[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6376305A - Magnetic powder for plastic magnet or rubber magnet and manufacture thereof - Google Patents

Magnetic powder for plastic magnet or rubber magnet and manufacture thereof

Info

Publication number
JPS6376305A
JPS6376305A JP61220298A JP22029886A JPS6376305A JP S6376305 A JPS6376305 A JP S6376305A JP 61220298 A JP61220298 A JP 61220298A JP 22029886 A JP22029886 A JP 22029886A JP S6376305 A JPS6376305 A JP S6376305A
Authority
JP
Japan
Prior art keywords
powder
carbon
magnetic powder
magnetic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61220298A
Other languages
Japanese (ja)
Inventor
Daisuke Kaino
戒能 大助
Toshimitsu Sakai
利光 坂井
Yutaka Aikawa
豊 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP61220298A priority Critical patent/JPS6376305A/en
Publication of JPS6376305A publication Critical patent/JPS6376305A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a plastic magnet having a high maximum energy product by a method wherein, after powder of a rare-earth cobalt alloy including a carbon- containing organic binder and/or carbon powder is compressed and molded in a magnetic field, the molded material is heat-treated in an inert gas atmosphere and is then pulverized. CONSTITUTION:After a 30 % solution of polyvinyl alcohol as an organic binder containing carbon atoms has been added to an alloy powder composed of samarium and cobalt, these substances are mixed and are granulated. The obtained particles are compressed and molded in a magnetic field of 20 kOe. Then, if the compressed and molded material is heat-treated in an inert gas atmosphere at 1050-1200 deg.C, carbon remains on the surface of the magnetic powder (crystalline particles) 1 in a strongly combined state. then, the heat-treated and molded material is pulverized in a ball mill. The powder mixed with nylon 3 and the mixture is injection-molded in a magnetic field so that a plastic magnet can be obtained in such a way that the space between magnetic powder 1 coated with a carbon film 2 is combined by the nylon 3. Through this constitution, the rate of the content of the magnetic powders 1 can be increased and the maximum energy product can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 プラスチック又はゴム磁石を作る時に使用する希土類コ
バルト系磁性粉及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to rare earth cobalt-based magnetic powder used in making plastic or rubber magnets and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来の希土類コバルト系(例えば8mCo 5又はSm
2Co l ? )プラスチック磁石は次の(11〜(
7)の工程を含んで製造嘔れている。
Traditional rare earth cobalt systems (e.g. 8mCo5 or Sm
2Col? )Plastic magnets are the following (11~(
The manufacturing process includes step 7).

(11Sm(−+r−vリウム) 、 Co (コ/<
 、n、 ) )等の原材料粉末を所定の比率に秤量す
る。
(11Sm(-+r-vrium), Co(ko/<
, n, )), etc., are weighed in a predetermined ratio.

(2)  これを高周波加熱炉により、Ar等の不活性
ガス雰囲気中で1600〜1800℃で溶解し。
(2) This is melted at 1600 to 1800°C in an inert gas atmosphere such as Ar using a high frequency heating furnace.

しかる後冷却することによって、インゴットを得る。Thereafter, an ingot is obtained by cooling.

(3;  このインゴットをボールミルによf73〜9
μm程度に粉砕する。
(3; Put this ingot into a ball mill with f73~9
Grind to about μm size.

C4)  得られた粉末? 20 koeの磁場中で3
t/cm’の圧力でプレス成形する。
C4) Obtained powder? 3 in a magnetic field of 20 koe
Press molding at a pressure of t/cm'.

〔51得られた成形体を不活性雰囲気中で1050〜1
200℃に1時間保持した後、これを急冷して、艷に不
活性雰囲気中で600〜900℃に1時間保持したのち
徐冷し、焼結体を得る。
[51 The obtained molded body was heated to 1050-1 in an inert atmosphere.
After being held at 200°C for 1 hour, it is rapidly cooled, kept at 600 to 900°C for 1 hour in an inert atmosphere, and then slowly cooled to obtain a sintered body.

(61得られた焼結体をボールミルで粉砕して3〜20
 tt m (Sm2Coly系では5〜60μm)の
粉末を得る。
(61 The obtained sintered body was crushed with a ball mill to give a
A powder of tt m (5 to 60 μm for Sm2Coly system) is obtained.

