[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6376886A - Airtight ceramic coated film and its production - Google Patents

Airtight ceramic coated film and its production

Info

Publication number
JPS6376886A
JPS6376886A JP61220516A JP22051686A JPS6376886A JP S6376886 A JPS6376886 A JP S6376886A JP 61220516 A JP61220516 A JP 61220516A JP 22051686 A JP22051686 A JP 22051686A JP S6376886 A JPS6376886 A JP S6376886A
Authority
JP
Japan
Prior art keywords
ceramic
coated film
coating film
silica
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220516A
Other languages
Japanese (ja)
Other versions
JP2585548B2 (en
Inventor
Osamu Tokari
戸河理 脩
Mizukado Tomikawa
冨川 水門
Takaaki Mori
孝明 毛利
Naotake Otsuka
尚武 大塚
Shigeru Aoki
茂 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP61220516A priority Critical patent/JP2585548B2/en
Publication of JPS6376886A publication Critical patent/JPS6376886A/en
Application granted granted Critical
Publication of JP2585548B2 publication Critical patent/JP2585548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To rapidly produce the title ceramic coated film having excellent heat resistance by forming a coated film consisting of high-m.p. ceramic particles and carbosilane resin on the surface of a substrate, and treating the material with laser to form vitreous silica. CONSTITUTION:The coated film consisting of high-m.p. ceramic particles and carbosilane resin is formed on the surface of the substrate made of a metal. TiO2, SiC, etc., are used for the ceramic particles, and the particle diameter is preferably controlled to <=about 10mum. The coated film is dried or baked, and then treated with CO2 laser, etc. As a result, the resin is instantaneously decomposed, and molten silica is formed. The molten silica oozes out to the coated film surface, and is then quenched to form vitreous silica 2. The ceramic particles 1 in the coated film form a porous layer contg. voids 4 and having excellent thermal shock resistance. The material is then preferably heat-treated at >=about 600 deg.C to form a diffusion joint 3. Consequently, an airtight ceramic coated film capable of withstanding a high temp. of >=about 450 deg.C is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は各種機械装置、プラント機器、塔槽類等の比較
的大面積を有する金属表面に形成された気密性セラミッ
ク塗膜及びその製造方法に関するものである。本発明は
特に、ステンレス鋼、炭素鋼等の表面では耐薬品性、耐
酸化性に於て不充分で且つプラスチックコーティングや
グラスライニング表面では耐熱性の点で使用できない高
温領域で使用される基材表面に対し、その基材表面の保
護を目的とするセラミックコーティング技術に関するも
のである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an airtight ceramic coating formed on a metal surface having a relatively large area such as various mechanical devices, plant equipment, towers and tanks, and a method for manufacturing the same. be. The present invention is particularly suitable for substrates used in high-temperature areas where surfaces such as stainless steel and carbon steel have insufficient chemical resistance and oxidation resistance, and plastic coatings and glass lining surfaces cannot be used due to heat resistance. The present invention relates to ceramic coating technology for the purpose of protecting the surface of a base material.

〔従来技術〕[Prior art]

炭素鋼及びステンレス鋼は両者の間に耐酸化性。 Carbon steel and stainless steel have oxidation resistance between them.

耐薬品性に程度の差はあるにせよ、いずれも使用条件下
に於ては、材質劣化を免れない。これらの金属の耐薬品
性をコーティングにより増すための一般的な方法はプラ
スチックコーティング又はグラスライニングである。し
かしながら、これらのコーティング方法の欠点は、いず
れも高温にさらされる装置には使用できない点にある。
Although there are varying degrees of chemical resistance, all materials are subject to material deterioration under usage conditions. Common methods for increasing the chemical resistance of these metals by coating are plastic coatings or glass linings. However, a drawback of these coating methods is that they cannot be used for equipment exposed to high temperatures.

プラスチックコーティングとしては最も高温に耐えると
いねれるテフロンコーティングやポリアミドコーティン
グにしても実質的に300℃以上の使用には耐えられな
い。又グラスライニングも300℃以上の使用には耐え
ず、一般にはその使用は250℃以下に限定される。前
者の温度限界は有機物の分解開始に起因しており、後者
の湿度限界は、金属とガラスの熱膨張係数の差に基づく
応力の増大にガラスが耐られないことに起因している。
Even Teflon coatings and polyamide coatings, which are the most durable plastic coatings to withstand high temperatures, cannot substantially withstand use at temperatures above 300°C. Furthermore, glass lining cannot withstand use at temperatures above 300°C, and its use is generally limited to temperatures below 250°C. The former temperature limit is due to the onset of decomposition of organic matter, and the latter humidity limit is due to the inability of glass to withstand increased stress due to the difference in thermal expansion coefficients between metal and glass.

近年、プラスチックコーティングの耐熱性における欠点
を改良するために、プラスチックスに比較して分解温度
の高いシリコン樹脂の如きカルボシラン樹脂とセラミッ
ク微粒子を混合したコーテイング材が開発されている。
In recent years, in order to improve the heat resistance defects of plastic coatings, coating materials have been developed in which ceramic fine particles are mixed with carbosilane resins such as silicone resins, which have a higher decomposition temperature than plastics.

しかし、この樹脂も400℃を超えると5i−C結合の
分解が始まるため、450℃以上の使用には耐えること
ができない。このように450℃以上で気密な膜を作る
コーティング方法が現状では存在しないため、高温耐食
ばかりでなく、高温領域で問題となる金属の酸化を防止
するコーティング方法も現状では存在しない。
However, this resin cannot withstand use at temperatures above 450°C because the 5i-C bonds begin to decompose when the temperature exceeds 400°C. As there is currently no coating method that forms an airtight film above 450°C, there is currently no coating method that not only provides high-temperature corrosion resistance but also prevents metal oxidation, which is a problem in high-temperature regions.

