JPS6385524A - Color electrooptic device by ferroelectric liquid crystal - Google Patents
Color electrooptic device by ferroelectric liquid crystalInfo
- Publication number
- JPS6385524A JPS6385524A JP61230742A JP23074286A JPS6385524A JP S6385524 A JPS6385524 A JP S6385524A JP 61230742 A JP61230742 A JP 61230742A JP 23074286 A JP23074286 A JP 23074286A JP S6385524 A JPS6385524 A JP S6385524A
- Authority
- JP
- Japan
- Prior art keywords
- frame
- time
- liquid crystal
- light
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims description 19
- 239000003086 colorant Substances 0.000 claims abstract description 5
- 239000010409 thin film Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 9
- 210000002858 crystal cell Anatomy 0.000 description 7
- 239000010408 film Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000004990 Smectic liquid crystal Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は強誘電性液晶カラー電気光学装置に関する。特
に強誘電性液晶を用いて継時加法混色によるカラーディ
スプレイを提供する強誘電性液晶カラー電気光学uMの
駆動方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferroelectric liquid crystal color electro-optical device. In particular, the present invention relates to a method of driving a ferroelectric liquid crystal color electro-optical uM that uses ferroelectric liquid crystals to provide a color display through time-based additive color mixing.
本発明は、強誘電性液晶素子の背面に設置された互いに
異なる色の光を発する光源から、前記強誘電性液晶素子
に継時的に異なる色の光を照射することにより加法混色
を生ししめる強誘電性液晶カラー電気光学装置において
、前記継時的に胃なる色の光を発する光源の各色の発光
する期間と、前記強誘電性液晶素子を駆動する期間とを
ずらしたことにより、色相のはっきりしたカラー表示を
得ることができるというものである。The present invention produces additive color mixture by sequentially irradiating the ferroelectric liquid crystal element with light of different colors from a light source that emits light of different colors and installed on the back side of the ferroelectric liquid crystal element. In the ferroelectric liquid crystal color electro-optical device, the hue can be changed by shifting the light emitting period of each color of the light source that sequentially emits light of the color of the stomach and the driving period of the ferroelectric liquid crystal element. It is possible to obtain a clear color display.
従来から液晶セルをシャッタとして用いて、その背後に
発光素子(例えばLED、CR”l”等)を設置して継
時加法混合の現象によりカラー表示を実現する発表はな
されている。例えばEurodisplay ’84に
おいて発表されたPh1lip 8os、Thomas
BLIzak、Rolf Vatneらの7−9 「
4 AFull−Color FieId−5eque
ntial Co1or DisplayJ (198
4/9/1B−20)やSID’85で発表された、H
asebe、Kobayashiらの「
が先行文献としてあげられる。Conventionally, it has been announced that a liquid crystal cell is used as a shutter and a light emitting element (for example, an LED, CR"l", etc.) is installed behind it to realize a color display by the phenomenon of sequential additive mixing. For example, Ph1lip 8os announced at Eurodisplay '84, Thomas
7-9 of BLIzak, Rolf Vatne et al.
4 AFull-Color Field-5eque
ntial Co1or DisplayJ (198
4/9/1B-20) and H announced at SID'85
Asebe, Kobayashi et al.'s ``'' is cited as a prior literature.
しかし、同方式を、強誘電性液晶表示素子に応用した場
合の具体的な駆動方法についての開示された発明はない
。そこで、まず従来の強誘電性液晶の駆動方法を説明す
る。強誘電性液晶例えばカイラルスメクチック液晶(以
下SmC”という)分子の双安定状態を相互に電気的に
切り換えて(以下スイッチングという)駆動する強誘電
性液晶セル(以下単に液晶セルという)及びそ駆動回路
は特開昭61−94026に開示されている。第2図に
従来の液晶セルの斜視図を示す、l−1は対向配置して
いる一対の基板である。2−2は基板内平面に設けられ
た一軸性又はランダム水平配向膜である。3は配向膜2
−2によって狭さまれだSmC”薄膜である。3mC”
は本来ラセン石構造に存するが配向膜で挟んだ薄膜にす
ると図に示すように液晶分子は層をなして水平配向する
。However, no invention has been disclosed regarding a specific driving method when this method is applied to a ferroelectric liquid crystal display element. First, a conventional method for driving a ferroelectric liquid crystal will be explained. A ferroelectric liquid crystal cell (hereinafter simply referred to as a liquid crystal cell) that drives the bistable states of ferroelectric liquid crystal molecules, such as chiral smectic liquid crystal (hereinafter referred to as "SmC"), by electrically switching between them (hereinafter referred to as switching), and its driving circuit. is disclosed in Japanese Unexamined Patent Publication No. 61-94026. Fig. 2 shows a perspective view of a conventional liquid crystal cell. Reference numeral 1-1 indicates a pair of substrates facing each other. Reference numeral 2-2 indicates a pair of substrates arranged on the inner plane of the substrates. A uniaxial or random horizontal alignment film provided. 3 is an alignment film 2
It is a thin film of SmC narrowed by −2.3mC”
Originally exists in a spiral structure, but when it is made into a thin film sandwiched between alignment films, the liquid crystal molecules form layers and are horizontally aligned as shown in the figure.