(71得られた粉末とナイロンとを混合し、磁場中で射
出成形する。
(71 The obtained powder and nylon are mixed and injection molded in a magnetic field.

〔発明が解決しようとする問題漬〕[The problem that the invention attempts to solve]

プラスチック磁石の最大エネルギー積は焼結磁石の50
%程度しか得られないので、最大エネルギー積を向上ざ
ゼるためKは、プラスチック磁石中の磁性粉の含有率(
vo1%)を高める必要がある。しかしながら、従来の
希土類コバルト系磁性粉を用い念プラスチック磁石では
、この最大エネルギー積を向上させるために磁性粉の含
有率7大きくすると、加圧成形で得られた成形体を熱処
理で硬化きせる際にクラックが発生しやす<、裂品歩留
まりが著しく低かった。そのため実用上、希土類コバル
ト系磁性粉の含有率は70 vo1%以下忙制限され、
jI大エネルギー積の高いプラスチック磁石を得ること
は困難であった。
The maximum energy product of plastic magnets is 50 that of sintered magnets.
%, so in order to improve the maximum energy product, K is the content of magnetic powder in the plastic magnet (
VO1%) needs to be increased. However, in conventional plastic magnets using rare earth cobalt-based magnetic powder, if the content of magnetic powder is increased by 7 to improve this maximum energy product, it will be difficult to harden the compact obtained by pressure molding by heat treatment. Cracks were likely to occur, and the yield of broken products was extremely low. Therefore, in practical terms, the content of rare earth cobalt magnetic powder is limited to 70 VO1% or less.
It has been difficult to obtain a plastic magnet with a high jI large energy product.

そこで1本願の第1番目の発明の目的は、プラスチック
又はゴムに対する結合力が大きい希土類コバルト系磁性
粉を提供することKある。
Therefore, an object of the first invention of the present application is to provide a rare earth cobalt-based magnetic powder that has a large bonding force to plastic or rubber.

本願の第2番目の発明は、プラスチック又はゴムに対す
る結合力の大きい希土類コバルト系磁性粉を容易に得る
ことができる製造方法を提供することKある。
The second invention of the present application is to provide a manufacturing method that can easily obtain rare earth cobalt-based magnetic powder that has a strong bonding force to plastic or rubber.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決し、上記目的を達成する念めの本願の
第1番目の発明に係わるプラスチック又はゴム磁石用希
土類コバルト系磁性粉は、希土類コバルト系磁性粉の表
面に炭素Cカーボン)被膜又は粒子を有することを特徴
とするものである。
A rare earth cobalt based magnetic powder for plastic or rubber magnets according to the first invention of the present application which aims to solve the above problems and achieve the above object is provided with a carbon (C) or carbon (carbon) coating or It is characterized by having particles.

本願の第2番目の発明は、希土類コバルト系合金粉末を
磁場中でプレス成形する際に、希土類コバルト系合金粉
末に炭素原子を含む有機バインダ及び/又は炭素粉末を
加えて磁場中でプレス成形し、しかる後不活性ガス雰囲
気中で熱処理し、粉砕することを特徴とするものである
The second invention of the present application is to press-form rare earth cobalt-based alloy powder in a magnetic field by adding an organic binder and/or carbon powder containing carbon atoms to the rare-earth cobalt-based alloy powder, and press-forming the rare earth cobalt-based alloy powder in a magnetic field. , and then heat-treated in an inert gas atmosphere and pulverized.

〔作 用〕[For production]

本願の第1及び第2の発明に係わる炭素被膜又は粒子は
、磁性粉とプラスチック又はゴムとの間に介在して両者
を強固に結合させるために寄与する。
The carbon coating or particles according to the first and second inventions of the present application are interposed between the magnetic powder and the plastic or rubber and contribute to strongly bonding the two.

本願の第2番目の発明において、磁場中でプレス成形す
る際に、有機バインダ及び/又は炭素粉末ン混入させる
と、熱処理工程にSいて、磁性粉の表面に炭素が固着し
、これがプラスチック又はゴムに対する結合力増大に寄
与する。
In the second invention of the present application, if an organic binder and/or carbon powder is mixed during press molding in a magnetic field, carbon will adhere to the surface of the magnetic powder during the heat treatment process, and this will lead to plastic or rubber particles. Contributes to an increase in bonding strength.