しかしながら、被覆面積が小さくて良い場合には、45
0℃以上の使用に耐える気密な膜を作る方法はいくつか
存在する。その第1は気相から基材金属表面に塗膜を生
成させる方法である。 PVD法、CVD法等がある。
However, if the coverage area is small, 45
There are several methods for making airtight membranes that can withstand use at temperatures above 0°C. The first method is to generate a coating film on the surface of the base metal from the gas phase. There are PVD methods, CVD methods, etc.

しかしこの方法では塗膜生成に減圧が必要であり1rr
rを超すものについては施工が困薙である0次に最近提
案されている方法として、特開昭59−96273号公
報、特開昭60−11287号公報、特開昭61−30
658号公報等にみられるようなセラミックス溶射皮膜
の表面をレーザー照射して、セラミック表面を封孔し、
気密性を増大せしめる方法がある。しかしながら、この
方法の欠点は溶射に要するコストと時間が非常に大きい
ため、1Mを超すような大面積のコーティングには実質
的に不向きな点である。
However, this method requires reduced pressure to form a coating film, and
Construction is difficult for objects exceeding r.Recently proposed methods of 0th order include JP-A-59-96273, JP-A-60-11287, and JP-A-61-30.
The surface of the ceramic sprayed coating as seen in Publication No. 658 etc. is irradiated with a laser to seal the ceramic surface,
There are ways to increase airtightness. However, the disadvantage of this method is that the cost and time required for thermal spraying are very large, making it virtually unsuitable for coating large areas exceeding 1M.

〔目   的〕〔the purpose〕

本発明は、450℃以上の高温に耐え、且つ気密性に優
れたセラミック塗膜及びこの塗膜をfry?以上の大き
な基材表面に迅速に被覆形成することのできるコーティ
ング技術を提供することを目的とする。
The present invention provides a ceramic coating film that can withstand high temperatures of 450° C. or higher and has excellent airtightness, and a ceramic coating film that can be used to fry this coating film. The object of the present invention is to provide a coating technique that can quickly form a coating on the surface of a large base material.

〔構  成〕〔composition〕

本発明によれば、第1の発明として、基材表面に形成さ
れた高融点セラミック粒子とガラス状シリカからなるセ
ラミック塗膜であって、該ガラス状シリカは溶融シリカ
を経由して形成された非多孔性のものであることを特徴
とする気密性セラミック塗膜が提供され、第2の発明と
して、基材表面に形成された高沸点セラミック粒子とカ
ルボシラン樹脂からなる塗膜をレーザー処理して該カル
ボシラン樹脂を分解し、シリカを主成分とするガラス状
物質を生成させることを特徴とする気密性セラミック塗
膜の製造方法が提供される。
According to the present invention, a first aspect of the present invention is a ceramic coating film formed on the surface of a base material and comprising high melting point ceramic particles and glassy silica, the glassy silica being formed via fused silica. An airtight ceramic coating film characterized by being non-porous is provided, and as a second invention, a coating film made of high boiling point ceramic particles and carbosilane resin formed on the surface of a base material is treated with a laser. A method for producing an airtight ceramic coating film is provided, which comprises decomposing the carbosilane resin to produce a glassy substance containing silica as a main component.

本発明の塗膜を製造するには、基材表面に形成された高
融点セラミック粒子とカルボシラン樹脂からなる塗膜を
レーザー処理することを特徴とする。セラミック粒子と
カルボシラン樹脂とからなる塗膜を通常の方法で徐々に
加熱処理すると、その塗膜は、450℃以上の高温下で
は1分解し、最終的にはセラミック粒子の間をシリカが
埋めたセラミック塗膜となる。しかしながら、この塗膜
中におけるシリカは、溶融状態を経ていないため微粒子
の集合体特有の多孔質構造を有しており、気密性に欠け
、耐薬品性、耐酸化性塗膜としての性能は不充分である
The production of the coating film of the present invention is characterized in that the coating film made of high melting point ceramic particles and carbosilane resin formed on the surface of a base material is subjected to laser treatment. When a coating film made of ceramic particles and carbosilane resin is gradually heat-treated using a conventional method, the coating film decomposes at high temperatures of 450°C or higher, and eventually silica fills the spaces between the ceramic particles. It becomes a ceramic coating. However, since the silica in this coating film has not undergone a molten state, it has a porous structure unique to an aggregate of fine particles, and lacks airtightness, and its performance as a chemical-resistant and oxidation-resistant coating film is poor. That's enough.