しかしながらSmC”i膜3を上部からみると分子軸が
層の法線4に対して0顛いている。この位置は2通りあ
り第1の安定状態5と第2の安定状態6である。ところ
でSmC”分子は分子軸に直交する向きに自発分極7を
存する。自発分極7の方向は基板1に垂直でありかつ、
双安定状態間で逆極性となっている。従って所定の極性
のパルスを印加することにより安定状態を相互にスイッ
チングすることができる。8−8は互いに直交する偏光
軸を有する一対の偏光板であって、複屈折により液晶分
子の第1の安定状態と第2の安定状態を光通過及び光遮
断として識別する光学変換部材である。9及び10は対
向配置された電極でありSmC”に対してパルスを印加
する。However, when looking at the SmC"i film 3 from above, the molecular axis is 0 degrees relative to the layer normal 4. There are two positions for this, a first stable state 5 and a second stable state 6. The SmC'' molecule has spontaneous polarization 7 in the direction perpendicular to the molecular axis. The direction of the spontaneous polarization 7 is perpendicular to the substrate 1, and
The polarity is reversed between the bistable states. It is therefore possible to switch between stable states by applying pulses of a predetermined polarity. 8-8 is a pair of polarizing plates having polarization axes orthogonal to each other, and is an optical conversion member that identifies the first stable state and the second stable state of liquid crystal molecules as light passing and light blocking by birefringence. . Electrodes 9 and 10 are arranged opposite to each other and apply a pulse to SmC''.
第3図に電極構成を示す。9は走査電極であり10は信
号電極である。両電極でマトリクスを構成し周知の時分
割駆動が行われる。Figure 3 shows the electrode configuration. 9 is a scanning electrode, and 10 is a signal electrode. A well-known time-division drive is performed by forming a matrix with both electrodes.
第4図は第3図に示すマトリクス画素の一つに印加され
る駆動波形の例である。まず最初の選択期間中閾値以上
の波高値Vop及びパルス幅Tを有する交流パルスを−
サイクル加える。全前半パルスP1の極性が液晶分子を
第1の安定状態から第2の安定状態にスイッチングする
方向にあると仮定すると、後半パルスP2の極性は逆方
向のスイッチング(第2の安定状態から第1の安定状態
へ)を行なう。結果的にはP、パルスのスイッチングは
保持されずP2パルスによるスイッチングが常に有効と
なる。次に非選択期間中は闇値以下の波高値を有する交
流パルスが印加され先に得られた第1の安定状態が保存
される。以下ここまでの間開を第1フレームと呼ぶ。FIG. 4 is an example of a driving waveform applied to one of the matrix pixels shown in FIG. 3. First, during the first selection period, an AC pulse having a peak value Vop and a pulse width T greater than or equal to the threshold value is selected.
Add cycle. Assuming that the polarity of all first half pulses P1 is in the direction of switching the liquid crystal molecules from the first stable state to the second stable state, the polarity of the second half pulse P2 is in the opposite direction switching (from the second stable state to the first stable state). to a stable state). As a result, the switching of the P pulse is not maintained and the switching of the P2 pulse is always effective. Next, during the non-selection period, an AC pulse having a peak value below the dark value is applied, and the previously obtained first stable state is preserved. Hereinafter, the spacing up to this point will be referred to as the first frame.
次にP3.P、パルスを含む第2フレームでは、P、、
P4パルスの波高値は闇値以下でありかつ第1フレーム
に比較して位相が反転している。したがって第1フレー
ムでP2パルスによって書き込まれた第1の安定状態は
保持される。Next, P3. In the second frame containing P, pulses, P, ,
The peak value of the P4 pulse is less than the dark value, and the phase is reversed compared to the first frame. Therefore, the first stable state written by the P2 pulse in the first frame is maintained.