〔実施例〕〔Example〕

次に1本発明の実施例に係わる希土類コバルト系磁性粉
及びこれケ使用したプラスチック磁石を説明する。
Next, a rare earth cobalt magnetic powder and a plastic magnet using the same according to an embodiment of the present invention will be explained.

(実施例1) 8m (v?リウA )’l’150.35 g、  
Co (コバルト)を500.93 g秤量し、これ等
の混合物を高周波加熱炉によってA「ガス雰囲気中で1
600〜1800℃に加熱浴M−Xせ、しかる後冷却し
てインゴット(希土類コバルト系合金の塊)を得た。
(Example 1) 8m (v?Riu A)'l'150.35 g,
500.93 g of Co (cobalt) was weighed, and the mixture was heated in a high-frequency heating furnace in a gas atmosphere.
The mixture was heated to 600 to 1800°C in a heating bath M-X, and then cooled to obtain an ingot (a lump of rare earth cobalt alloy).

次に、インゴットをボールミルで3〜9μmに粉砕し、
サマリウム・コバルト合金の粉末を得た。
Next, the ingot was ground to 3 to 9 μm using a ball mill,
A samarium-cobalt alloy powder was obtained.

次に、サマリウム・コバルト合金粉末500gに対して
炭素原子?含む有機バインダとしてのポリビニルアルコ
ールの30%水溶液v10og加え、ライカイ機で20
分間混合し、60メツシユパスの造粒粒子を得な。得ら
れた造粒粒子を20koeの磁場中K jet t/)
て(1,2t/cm”の圧力でプレス成形した。
Next, carbon atoms for 500g of samarium-cobalt alloy powder? Add 10 og of a 30% aqueous solution of polyvinyl alcohol as an organic binder containing
Mix for 60 mesh passes to obtain granulated particles. The obtained granulated particles were placed in a magnetic field of 20 koe (K jet t/)
Press molding was carried out at a pressure of 1.2 t/cm''.

次に、プレス成形体をArガス雰囲気中で1050〜b しかる後金、冷し、史KArガス雰囲気中で600へ9
00℃?30分間保持するように熱処理し、その後徐冷
し之。この工程で成形体を熱処理すると。
Next, the press-formed body was heated to 1050 to 90% in an Ar gas atmosphere, then cooled and heated to 600% in an Ar gas atmosphere.
00℃? Heat treated for 30 minutes and then slowly cooled. When the molded body is heat-treated in this process.

ポリビニルアルコール溶液の溶媒は蒸発し、同時にポリ
ビニルアルコールが分解し、ポリビニル了ルコールを構
成する酸素及び水素は蒸発する。しかし、炭素は磁性粉
(結晶粒)の表面に強く結合した状態で残る。
The solvent of the polyvinyl alcohol solution evaporates, and at the same time the polyvinyl alcohol decomposes, and the oxygen and hydrogen constituting the polyvinyl alcohol evaporate. However, carbon remains strongly bonded to the surface of the magnetic powder (crystal grains).

次に、熱処理した成形体をボールミルで粉砕し。Next, the heat-treated molded body was ground in a ball mill.

3〜20μmのサマリウム・コバルト磁性粉とする。有
機バインダー中の炭素が磁性粉の緻密化を防いでいるの
で、容易に粉砕することができる。
A samarium-cobalt magnetic powder with a diameter of 3 to 20 μm is used. Since the carbon in the organic binder prevents the magnetic powder from becoming dense, it can be easily pulverized.

第1図は磁性粉(1)の表面に炭素被膜(21が固着し
ている状態を原理的に示す。
FIG. 1 basically shows a state in which a carbon film (21) is adhered to the surface of magnetic powder (1).