これに対しセラミック粒子とカルボシラン樹脂からなる
塗膜をCO2レーザーやYAGレーザーで照射すると、
樹脂はそのレーザー照射により発生する高熱により瞬間
的に分解して溶融状態のシリカ(SiO□)を生成する
。この溶融シリカは、都合の良いことに塗膜表面に浸出
し、そこで急冷されてガラス状シリカとなる。従って塗
膜表面近傍のセラミック粒子間はシリカガラスで充填さ
れ、かつ最上層はセラミック粒子を含まないガラス膜で
覆い尽されることとなる。こうしたガラス状シリカは良
く知られているように無孔性であり、気密が良く、基材
金属と外界との完全な遮断を可能とするため、耐薬品性
、耐酸化性膜として好適な性質を発揮する。特に生成す
るシリカガラスはそれに含まれる他成分により異なるが
、通常、その強化点が800℃以上で且つ、強アルカリ
を除いては耐薬品性にも極めて優れ、その上、硬度も大
きいので、長期間安定な塗膜となる。
On the other hand, when a coating film made of ceramic particles and carbosilane resin is irradiated with a CO2 laser or YAG laser,
The resin is instantaneously decomposed by the high heat generated by the laser irradiation, producing molten silica (SiO□). This fused silica conveniently leaches to the coating surface where it is rapidly cooled to glassy silica. Therefore, the spaces between the ceramic particles near the surface of the coating film are filled with silica glass, and the uppermost layer is completely covered with a glass film containing no ceramic particles. As is well known, glassy silica is non-porous, has good airtightness, and can completely isolate the base metal from the outside world, making it suitable for use as a chemical-resistant and oxidation-resistant film. demonstrate. In particular, the silica glass produced differs depending on the other components contained in it, but it usually has a strengthening point of 800°C or higher, has excellent chemical resistance except for strong alkalis, and has high hardness, so it can be used for a long time. The coating film is stable over a period of time.

本発明の他の大きな特徴点は、フィラーとして樹脂に含
有させる高融点セラミック粒子に基材金属に近い熱膨張
係数を有するものを採用することにより、高温下におけ
る基材金属と塗膜の接合面における応力の発生を出来る
だけ小さくすることができるばかりでなく、耐薬品性、
強度、その他のM点から基材金属と大きく異なる熱膨張
係数を有するセラミックを使用する場合でさえ、熱応力
に耐える塗膜の製造が可能となることである。その理由
は、レーザー照射時に、セラミック粒子間のカルボシラ
ン樹脂が分解して表面層に移動することにより、基材金
属と接合しているセラミック粒子部分はきわめて多孔質
で、熱応力の緩和に有効な構造を与えるためである。こ
の構造は圧縮強度においては、当初の有機塗膜をそのま
ま焼成してできる塗膜に比較して小さくなるが、急熱・
急冷に強い耐熱衝撃性に優れた塗膜を与えるのに適した
ものである。
Another major feature of the present invention is that the high melting point ceramic particles contained in the resin as a filler have a coefficient of thermal expansion close to that of the base metal, so that the bonding surface between the base metal and the coating film at high temperatures can be improved. Not only can stress generation be minimized, but also chemical resistance,
Even when using a ceramic having a thermal expansion coefficient significantly different from that of the base metal in terms of strength and other M points, it is possible to produce a coating film that can withstand thermal stress. The reason for this is that during laser irradiation, the carbosilane resin between the ceramic particles decomposes and moves to the surface layer, making the part of the ceramic particles bonded to the base metal extremely porous, which is effective in alleviating thermal stress. This is to give structure. This structure has a lower compressive strength than a coating made by firing the original organic coating as is, but
It is suitable for providing coating films that are resistant to rapid cooling and have excellent thermal shock resistance.

次に、本発明で用いるコーティング剤について詳述する
Next, the coating agent used in the present invention will be explained in detail.

本発明でコーティング剤の一方の成分として用いるカル
ボシラン樹脂は従来公知のものであり。
The carbosilane resin used as one component of the coating agent in the present invention is a conventionally known one.

炭化水素側鎖を持つ珪酸ポリマー又は他の異元素、例え
ば、ホウ素、チタンを含有する珪酸ポリマーである。こ
の場合、炭化水素側鎖としては、メチル基やフェニル基
等が用いられる。また、その炭化水素側鎖は、珪素元素
1個当り1〜2個であり、通常のカルボシラン樹脂は珪
素元素1個当り1個の炭化水素基を有するものと、2個
の炭化水素基を有するものとの共重合体である。異元素
を含む場合、その異元素は5通常、酸素を介して珪累元
索に結合する。
Silicic acid polymers with hydrocarbon side chains or containing other foreign elements such as boron, titanium. In this case, a methyl group, a phenyl group, or the like is used as the hydrocarbon side chain. In addition, the number of hydrocarbon side chains is 1 to 2 per silicon element, and ordinary carbosilane resins have one hydrocarbon group and two hydrocarbon groups per silicon element. It is a copolymer with When a foreign element is included, the foreign element usually binds to the silicium through oxygen.

本発明で用いるカルボシラン樹脂のうち、異元素を含む
もの(ヘテロカルボシラン初詣)は、その異元素の作用
により、異元素を含まないもの(ストレートシリコン樹
脂)から形成されるセラミック塗膜と比較して、耐アル
カリ性等に代表される耐薬品性に於て異った性質を有す
る塗膜を生成する。異元素を含むカルボシラン樹脂も従
来公知であり、市販品としては、例えば、異元素として
硼素を含むボロシロキサン樹脂、チタンを含むポリチタ
ノカルボシラン樹脂等がある。
Among the carbosilane resins used in the present invention, those containing a different element (heterocarbosilane hatsumode) are more effective than ceramic coatings formed from those that do not contain a different element (straight silicone resin) due to the action of the different element. This produces coating films with different properties in terms of chemical resistance, such as alkali resistance. Carbosilane resins containing different elements are also conventionally known, and commercially available products include, for example, borosiloxane resins containing boron as a different element, polytitanocarbosilane resins containing titanium, and the like.

本発明では、カルボシラン樹脂に対して、セラミック粒
子からなるフィラーを添加混合してコーティング剤を調
製する。この場合、セラミック粒子としては、高融点、
通常、融点が1ooo℃以上のものが用いられるが、こ
のようなものとしては、従来公知の各種のものが使用可
能であり、例えば。
In the present invention, a coating agent is prepared by adding and mixing a filler made of ceramic particles to a carbosilane resin. In this case, the ceramic particles have a high melting point,
Usually, those having a melting point of 100° C. or higher are used, but various conventionally known ones can be used as such, for example.