以上が第1の安定状態に書き込みたい画素に印加される
べき波形であるが、第2の安定状態に書き込みたい画素
については、P l + P 2パルスの波高値を闇値
以下に、一方P、、P4パルスの波高値を闇値以上にす
れば良い。すなわち第1の安定状態にすべき画素は第1
フレームで、第2の安定状態にすべき画素は第2のフレ
ームで書き込むという駆動方式のため2フレ一ム分走査
することによって1画面が形成される。したがっそ両者
の間には時間的なずれが生じ、2フレーム走査した後で
は、第1の安定状態の方が第2の安定状態より1フレー
ムの時間分だけ長く表示されていることになる。The above is the waveform that should be applied to the pixel that you want to write into the first stable state, but for the pixel you want to write into the second stable state, set the peak value of the P l + P 2 pulse below the dark value, and ,, The peak value of the P4 pulse should be made equal to or higher than the dark value. In other words, the pixel that should be in the first stable state is
Since the driving method is such that pixels to be in the second stable state are written in the second frame, one screen is formed by scanning two frames. Therefore, a time lag occurs between the two, and after two frames have been scanned, the first stable state is displayed longer than the second stable state by one frame.
今、背面に配置せられた平面発光素子の異なった色の1
つが第5図に示されたように前記2フレームの間だけ発
光するとし、かつ第1の安定状態を光遮断状態(以下黒
と呼ぶ。)第2の安定状四を光透過状態(以下白と呼ぶ
。)とする。ここで第3図m行n列のマトリクス配置さ
れたセルの最上段すなわち1行目と最下段すなわちm行
目の画素を考える。いずれも以前の状態が黒でこの2フ
レ一ム間に白に反転すべき画素だとすれば、第1フレー
ムでは黒が保持されており第2フレームで白に反転する
ことになるが、第2フレームの終了までに最上段の画素
が白になっている時間はく2m−1)Tであり、一方、
最下段の画素はTである。ちなみにSmC”の′rは2
00〜300 μseeでありこの程度の時間では、透
過してくる発光色を認識することができず、最下段の画
素では所望のカラー表示が得られないという問題点があ
る。Now, one of the different colors of the flat light emitting elements placed on the back side.
As shown in FIG. 5, the first stable state is a light blocking state (hereinafter referred to as black), and the second stable state is a light transmitting state (hereinafter referred to as white). ). Here, let us consider the topmost pixel, that is, the first row, and the bottommost pixel, that is, the mth row, of the cells arranged in a matrix of m rows and n columns in FIG. If the previous state of each pixel is black and should be inverted to white between these two frames, then black will be maintained in the first frame and inverted to white in the second frame, but the pixel will be inverted to white in the second frame. The time it takes for the top pixel to become white until the end of 2 frames is 2m-1)T, and on the other hand,
The bottom pixel is T. By the way, 'r' of "SmC" is 2
00 to 300 μsee, and within this time period, it is impossible to recognize the transmitted emitted light color, and there is a problem that the desired color display cannot be obtained in the bottom pixel.
本発明は、従来の技術の問題点を解決することを目的と
し、平面発光素子の各色の発光時間を、2フレームのう
ちの第2フレームから発光開始し次の2フレームのうち
の第1フレームの終了までに設定するものである。The present invention aims to solve the problems of the conventional technology, and the light emitting time of each color of the planar light emitting element is such that the light emitting time of each color of the planar light emitting element starts from the second frame of two frames and starts from the first frame of the next two frames. This is to be set by the end of the process.
第1図に強誘電性液晶素子の駆動タイミングと平面発光
素子の発光タイミングを示す。第1図において、赤に発
光させたい画素を時間Aの2フレ°−ムの第2フレーム
で白に書き込む。−万事面発光素子の赤色光源は時間A
のうちの第2フレームから発光を開始する。次に青に発
光させたい画素を時間Bの2フレームの第2フレームで
白に書き込む。しかし時間Bのうちの第1フレームまで
は赤色光源の発光を継続する。その後第2フレー1、か
ら青色光源の発光を開始し、緑に発光させたい画素に白
を♂き込む時間Cの第1フレームまで青色光源の発光を
継’+1する。また時間Cの第2フレームから緑色光源
の発光を開始し、赤に発光させたい画素に白を書き込む
時間Aの第1フレームまで緑色光源の発光を継続する。FIG. 1 shows the driving timing of the ferroelectric liquid crystal element and the light emission timing of the planar light emitting element. In FIG. 1, a pixel that is desired to emit red light is written white in the second frame of two frames at time A. -The red light source of the surface emitting device is time A
Light emission starts from the second frame. Next, the pixel that is desired to emit blue light is written in white in the second frame of the two frames at time B. However, until the first frame of time B, the red light source continues to emit light. Thereafter, the blue light source starts emitting light from the second frame 1, and continues to emit light by '+1' until the first frame at time C, when white is injected into the pixels that are desired to emit green light. Further, the green light source starts emitting light from the second frame at time C, and continues to emit light from the green light source until the first frame at time A, when white is written into the pixel to be emitted red.