次に、射出成形物における磁性粉の含有率が表に示す値
(65,70,75,80,85,90vo1%)にな
るよう忙、炭素被膜を有する磁性粉とナイロンとを種々
の割合に混合し、磁場中で射出成形し、第2図に原理的
に示すような炭素被膜(2)を有する磁性粉(1)の相
互間をナイロン+31で結合させたプラスチック磁石を
得た。なお、各磁性粉含有率において50個の試料(プ
ラスチック磁石)を作った。
Next, the carbon-coated magnetic powder and nylon were mixed in various ratios so that the content of the magnetic powder in the injection molded product was the value shown in the table (65, 70, 75, 80, 85, 90vo1%). The mixture was mixed and injection molded in a magnetic field to obtain a plastic magnet in which magnetic powder (1) having a carbon coating (2) was bonded with nylon +31 as shown in principle in FIG. Note that 50 samples (plastic magnets) were made at each magnetic powder content rate.

しかる後、各磁性粉含有率のプラスチック磁石のクラッ
クの発生率(%]を調べたところ1表に示す通りであっ
た。この結果から明らかな如く、a1性粉な80 vo
1%混入させてもクラックが発生しない。
After that, the crack occurrence rate (%) of plastic magnets with each magnetic powder content was investigated and the results were as shown in Table 1.As is clear from this result, 80 vo, which is an A1 powder,
No cracks occur even if 1% is mixed.

比較のために、ポリビニルアルコールに基づく炭素被膜
(2)を設けない磁性粉を実施例1と同一の方法で作り
、実施例1と同一の方法でプラスチック磁石を作り、ク
ラックの発生を調べたところ。
For comparison, magnetic powder based on polyvinyl alcohol without the carbon coating (2) was made in the same manner as in Example 1, and a plastic magnet was made in the same manner as in Example 1, and the occurrence of cracks was examined. .

表の従来例の欄に示″fM果となった。実施例1と従来
例との比較から明らかな如(、従来例ではSmCo5プ
ラスチック磁石、 8m?Co17プラスチツク磁石の
両方忙おいて磁性粉含有率75 vo1%からクラック
の発生が見られるが1本発明に係わる実施例1では80
 vo1%まではクラックの発生が見られない。従って
1本発明の磁性粉を使用すると。
The "fM" results are shown in the conventional example column of the table. Cracks can be seen starting from a rate of 75 vo1%, but in Example 1 according to the present invention, it is 80
No cracks were observed up to vo1%. Therefore, if the magnetic powder of the present invention is used.

この含有率を多(してプラスチック磁石の最大エネルギ
ー積な向上さセることが可能になる。
By increasing this content, it becomes possible to increase the maximum energy product of plastic magnets.

表  (クラック発生率1) (5j!施例2〕 別の組成の希土類コバルト系磁性粉に対しても不発明を
適用することができることを確かめろために、Smを2
75g、  りi Y 6,6 g、 Cuを86g。
Table (Crack occurrence rate 1) (5j! Example 2) In order to confirm that the invention can be applied to rare earth cobalt magnetic powder with a different composition, Sm was
75g, 6.6g of Ri Y, 86g of Cu.

FeY 117g、Cov456 g秤量し、実施例1
と同一の方法で溶解、冷却してインボラトラ作り。
Weighed 117 g of FeY, 456 g of Cov, Example 1
Melt and cool to make inboratora using the same method as above.

これを粉砕して6〜60μmの粉末を得た。This was pulverized to obtain a powder of 6 to 60 μm.

次に、この合金粉末500gに対して、ポリビニルアル
コール30%水溶液50g、!:、粒径5〜20μmの
カーボン10gとを加え、ライカイ機で20分間混合し
、60メツシユパスの造粒粒子ン得念。
Next, for 500 g of this alloy powder, 50 g of a 30% polyvinyl alcohol aqueous solution! : Add 10 g of carbon with a particle size of 5 to 20 μm, mix for 20 minutes in a light machine, and obtain granulated particles for 60 mesh passes.

次に、得られた造粒粒子を20 kOeの磁場中圧おい
て0.5 t/ Cm’の圧力でプレス成形し、しかる
後、実施例1と同じ方法で焼成、粉砕することによって
炭素被膜を有する6〜60μmの磁性粉を得た。
Next, the obtained granulated particles were press-molded at a pressure of 0.5 t/Cm' in a magnetic field of 20 kOe, and then fired and crushed in the same manner as in Example 1 to form a carbon coating. A magnetic powder having a diameter of 6 to 60 μm was obtained.