チタニア、シリカ、アルミナ、ジルコニア、シリカアル
ミナ、マグネシア等の金属酸化物の他、炭化珪素(Si
C)、炭化チタン(TiC)等の金属炭化物;窒化珪素
(Si、N4)笠の金属窒化物;ホルステライ1〜、ジ
ルコン、ツェナサイト、クリソベリル等=雲母等の鉱物
粒子等が挙げられる。特に、耐熱性、耐薬品性及びカル
ボシラン樹脂のレーザー処理により形成されるシリカガ
ラスとの親和性の点からは、チタニア、シリカ、アルミ
ナ、シリカアルミナ、ジルコニア、炭化珪素、窒化珪素
、炭化チタン等の使用が好ましく、また、基材金属との
熱応力を考慮して、熱膨張係数の大きいものを必要とす
る時には、耐薬品性には若干劣るが、マグネシア、ホル
ステライト、ジルコニア雲母等が好ましく用いられる。
In addition to metal oxides such as titania, silica, alumina, zirconia, silica alumina, and magnesia, silicon carbide (Si
C), metal carbides such as titanium carbide (TiC); metal nitrides of silicon nitride (Si, N4); mineral particles such as Holsterei 1, zircon, zenasite, chrysoberyl, etc. = mica, and the like. In particular, from the viewpoint of heat resistance, chemical resistance, and compatibility with silica glass formed by laser treatment of carbosilane resin, titania, silica, alumina, silica alumina, zirconia, silicon carbide, silicon nitride, titanium carbide, etc. In addition, when a material with a large coefficient of thermal expansion is required in consideration of thermal stress with the base metal, magnesia, holsterite, zirconia mica, etc. are preferably used, although they have slightly inferior chemical resistance. It will be done.

セラミック粒子の粒径は、10μm以下にするのが好ま
しく、カルボシラン樹脂に対して均一分散が可能な限り
は粒径の小さいもの程好ましい。このセラミック粒子は
、カルボシラン樹脂とセラミック粒子との合計量に対し
、30〜70容量%、好ましくは40〜60容i%の割
合で使用される。また、本発明においては、必要に応じ
、コーティング剤と基材金属との密着性を改良するため
に、密着剤等を添加混合することができる。
The particle size of the ceramic particles is preferably 10 μm or less, and as long as uniform dispersion in the carbosilane resin is possible, the smaller the particle size is, the more preferable. The ceramic particles are used in an amount of 30 to 70% by volume, preferably 40 to 60% by volume, based on the total amount of carbosilane resin and ceramic particles. Further, in the present invention, an adhesive agent or the like may be added and mixed, if necessary, in order to improve the adhesion between the coating agent and the base metal.

本発明のセラミック塗膜を製造するには、前記カルボシ
ラン樹脂及びセラミック粒子を溶剤と混合し、この混合
物を基材表面に塗布する。この場合、溶剤としては、カ
ルボシラン樹脂に対して溶解性又は分散性を示すものが
用いられ、このようなものとしては、例えば、エチルセ
ルソルブアセテート、N−メチル−2−ピロリドン、キ
シレン等が挙げられる。基材金属表面に対する塗布方法
としては、浸漬法、スプレー法、ハケ塗り法等の慣用の
方法が採用される。
To produce the ceramic coating of the present invention, the carbosilane resin and ceramic particles are mixed with a solvent, and this mixture is applied to the surface of a substrate. In this case, the solvent used is one that exhibits solubility or dispersibility in the carbosilane resin, such as ethyl cellosolve acetate, N-methyl-2-pyrrolidone, xylene, etc. It will be done. Conventional methods such as dipping, spraying, and brushing can be used to coat the surface of the base metal.

次に、前記のようにして形成されたコーティング剤塗布
面は、これを乾燥処理又は焼成処理した後、レーザー処
理する。乾燥処理は、常温−250℃、好ましくは15
0〜250℃の温度で行われ、また、焼成処理は、40
0〜800℃、好ましくは600〜800℃の温度で行
われる。レーザー処理は、その処理により高温を発生す
るものであればよく、例えば、CO□レーザー処理や、
 WAGレーザー処理等の従来公知のレーザー処理を採
用することができる。このレーザー処理により、塗膜は
800℃以上の高温に瞬時に加熱されると考えられ、基
材表面にはカルボシラン樹脂から形成される溶融シリカ
とセラミック粒子の混合物からなる塗膜が形成される。
Next, the surface coated with the coating agent formed as described above is subjected to a drying treatment or a baking treatment, and then a laser treatment. The drying process is carried out at room temperature -250°C, preferably at 15°C.
The firing process is carried out at a temperature of 0 to 250°C, and the firing process is carried out at a temperature of 40°C.
It is carried out at a temperature of 0 to 800°C, preferably 600 to 800°C. The laser treatment may be anything that generates high temperatures, such as CO□ laser treatment,
Conventionally known laser processing such as WAG laser processing can be employed. It is thought that the coating film is instantaneously heated to a high temperature of 800° C. or higher by this laser treatment, and a coating film made of a mixture of fused silica formed from a carbosilane resin and ceramic particles is formed on the surface of the substrate.

そして、この塗膜は冷却されて、最終的には、ガラス状
シリカとセラミック粒子との混合物からなる塗膜となる
。この塗膜は、前記したように、そのガラス状シリカは
溶融シリカを経て形成されたちのであることから、多孔
質のものではなく、気密性のものである。
This coating film is then cooled and finally becomes a coating film consisting of a mixture of glassy silica and ceramic particles. As mentioned above, this coating film is not porous but airtight because the glassy silica is formed through fused silica.