以下、上記最初の手順に戻りこれをくり返す。From now on, return to the first step above and repeat this.
この方法によれば、第3図のマトリクスセルにおける最
下段の画素には最低でも第2フレームで書き込まれた時
間Tと次の第1フレームの時間(2m−1)Tの合計2
mTの時間は白に保持されているため赤光源を透過させ
充分な輝度が得られる。但しこの場合には、第1フレー
ムで里を、第2フレームで白を書き込むように、第4図
の%f<動源形の位相を調整するか、もしくは偏光板8
−8の互いの偏光軸の角度を平行にするかの調整をする
。このようにすれば、マトリクスセル画面上の全ての画
素は、各発光色を少なくとも2mT時間は透過させるこ
とができる。According to this method, the lowest pixel in the matrix cell of FIG.
Since the time of mT is maintained as white, sufficient brightness can be obtained by transmitting the red light source. However, in this case, adjust the phase of the %f<dynamic source shape in Figure 4 so that the village is written in the first frame and the white in the second frame, or the polarizing plate 8
Adjust the angles of the polarization axes of -8 to make them parallel. In this way, all pixels on the matrix cell screen can transmit each luminescent color for at least 2 mT time.
〔発明の効果]
以上述べたように本発明によれば、各色の発光光源が継
時的に強誘電性液晶素子をi3過してくる時間を、最低
でも2nTだけ確保できるため、色相のはっきりしたカ
ラー表示を得ることができるという効果がある。[Effects of the Invention] As described above, according to the present invention, the time for the light emitting light source of each color to pass through the ferroelectric liquid crystal element over time can be secured by at least 2nT, so that the hue can be clearly defined. This has the advantage that a bright color display can be obtained.
【図面の簡単な説明】
第1図は本発明のSmC”の駆動タイミングと平面発光
素子の発光タイミングとを継時的に表わした図、第2図
は従来の液晶セルの斜視図、第3図は従来の液晶セルの
電極配置図、第4図は従来の液晶セルの駆動波形図、第
5図は従来のSmC”の駆動タイミング平面発光素子の
発光タイミングとを継時的に表わした図である。
1−1・・ 2゜((反
2−2・・ 配向膜
3 ・・・カイラルスメクチック液晶Fit[128
−8・・・偏光板
9、lO・・・電I瓜。
以 −ト
出願人 セイコー電子工業株式会社
”G
各給米/I禾轟セ2ルー糾乎克図
第2図
従来/)メ樋晶セlしの電極ρこ置図
第3図
伏未色麻晶仇ルヘf重り波形
第4図[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram chronologically showing the drive timing of the SmC" of the present invention and the light emission timing of the flat light emitting element, FIG. 2 is a perspective view of a conventional liquid crystal cell, and FIG. Figure 4 is a diagram of the electrode arrangement of a conventional liquid crystal cell, Figure 4 is a drive waveform diagram of a conventional liquid crystal cell, and Figure 5 is a diagram chronologically showing the drive timing of a conventional SmC'' and the light emission timing of a planar light emitting element. It is. 1-1... 2゜((Anti-2-2... Alignment film 3... Chiral smectic liquid crystal Fit[128
-8... Polarizing plate 9, lO... Electric melon. Applicant: Seiko Electronics Co., Ltd. Akira Ruhe f weight waveform Figure 4
Claims (1)
なる強誘電性液晶素子と、この表示面に互いに異なる色
の光を継時的に照射することができる複数もしくは単一
の光源よりなる平面光源とを具備した強誘電性液晶カラ
ー電気光学装置において、前記強誘電性液晶素子に、光
透過状態を書き込む第2フレームから、前記平面光源内
の少なくとも1つの色の発光を開始し、引き続く次のフ
レームの終了まで発光を継続させることを特徴とする強
誘電性液晶カラー電気光学装置。It consists of a ferroelectric liquid crystal element consisting of a ferroelectric liquid crystal thin film sandwiched between two transparent members, and a plurality or single light source that can sequentially irradiate the display surface with light of different colors. In a ferroelectric liquid crystal color electro-optical device comprising a flat light source, light emission of at least one color in the flat light source starts from a second frame in which a light transmission state is written in the ferroelectric liquid crystal element, and continues. A ferroelectric liquid crystal color electro-optical device characterized by continuing light emission until the end of the next frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61230742A JP2519429B2 (en) | 1986-09-29 | 1986-09-29 | Ferroelectric liquid crystal color electro-optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61230742A JP2519429B2 (en) | 1986-09-29 | 1986-09-29 | Ferroelectric liquid crystal color electro-optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6385524A true JPS6385524A (en) | 1988-04-16 |