この磁性粉を使用して実施例1と同一の方法でプラスチ
ック磁石を作り、クラックの発生率を調べたところ1表
に示す結果が得られた。この結果から明らかな如<、 
SmTi CuFeCoから成る希土類コバルト系磁性
粉であってもSm co磁性粉と同一の作用効果が得ら
れる。
A plastic magnet was made using this magnetic powder in the same manner as in Example 1, and the crack occurrence rate was examined, and the results shown in Table 1 were obtained. It is clear from this result that
Even with rare earth cobalt-based magnetic powder made of SmTi CuFeCo, the same effects as Sm co magnetic powder can be obtained.

〔変形例〕[Modified example]

本発明は、上述の実施例に限定されるものでなく、変形
可能なものである。例えば、希土類コバルト系原料合金
粉末に炭素粉末のみを混合して造粒、磁場中成形しても
よい。また、希土類コバルト系原料合金粉末に加える有
機バインダー及び/又は炭素粉末の量は、原料合金粉末
に対して炭素の量で0.01へ5:841%の範囲が好
ましいことが離間されている。(1,01重量る未満に
なると、炭素被膜の効果が明らかに判別できなくなり、
5事貴重を越えると、磁性粉に固着されない炭素が存在
するようになり、成形性が悪化する。
The invention is not limited to the embodiments described above, but can be modified. For example, only carbon powder may be mixed with rare earth cobalt-based raw material alloy powder, granulated, and compacted in a magnetic field. Furthermore, the amount of the organic binder and/or carbon powder added to the rare earth cobalt-based raw material alloy powder is preferably in the range of 0.01 to 5:841% in terms of the amount of carbon relative to the raw material alloy powder. (If the weight is less than 1.01%, the effect of the carbon film cannot be clearly determined,
If the value exceeds 5, there will be carbon that is not fixed to the magnetic powder, resulting in poor moldability.

〔発明の効果〕〔Effect of the invention〕

上述から明らかな如く1本願の第】番目及び第2番目の
発明によれば、プラスチック又はゴムに対する結合力の
強い磁性粉を提供することができる。従って、磁性粉の
含有率を高めてもプラスチック又はゴム磁石のクラック
が発生し忙<<なり。
As is clear from the above, according to the second and second aspects of the present invention, it is possible to provide magnetic powder that has a strong bonding force to plastic or rubber. Therefore, even if the content of magnetic powder is increased, cracks may occur in the plastic or rubber magnet.

最大エネルギー積の向上が可能になる。また1本願の第
2番目の発明によれば、原料合金粉末の熱処理前に有機
バインダー及び/又は炭素粉末を加えるので、磁性粉の
表面に強く固湛・シた炭素被膜又は粒子?容易に得るこ
とができる。
It becomes possible to improve the maximum energy product. Moreover, according to the second invention of the present application, since an organic binder and/or carbon powder is added before the heat treatment of the raw material alloy powder, the surface of the magnetic powder is strongly impregnated with a carbon film or particles. can be obtained easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に従う炭素被膜を有する磁性粉
を原理的に示す断面図。 第2図は不発明の実施例に従うプラスチック磁石?原理
的に示す断面図である。 111・・磁性粉、(2)・・・炭素被膜、(3)・・
・ナイロン。 代  理  人   高  野  則  次第2図
FIG. 1 is a sectional view showing the principle of magnetic powder having a carbon coating according to an embodiment of the present invention. FIG. 2 shows a plastic magnet according to an uninvented embodiment? FIG. 2 is a sectional view showing the principle. 111...Magnetic powder, (2)...Carbon coating, (3)...
·Nylon. Agent: Nori Takano Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)希土類コバルト系磁性粉の表面に炭素被膜又は炭
素粒子を固着させたことを特徴とするプラスチック又は
ゴム磁石用磁性粉。
(1) Magnetic powder for plastic or rubber magnets, characterized in that a carbon film or carbon particles are fixed to the surface of rare earth cobalt-based magnetic powder.
(2)希土類コバルト系合金の塊を用意する工程と、 前記塊を粉砕して希土類コバルト系合金粉末を得る工程
と、 前記希土類コバルト系合金粉末に、炭素原子を含む有機
バインダ及び/又は炭素粉末を加えて磁場中でプレス成
形する工程と、 前記プレス成形で得られた成形体を不活性ガス雰囲気中
で熱処理する工程と、 前記熱処理を施した成形体をプラスチック又はゴム磁石
に適合するように粉砕し、炭素被膜又は炭素粒子が表面
に固着された希土類コバルト系磁性粉を得る工程と を含むことを特徴とするプラスチック又はゴム磁石用希
土類コバルト系磁性粉の製造方法。
(2) a step of preparing a lump of rare earth cobalt alloy; a step of crushing the lump to obtain rare earth cobalt alloy powder; and adding an organic binder containing carbon atoms to the rare earth cobalt alloy powder and/or carbon powder. a step of press-forming in a magnetic field with the addition of a A method for producing rare earth cobalt magnetic powder for use in plastic or rubber magnets, comprising the step of pulverizing rare earth cobalt magnetic powder having a carbon film or carbon particles fixed to its surface.
JP61220298A 1986-09-18 1986-09-18 Magnetic powder for plastic magnet or rubber magnet and manufacture thereof Pending JPS6376305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220298A JPS6376305A (en) 1986-09-18 1986-09-18 Magnetic powder for plastic magnet or rubber magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220298A JPS6376305A (en) 1986-09-18 1986-09-18 Magnetic powder for plastic magnet or rubber magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6376305A true JPS6376305A (en) 1988-04-06

