
(2) Compared to conventional thin film capacitors, thin film dielectric materials for capacitors with high electrical insulation resistance and small dielectric loss tangent can be manufactured with a higher yield.

つまり、オイル マージン法を用いることにより、従来
の方法に比べて工程が簡略化され、大幅なコストダウン
が可能となった。また同時に、誘電正接が低(、電気絶
縁抵抗2歩留り率の高いものを安定して製造することが
可能となった。本発明により製造された薄膜誘電体材料
は、従来のフィルムコンデンサの誘電体材料である金属
化フィルムに比べて、製造加工工程上の取り扱いはほと
んど変わらず、コンデンサ用の全く新規な優れた薄膜誘
電体材料を、産業上、有益に製造することができる。
In other words, by using the oil margin method, the process is simplified and costs can be significantly reduced compared to conventional methods. At the same time, it has become possible to stably produce products with a low dielectric loss tangent (electrical insulation resistance 2) and a high yield rate. Compared to the metallized film material, handling in the manufacturing process is almost the same, and a completely new and superior thin film dielectric material for capacitors can be industrially advantageously manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は8本発明の一例の態様を示す断面図で
ある。 1 有機高分子フィルム基板 2 下部電極 3 有機高分子薄膜層 4 薄膜誘電体層 5 上部電極 6 切断位置
1 to 5 are cross-sectional views showing an embodiment of the present invention. 1 Organic polymer film substrate 2 Lower electrode 3 Organic polymer thin film layer 4 Thin film dielectric layer 5 Upper electrode 6 Cutting position

Claims (1)

【特許請求の範囲】  有機高分子フィルムを支持体基板とし、その少なくと
も一方の面に下部電極としての導電性金属層を、高分子
フィルムの長手方向に、必要な設計で非蒸着部分が存在
するように電極形成し、その上に、有機高分子薄膜層を
下部電極中央部分に非印刷部分が残るように、任意の幅
で。 必要なパターンに応じて形成し、さらに、薄膜誘電体層
を有機高分子薄膜層より狭い幅で有機高分子薄膜層上に
形成し、さらにその上に、上部電極を下部電極露出部を
除いた部分に、任意の幅で、必要なパターンに応じて形
成してなるコンデンサ用薄膜誘電体材料を製造するに際
して、下部電極、薄膜誘電体層、及び上部電極の形成に
蒸着法、イオンプレーティング法あるいはスパッタリン
グ法を用い、薄膜誘電体層及び上部電極のパターン形成
にオイルマージン法を用い、有機高分子薄膜層の形成に
コート法あるいは印刷法を用いることを特徴とするコン
デンサ用薄膜誘電体材料の製造方法。
[Claims] An organic polymer film is used as a support substrate, a conductive metal layer is provided as a lower electrode on at least one surface of the support substrate, and a non-evaporated portion is present in the longitudinal direction of the polymer film as required. Form the electrode in this manner, and then apply a thin organic polymer film layer on top of it with an arbitrary width so that a non-printed part remains in the center of the lower electrode. A thin film dielectric layer is formed on the organic polymer thin film layer with a width narrower than that of the organic polymer thin film layer, and an upper electrode is formed on the organic polymer thin film layer, excluding the exposed portion of the lower electrode. When manufacturing a thin film dielectric material for a capacitor formed by forming a desired pattern on a portion with an arbitrary width, a vapor deposition method or an ion plating method is used to form a lower electrode, a thin film dielectric layer, and an upper electrode. Alternatively, a thin film dielectric material for capacitors is used, which uses a sputtering method, an oil margin method for patterning the thin film dielectric layer and the upper electrode, and a coating method or printing method for forming the organic polymer thin film layer. Production method.
JP23283486A 1986-09-29 1986-09-29 Manufacture of thin film dielectric material for capacitor Pending JPS6386412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23283486A JPS6386412A (en) 1986-09-29 1986-09-29 Manufacture of thin film dielectric material for capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23283486A JPS6386412A (en) 1986-09-29 1986-09-29 Manufacture of thin film dielectric material for capacitor

Publications (1)

Publication Number Publication Date
JPS6386412A true JPS6386412A (en) 1988-04-16

Family

ID=16945518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23283486A Pending JPS6386412A (en) 1986-09-29 1986-09-29 Manufacture of thin film dielectric material for capacitor

Country Status (1)

Country Link
JP (1) JPS6386412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212057B1 (en) 1998-12-22 2001-04-03 Matsushita Electric Industrial Co., Ltd. Flexible thin film capacitor having an adhesive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212057B1 (en) 1998-12-22 2001-04-03 Matsushita Electric Industrial Co., Ltd. Flexible thin film capacitor having an adhesive film
US6974547B1 (en) 1998-12-22 2005-12-13 Matsushita Electric Industrial Co., Ltd. Flexible thin film capacitor and method for producing the same

Similar Documents

Publication Publication Date Title
KR100344649B1 (en) Electronic component
JPS609112A (en) Thin film condenser of low cost
CN107068401A (en) Multilayer ceramic capacitor and its manufacture method
JP7099998B2 (en) Manufacturing method of thin film polymer laminated capacitor
US3855507A (en) Self heating capacitors
JPH0817143B2 (en) Film capacitor and manufacturing method thereof
US2921246A (en) Electrical condensers
JPS6386412A (en) Manufacture of thin film dielectric material for capacitor
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor
JPH1126284A (en) Chip electronic component and its manufacture
JPS62190828A (en) Manufacture of metallized film capacitor
JPS6398115A (en) Manufacture of thin film dielectric material for capacitor
JP3484333B2 (en) Laminates and capacitors
JPS639921A (en) Manufacture of thin film dielectric material for capacitor
JPS62277711A (en) Manufacture of thin film dielectric material for capacitor
JPS62279621A (en) Manufacture of thin film dielectric material for capacitor
JPS637610A (en) Manufacture of dielectric material for thin film of capacitor
JP2002057065A (en) Thin-film capacitor and its manufacturing method
JPS63104315A (en) Manufacture of thin film dielectric material for capacitor
JPS6337506A (en) Manufacture of thin film dielectric material for capacitor
JP3992317B2 (en) Electronic component manufacturing method and thin film manufacturing apparatus
JPS62194606A (en) Thin film dielectric material
JPH06231991A (en) Method of manufacturing thin film lamination capacitor
JPS62179709A (en) Thin film dielectric material
JPS6224507A (en) Yttrium oxide thin film dielectric material