次に、本発明により得られる塗膜の断面構造を図面によ
り示す6図面においてAは基材、Bはセラミック塗膜を
示し、1はセラミック粒子、2はガラス状シリカ、3は
密着剤又は拡散接合層、4はボイドを示す。セラミック
塗膜の厚さは通常10−300μm、好ましくは50〜
tSOμmである。
Next, in 6 drawings showing the cross-sectional structure of the coating film obtained by the present invention, A indicates the base material, B indicates the ceramic coating film, 1 indicates ceramic particles, 2 indicates glassy silica, and 3 indicates adhesive or diffusion. In the bonding layer, 4 indicates voids. The thickness of the ceramic coating is usually 10-300 μm, preferably 50-300 μm.
tSOμm.

本発明においては、前記のようにして得られた塗膜はそ
の使用に先立ち、600℃以上の高温処理を施すのが有
利である。この高温処理により、基材金属表面よりその
金属成分のセラミック塗膜への拡散が起り、基材金属表
面とセラミック塗膜との間に拡散した金属酸化物から成
る拡散接合層が形成され、その結果、基材金属表面に形
成されたセラミック塗膜は基材金属に対する密着性の著
しく増大したものとなる。もちろん、使用中に塗膜が6
00℃以上の高温に加熱される場合には、前記のような
高温熱処理と同様の効果が得られる。
In the present invention, it is advantageous that the coating film obtained as described above is subjected to a high temperature treatment at 600° C. or higher prior to its use. This high-temperature treatment causes diffusion of metal components from the base metal surface into the ceramic coating film, and a diffusion bonding layer consisting of the diffused metal oxide is formed between the base metal surface and the ceramic coating film. As a result, the ceramic coating film formed on the surface of the base metal has significantly increased adhesion to the base metal. Of course, the paint film will be damaged during use.
When heated to a high temperature of 00° C. or higher, the same effects as the above-mentioned high temperature heat treatment can be obtained.

また、基材金属表面に対するセラミック塗膜の密着性の
改善は、前記高温処理によらず、密着剤の使用により達
成することもできる。レーザー処理では塗膜温度は上昇
するものの、基材金属温度はそれ程上昇しないため、前
記金属成分のセラミック層への拡散に基づく拡散接合層
の生成は期待できない。しかしながら、塗膜中に熱溶融
性密着剤を混入しておくと、レーザー処理時の塗膜の発
熱により密着剤が溶融し、この溶融密着剤の作用により
、セラミック塗膜の基材表面に対する密着性が改善され
る。この場合、密着剤としては、レーザー処理時の温度
で気化することなくかつ溶融する金属又は無機化合物が
用いられ、このようなものとしては、例えば、チタン等
の活性金属の他。
Further, the adhesion of the ceramic coating film to the base metal surface can be improved not by the above-mentioned high-temperature treatment but also by using an adhesive. Although the temperature of the coating film increases in laser treatment, the temperature of the base metal does not increase by that much, so the formation of a diffusion bonding layer based on the diffusion of the metal component into the ceramic layer cannot be expected. However, if a heat-melting adhesive is mixed into the coating film, the adhesive will melt due to the heat generated by the coating film during laser treatment, and the action of this melting adhesive will cause the ceramic coating film to adhere to the substrate surface. sex is improved. In this case, the adhesive used is a metal or an inorganic compound that does not vaporize and melts at the temperature during laser treatment, such as active metals such as titanium.

低融点ガラス、はうろう用各種フリット等の各種のもの
が挙げられ、使用するセラミック粒子及び基材金属の種
類に応じて適宜のものが使用される。
Various materials such as low melting point glass and various types of frits for waxing are mentioned, and appropriate materials are used depending on the type of ceramic particles and base metal used.

本発明でコーティング対象となる基材金属は特に制約さ
れず1通常用いられている金属であれば良いが、特に、
耐薬品性、耐酸化性の点から、炭素鋼、ステンレス鋼、
耐熱鋼等の鉄材や、アルミニウム等が用いられる。また
、本発明で対象とする基材は、一般には金属材料である
が、本発明の原理から明らかなように、耐薬品性や、耐
酸化性耐熱性等の劣ったセラミック材料等の非金属材料
であっても良い。
The base metal to be coated in the present invention is not particularly limited and may be any commonly used metal, but in particular,
Carbon steel, stainless steel,
Iron materials such as heat-resistant steel, aluminum, etc. are used. In addition, the substrate targeted by the present invention is generally a metal material, but as is clear from the principle of the present invention, non-metallic materials such as ceramic materials with poor chemical resistance, oxidation resistance, heat resistance, etc. It may be a material.