Family

ID=16748965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220298A Pending JPS6376305A (en) 1986-09-18 1986-09-18 Magnetic powder for plastic magnet or rubber magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6376305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1583111A1 (en) * 2003-01-10 2005-10-05 Neomax Co., Ltd. Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125625A (en) * 1975-01-20 1976-11-02 Hitachi Magnetics Corp Method of manufacturing intermetallic compound of cobalt and rare earth metals
JPS5416698A (en) * 1978-07-24 1979-02-07 Seiko Epson Corp Preparing permanent magnet
JPS5940501A (en) * 1982-08-30 1984-03-06 Inoue Japax Res Inc Carbon-containing permanent magnet
JPS5961903A (en) * 1982-09-30 1984-04-09 Sony Corp Manufacture of acicular magnetic metal powder
JPS61208806A (en) * 1985-03-13 1986-09-17 Hitachi Metals Ltd Surface treating method and permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125625A (en) * 1975-01-20 1976-11-02 Hitachi Magnetics Corp Method of manufacturing intermetallic compound of cobalt and rare earth metals
JPS5416698A (en) * 1978-07-24 1979-02-07 Seiko Epson Corp Preparing permanent magnet
JPS5940501A (en) * 1982-08-30 1984-03-06 Inoue Japax Res Inc Carbon-containing permanent magnet
JPS5961903A (en) * 1982-09-30 1984-04-09 Sony Corp Manufacture of acicular magnetic metal powder
JPS61208806A (en) * 1985-03-13 1986-09-17 Hitachi Metals Ltd Surface treating method and permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1583111A1 (en) * 2003-01-10 2005-10-05 Neomax Co., Ltd. Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
EP1583111A4 (en) * 2003-01-10 2006-03-15 Neomax Co Ltd Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof

Similar Documents

Publication Publication Date Title
CN1109627A (en) A method of producing sintered- or bond- rare earth element.iron.boron magnets
JPH0661022A (en) Manufacture of rare earth bonded magnet
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JPS6376305A (en) Magnetic powder for plastic magnet or rubber magnet and manufacture thereof
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS62206801A (en) Manufacture of rare earth magnet
JPH056323B2 (en)
JPS6181607A (en) Preparation of rare earth magnet
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JPS61184804A (en) Manufacture of bond magnet
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JPS62282417A (en) Manufacture of rare earth magnet
JPS6373502A (en) Manufacture of rare earth magnet
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JPH03110804A (en) Manufacture of nd-fe-b bonded magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JPH02257603A (en) Bonded magnet
KR0128136B1 (en) Prodocing method of al-ni-co magnetic powder
JPS6389608A (en) Production of rare earth magnet alloy powder
JPH0329302A (en) Manufacture of anisotropic high-polymer composite-type rare-earth magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPS6341004A (en) Anisotropic bonded magnet
JPH03198305A (en) Manufacture of material for rare earth permanent magnet
JPH0328504B2 (en)
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element