JP2519429B2 JP2519429B2 (en) | 1996-07-31 |
Family
ID=16912587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61230742A Expired - Lifetime JP2519429B2 (en) | 1986-09-29 | 1986-09-29 | Ferroelectric liquid crystal color electro-optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2519429B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000008518A1 (en) | 1998-08-06 | 2000-02-17 | Citizen Watch Co., Ltd. | Ferroelectric liquid crystal display and method for driving the same |
US6847345B2 (en) | 2001-09-27 | 2005-01-25 | Citizen Watch Co., Ltd. | Liquid crystal optical device |
KR100751191B1 (en) * | 2000-12-29 | 2007-08-22 | 엘지.필립스 엘시디 주식회사 | Ferroelectric Liquid Crystal Display and Driving Method Thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5627198A (en) * | 1979-08-10 | 1981-03-16 | Canon Kk | Color display device |
JPS56107216A (en) * | 1980-01-08 | 1981-08-26 | Clark Noel A | Liquid crystal electrooptical device and production thereof |
-
1986
- 1986-09-29 JP JP61230742A patent/JP2519429B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5627198A (en) * | 1979-08-10 | 1981-03-16 | Canon Kk | Color display device |
JPS56107216A (en) * | 1980-01-08 | 1981-08-26 | Clark Noel A | Liquid crystal electrooptical device and production thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000008518A1 (en) | 1998-08-06 | 2000-02-17 | Citizen Watch Co., Ltd. | Ferroelectric liquid crystal display and method for driving the same |
KR100751191B1 (en) * | 2000-12-29 | 2007-08-22 | 엘지.필립스 엘시디 주식회사 | Ferroelectric Liquid Crystal Display and Driving Method Thereof |
US6847345B2 (en) | 2001-09-27 | 2005-01-25 | Citizen Watch Co., Ltd. | Liquid crystal optical device |
Also Published As
Publication number | Publication date |
---|---|
JP2519429B2 (en) | 1996-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5311206A (en) | Active row backlight, column shutter LCD with one shutter transition per row | |
JP4100719B2 (en) | Liquid crystal display | |
JP2518625B2 (en) | Ferroelectric liquid crystal color electro-optical device | |
US4924215A (en) | Flat panel color display comprising backlight assembly and ferroelectric liquid crystal shutter assembly | |
US8466861B2 (en) | Liquid crystal display device and display method | |
JPS60156047A (en) | Driving method of optical modulating element | |
KR100828011B1 (en) | Liquid crystal display device | |
US8564514B2 (en) | Driving method of liquid crystal display device and liquid crystal display device | |
KR100786208B1 (en) | Liquid crystal display device | |
JPH10239664A (en) | Liquid crystal display | |
JPS6385524A (en) | Color electrooptic device by ferroelectric liquid crystal | |
JP3977710B2 (en) | Liquid crystal optical device | |
JP2525148B2 (en) | Display device | |
JPH10253943A (en) | Antiferroelectric liquid crystal display device | |
JPS6385523A (en) | Color electrooptic device by ferroelectric liquid crystal | |
JPS62125389A (en) | Display unit | |
US6307533B1 (en) | Liquid crystal display device with matrix electrode structure | |
JP3910706B2 (en) | Driving method of matrix type ferroelectric liquid crystal display device | |
EP1028347A1 (en) | Liquid crystal display and method of driving the same | |
JPH0438331B2 (en) | ||
KR100656228B1 (en) | Liquid crystal display | |
EP1045270B1 (en) | Ferroelectric liquid crystal display and method for driving the same | |
KR100854992B1 (en) | Liquid crystal display | |
KR100804116B1 (en) | Driving method of liquid crystal display device and liquid crystal display device | |
JP2000180827A (en) | Liquid crystal display device |