〔効  果〕〔effect〕

本発明より基材表面に形成されるセラミック塗膜は、ガ
ラス状シリカとセラミック粒子とからなる耐熱性にすぐ
れたセラミック塗膜であり、そのガラス状シリカは溶融
状シリカを経由して形成された非多孔性のものであるこ
とを特徴とする。従って1本発明によるセラミック塗膜
は、気密性を有するものであり、基材表面を高温におけ
る酸素や、薬品による作用から保護し、その基材の耐久
性を著しく向上させる。
The ceramic coating film formed on the surface of the substrate according to the present invention is a ceramic coating film with excellent heat resistance consisting of glassy silica and ceramic particles, and the glassy silica is formed via fused silica. It is characterized by being non-porous. Therefore, the ceramic coating film according to the present invention is airtight, protects the surface of the substrate from the effects of oxygen and chemicals at high temperatures, and significantly improves the durability of the substrate.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 メチル系ストレートシリコーン樹脂(東レシリコン社製
、商品名; SK+ 806 A)約40wt%1合成
雲母約58νt1、密着剤(リン酸カリウム)2wt%
を含むコーティング剤をエチルセルソルブアセテートに
分散し、試験用ステンレススチール基材1)(SUS 
304製、面積:60mm X 50mm、厚さ:4.
5mmの板)にスプレーで全面塗布し、250℃で3時
間乾燥し、約60μmの膜厚をもつ、被覆試験片3枚を
得た。
Example 1 Methyl-based straight silicone resin (manufactured by Toray Silicon Co., Ltd., trade name: SK+ 806 A) approximately 40wt%1 synthetic mica approximately 58νt1, adhesive (potassium phosphate) 2wt%
A coating agent containing
Made of 304, area: 60mm x 50mm, thickness: 4.
The coating was applied to the entire surface of a 5 mm plate by spraying and dried at 250° C. for 3 hours to obtain 3 coated test pieces having a film thickness of about 60 μm.

次に、この試験片の2枚を電気炉に入れ、大気中で50
0℃、1時間焼成し、その一方の試料表面を、後記衣−
1に示す条件でCO□レーザーで照射し、塗布表面をガ
ラス化した。このようにして、焼成処理及びCO,レー
ザー処理した試料A(1)と、焼成処理のみの試料A(
n)を得た。
Next, two of these test pieces were placed in an electric furnace and exposed to air for 50 minutes.
After baking at 0°C for 1 hour, one of the sample surfaces was coated with the following coating.
The coated surface was vitrified by irradiation with a CO□ laser under the conditions shown in 1. In this way, sample A (1) which was subjected to firing treatment and CO and laser treatment, and sample A (1) which was only subjected to firing treatment (
n) was obtained.

また、前記試験片の残りの1つを表−1に示す条件でC
O2レーザー処理した後500℃で焼成して試料A(I
II)を得た。
In addition, the remaining one of the test pieces was tested under the conditions shown in Table 1.
Sample A (I
II) was obtained.

次に、前記で得た試料A(1)、 A(n)、A (I
II )をそれぞれ2等分し、一方を予備として残し、
他方をそれぞれ耐酸試験に供した。この場合、耐酸試験
は、レーザー照射した面を除く全ての面をシリコンシー
ラントで被覆し、これを50%硫M溶液200ccを入
れたガラスびん中に浸漬し、これを55℃の恒温槽に浸
すことによって行った。その耐酸試験の結果を表−2゛
に示す、この結果かられかるようにレーザー照射塗膜試
料A(1)及びA(III)は非処理塗膜試料A(f[
)に比較して著しい耐久性を示している。
Next, the samples A(1), A(n), A(I
II) into two equal parts, leaving one side as a reserve,
The other was subjected to an acid resistance test. In this case, the acid resistance test is performed by covering all surfaces except the laser irradiated surface with silicone sealant, immersing this in a glass bottle containing 200 cc of 50% sulfur M solution, and immersing this in a constant temperature bath at 55 ° C. I went by that. The results of the acid resistance test are shown in Table 2. As can be seen from the results, the laser irradiated coating samples A(1) and A(III) were the same as the untreated coating sample A(f[
) shows remarkable durability.

実施例2 ボロシロキサン樹脂(昭和電線電纜社製、商品名;SM
R10109)42%、珪砂56wt%、密着剤(Bz
O3−PbOガラス粉)2vt%を含むコーティング剤
をN−メチル−2−ピロリドン溶剤に分散し、基材Q(
炭素鋼1面積:60+m+a X 50mm、厚さ:4
.5mmの板)にスプレー法で3回重ね塗りをし、約4
0μの膜厚をもつ全面被覆試験片3枚を用意した。試験
片は1回塗布する毎に250℃で1時間乾燥した。次に
第1の試験片の表面を表−1に示す条件でCO2レーザ
ーで処理した後、600℃で3時間焼成して試料B(1
)を得た。次に第2の試験片を表−1に示す条件でYA
Gレーザーで処理した後600℃で3時間焼成して試料
B(■)を得た。最後に残りの試験片をそのまま600
℃で3時間焼成して試料B(nl)を得た。
Example 2 Borosiloxane resin (manufactured by Showa Denshin Co., Ltd., trade name: SM
R10109) 42%, silica sand 56wt%, adhesive (Bz
A coating agent containing 2vt% of O3-PbO glass powder) was dispersed in N-methyl-2-pyrrolidone solvent to coat the base material Q (
Carbon steel 1 area: 60+m+a x 50mm, thickness: 4
.. 5mm plate) by spraying 3 times, approx.
Three fully coated test specimens with a film thickness of 0μ were prepared. The specimens were dried at 250° C. for 1 hour after each application. Next, the surface of the first test piece was treated with a CO2 laser under the conditions shown in Table 1, and then baked at 600°C for 3 hours.
) was obtained. Next, the second test piece was YA under the conditions shown in Table 1.
After treatment with G laser, the sample was baked at 600° C. for 3 hours to obtain sample B (■). Finally, add the remaining test piece to 600
Sample B (nl) was obtained by baking at ℃ for 3 hours.

次に、前記で得た試料13(1)、B(II)、B(1
1)のそれぞれを切断して2等分し、その一方を予備と
して残し、他方のそれぞれを実施例1と同様にして耐酸
試験に供した。その耐酸試験結果を表−2に示す、この
試験は600℃程度の高温にさらされる装置の耐食性セ
ラミックス塗膜に対するレーザー処理の影響を調べたも
のであるが、表−2に示した結果からCO2レーザー及
びYAGレーザー照射の有効性を明らかに確認すること
ができる。
Next, samples 13(1), B(II), B(1) obtained above were prepared.
1) was cut into two equal parts, one of which was kept as a reserve, and each of the other parts was subjected to an acid resistance test in the same manner as in Example 1. The acid resistance test results are shown in Table 2. This test investigated the effect of laser treatment on the corrosion resistant ceramic coating of equipment exposed to high temperatures of around 600°C. The effectiveness of laser and YAG laser irradiation can be clearly confirmed.

(シー1廿−−条件) 実施例3 実施例2で得た予備試料B(1)、n(n)、8(■)
及び比較試料B(IV)として基材Qを2等分して得た
裸の炭素鋼を電気炉に入れ、 aOO℃で50時間保持
し。
(Sea 1 - Conditions) Example 3 Preliminary samples B (1), n (n), 8 (■) obtained in Example 2
And as comparative sample B (IV), bare carbon steel obtained by dividing base material Q into two equal parts was placed in an electric furnace and held at aOO°C for 50 hours.

その後取り出して各試料の中心部を切断し、その断面の
酸化状態を走査電子顕微鏡で調べた。試料11(1)、
B(It)についてはレーザー照射塗膜に接する基材表
面からの酸化層の厚みを、また試料B(III)口(r
V)については、試料断面の金属鉄部分の厚みを、もと
の基材Qの厚みから差し引き、それを2で割ることによ
り酸化層の厚みをそれぞれ求めた。
Thereafter, each sample was taken out and cut at the center, and the oxidation state of the cross section was examined using a scanning electron microscope. Sample 11 (1),
Regarding B(It), the thickness of the oxidized layer from the base material surface in contact with the laser irradiated coating film, and sample B(III) mouth (r
Regarding V), the thickness of the oxidized layer was determined by subtracting the thickness of the metal iron portion of the sample cross section from the thickness of the original base material Q and dividing it by 2.

その結果を表−3に示す。The results are shown in Table-3.

表−3 この実験より、基材金属の酸化防止にレーザー処理膜が
極めて有効であることが確認される。
Table 3 This experiment confirms that the laser treated film is extremely effective in preventing oxidation of the base metal.

実施例4 実施例1で予備として残した試料A(1)、 A(II
)、A(m)及び比較試料A(IV)としてステンレス
スチール(SO3304)の線板(基材Pを2等分した
もの)を用いて1本発明によるセラミック塗膜のバナジ
ウムアタックに対する耐久性を下記試験法により試験し
た。
Example 4 Samples A(1) and A(II) left as preliminary in Example 1
), A (m) and comparative sample A (IV) using stainless steel (SO3304) wire plates (substrate P divided into two equal parts) to evaluate the durability of the ceramic coating film according to the present invention against vanadium attack. It was tested using the following test method.

試験法 学振法を応用し、バナジウム合成状を試料上に乗せ、高
温にさらすことにより、各試料がどの程度酸化されるか
を比較することとした。バナジウム合成状は、 V、0
.85wt%、 NaaSo、 15wt%を粉砕混合
し、その0.5gを直径10mmの円盤状にタブレット
マシーンで成形することにより調製した。このタブレッ
ト化したバナジウム合成状を、試料A(り、^(n)、
A(III)、A(IV)の中心部に乗せ、電気炉中に
入れ、800℃で20時間加熱した。その後冷却するの
をまって、各試料をとり出し、切口が試料の中心を通る
よう直線状に切断し、その断面を走査電子顕微鏡で写真
撮影し、各試料のステンレス層の酸化層の厚みを測定し
たにの酸化層の厚みが小さくなる程、バナジウムアタッ
クに対するコーティング暎の抵抗力が強いことを示す。
By applying the Jakusho Jakushin method, we placed a vanadium composite on a sample and exposed it to high temperature to compare the degree to which each sample was oxidized. The synthetic state of vanadium is V, 0
.. It was prepared by pulverizing and mixing 85 wt% of NaaSo and 15 wt% of NaaSo, and molding 0.5 g of the mixture into a disk shape with a diameter of 10 mm using a tablet machine. This tabletted synthetic form of vanadium was prepared as sample A (ri, ^(n),
It was placed on the center of A(III) and A(IV), placed in an electric furnace, and heated at 800° C. for 20 hours. After cooling, each sample was taken out, cut in a straight line so that the cut end passed through the center of the sample, and the cross section was photographed using a scanning electron microscope to determine the thickness of the oxidized layer in the stainless steel layer of each sample. The smaller the measured oxide layer thickness, the more resistant the coating is to vanadium attack.

次に、前記試験により得られた各試料の酸化層の厚みを
示す。
Next, the thickness of the oxide layer of each sample obtained in the above test will be shown.

表−4Table-4

【図面の簡単な説明】[Brief explanation of the drawing]

図面はセラミック塗膜の説明断面図を示す。 1・・・セラミック粒子、2・・・ガラス状シリカ、3
・・・密着剤又は拡散接合層、4・・・ボイド、A・・
・基材。 B・・・セラミック塗膜。
The drawing shows an explanatory cross-sectional view of a ceramic coating. 1... Ceramic particles, 2... Glassy silica, 3
...Adhesive agent or diffusion bonding layer, 4...Void, A...
·Base material. B... Ceramic coating film.

Claims (4)

【特許請求の範囲】[Claims] (1)基材表面に形成された高融点セラミック粒子とガ
ラス状シリカからなるセラミック塗膜であって、該ガラ
ス状シリカは溶融シリカを経由して形成された非多孔性
のものであることを特徴とする気密性セラミック塗膜。
(1) It is a ceramic coating film formed on the surface of a base material consisting of high melting point ceramic particles and glassy silica, and the glassy silica is non-porous and is formed via fused silica. Features an airtight ceramic coating.
(2)基材が金属である特許請求の範囲第1項の塗膜。(2) The coating film according to claim 1, wherein the base material is metal. (3)基材表面に形成された高沸点セラミック粒子とカ
ルボシラン樹脂からなる塗膜をレーザー処理して該カル
ボシラン樹脂を分解し、シリカを主成分とするガラス状
物質を生成させることを特徴とする気密性セラミック塗
膜の製造方法。
(3) A coating film made of high-boiling ceramic particles and carbosilane resin formed on the surface of the base material is treated with laser to decompose the carbosilane resin and generate a glassy substance mainly composed of silica. Method for producing airtight ceramic coatings.
(4)該基材が金属である特許請求の範囲第3項の方法
(4) The method according to claim 3, wherein the base material is metal.
JP61220516A 1986-09-18 1986-09-18 Hermetic ceramic coating and method for producing the same Expired - Lifetime JP2585548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220516A JP2585548B2 (en) 1986-09-18 1986-09-18 Hermetic ceramic coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220516A JP2585548B2 (en) 1986-09-18 1986-09-18 Hermetic ceramic coating and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6376886A true JPS6376886A (en) 1988-04-07
JP2585548B2 JP2585548B2 (en) 1997-02-26

Family

ID=16752242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220516A Expired - Lifetime JP2585548B2 (en) 1986-09-18 1986-09-18 Hermetic ceramic coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP2585548B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165087A (en) * 1990-10-26 1992-06-10 Limes:Kk Surface coated metallic product and production thereof
GB2347145A (en) * 1999-02-25 2000-08-30 Agency Ind Science Techn Method for producing a metal oxide and forming a minute pattern thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143016A (en) * 1975-06-04 1976-12-09 Shinetsu Chemical Co Process for preparing highhpurity silica glass
JPS602697A (en) * 1983-06-21 1985-01-08 Toshiba Corp Formation of wear resistant coated layer
JPS6324077A (en) * 1986-04-30 1988-02-01 デン・ノルスク・ステ−ツ・オルジエセルスカプ・アクシエセルスカプ Ceramic film containing chromium oxide and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143016A (en) * 1975-06-04 1976-12-09 Shinetsu Chemical Co Process for preparing highhpurity silica glass
JPS602697A (en) * 1983-06-21 1985-01-08 Toshiba Corp Formation of wear resistant coated layer
JPS6324077A (en) * 1986-04-30 1988-02-01 デン・ノルスク・ステ−ツ・オルジエセルスカプ・アクシエセルスカプ Ceramic film containing chromium oxide and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165087A (en) * 1990-10-26 1992-06-10 Limes:Kk Surface coated metallic product and production thereof
GB2347145A (en) * 1999-02-25 2000-08-30 Agency Ind Science Techn Method for producing a metal oxide and forming a minute pattern thereof
GB2347145B (en) * 1999-02-25 2001-05-02 Agency Ind Science Techn Method for producing a metal oxide and method for forming a minute pattern
US6576302B1 (en) 1999-02-25 2003-06-10 Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern

Also Published As

Publication number Publication date
JP2585548B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JP4331683B2 (en) High temperature antioxidant for carbon-carbon friction material
US11802093B2 (en) Silicon oxycarbide environmental barrier coating
US4567103A (en) Carbonaceous articles having oxidation prohibitive coatings thereon
US6737120B1 (en) Oxidation-protective coatings for carbon-carbon components
JP2011093797A (en) Protection of component made of composite material from oxidation
CA2499559A1 (en) Protective ceramic coating
US4975314A (en) Ceramic coating bonded to metal member
JPH05339082A (en) Coated ceramic article
FR2508026A1 (en) REFRACTORY MINERAL COMPOSITIONS BASED ON POWDERED MINERAL OXIDES
JP2005015759A (en) System and method for forming low temperature cured ceramic coating for elevated temperature application
Parchovianský et al. Passive filler loaded polysilazane‐derived glass/ceramic coating system applied to AISI 441 stainless steel, part 2: Oxidation behavior in synthetic air
JPS6376886A (en) Airtight ceramic coated film and its production
KR20180089015A (en) High heat-resistant ceramic based composite wet coating composition with improved thermal conductivity and method for manufacturing the same
HRP950604A2 (en) ANTI-OXIDATIVE, ABRASION-RESISTANT PROTECTIVE COATING FOR SiC BODIES
Rudolph Composition and application of coatings based on boron nitride
JPS60125375A (en) Metal-ceramic joined body and manufacture thereof
JP2001152308A (en) Method of forming corrosion resisting combined coating standing long use, and member having the composite coating
KR20120024336A (en) Low temperature silicon carbide coating
JPH04209781A (en) Production of material coated with glassy carbon
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JP4037969B2 (en) Graphite products using boron carbide-coated silicon carbide-carbon composites
JP4363905B2 (en) Carbon-based composite material
KR20190041747A (en) SURFACE MODIFICATION METHOD FOR TiO2 SiO2 HYBRID COATING BY ION BEAM MIXING AND LAMINATE STRUCTURE MANUFACTURED BY USING SAME
JP2001158954A (en) Method of forming sprayed deposit free from penetrating pore, and member with the sprayed deposit
JPH09256168A (en) Coating method on graphite