JPS6375691A - Natural circulation type reactor - Google Patents
Natural circulation type reactorInfo
- Publication number
- JPS6375691A JPS6375691A JP61219468A JP21946886A JPS6375691A JP S6375691 A JPS6375691 A JP S6375691A JP 61219468 A JP61219468 A JP 61219468A JP 21946886 A JP21946886 A JP 21946886A JP S6375691 A JPS6375691 A JP S6375691A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- pressure
- water
- pressure vessel
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 238000001816 cooling Methods 0.000 claims description 11
- 239000002826 coolant Substances 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004327 boric acid Substances 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 230000009257 reactivity Effects 0.000 claims description 4
- 239000011800 void material Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 241001365789 Oenanthe crocata Species 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は自然循環型原子炉に係り、特に沸騰水型原子炉
に適用するのに好適な冷却材喪失事故時および万一の制
御棒挿入不能時に炉心の冷却を確保できる非常用炉心冷
却系を備えた自然循環型原子炉に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to natural circulation nuclear reactors, and is particularly suitable for application to boiling water reactors in the event of a loss of coolant accident and control rod insertion in the event of a control rod insertion. This invention relates to a natural circulation nuclear reactor equipped with an emergency core cooling system that can ensure core cooling in the event of a power outage.
[従来の技術]
従来の自然循環型原子炉の非常用炉心冷却系を第2図に
示す。[Prior Art] Figure 2 shows the emergency core cooling system of a conventional natural circulation nuclear reactor.
本原子炉では原子炉格納容器13の上部に水を蓄えたプ
ール14が設置されている。原子炉圧力容器1内の炉心
2はプール】4より下部にくる様な構造となっており、
事故時にはプール14から重力落下により炉心2に注水
できる。また、プール14内には原子炉圧力容器1内の
蒸気を凝縮させて除熱するアイソレーションコンデンサ
15が設置されており、主蒸気管とプール14の間には
圧力逃し弁7が設けられている。In this nuclear reactor, a pool 14 storing water is installed above the reactor containment vessel 13. The reactor core 2 inside the reactor pressure vessel 1 is structured so that it is located below the pool 4.
In the event of an accident, water can be injected into the reactor core 2 from the pool 14 by falling due to gravity. Furthermore, an isolation condenser 15 is installed in the pool 14 to condense the steam in the reactor pressure vessel 1 to remove heat, and a pressure relief valve 7 is installed between the main steam pipe and the pool 14. There is.
冷却材喪失事故時には圧力逃し弁7により原子炉圧力容
器1内の蒸気をプール14へ放出し減圧して重力落下に
より炉心に注水する構成となっている。In the event of a loss of coolant accident, the steam in the reactor pressure vessel 1 is released into the pool 14 by the pressure relief valve 7, the pressure is reduced, and water is injected into the reactor core by gravity fall.
[発明が解決しようとする問題点コ
上記従来技術では非常用炉心冷却系はプールから重力落
下による炉心への注水を考慮しているがこの注水は炉心
の冠水を維持するためだけの目的であった。[Problems to be solved by the invention] In the above-mentioned conventional technology, the emergency core cooling system considers water injection into the reactor core by gravity falling from a pool, but this water injection is only for the purpose of maintaining the submergence of the reactor core. Ta.
本発明の目的は、原子炉圧力容器内の圧力逃し弁と加圧
された水あるいはホウ酸水を蓄えた複数のタンクを組合
せることにより、動的機器を減らして信頼性を向上し、
冷却材喪失事故時および万一の制御棒挿入不能時に、炉
心を安全に停止し、炉心を冷却するのに有効な組合せを
もつ非常用炉心冷却系を提供することにある6
[問題点を解決するための手段]
上記目的は以下の2点により達成される。The purpose of the present invention is to reduce dynamic equipment and improve reliability by combining a pressure relief valve in a reactor pressure vessel with a plurality of tanks storing pressurized water or boric acid water.
The objective is to provide an emergency core cooling system that has an effective combination to safely shut down and cool the core in the event of a loss of coolant accident or in the unlikely event that a control rod cannot be inserted. Means for Achieving] The above objective is achieved by the following two points.
1)圧力逃し弁と加圧されたタンクあるいは重力落下を
考えて圧力容器より上に配置されたタンクを組合せるこ
とにより動的機器を減らし信頼性を高める。1) Reduce dynamic equipment and increase reliability by combining a pressure relief valve with a pressurized tank or a tank placed above the pressure vessel to account for gravity fall.
2)加圧タンクあるいは重力落下水タンクの組合せおよ
び一部のタンク内にホウ酸水を注入することにより冷却
材喪失事故および万一の制御棒挿入不能時に対処する。2) Combining a pressurized tank or a gravity drop water tank and injecting boric acid water into some of the tanks will deal with coolant loss accidents and the unlikely event that a control rod cannot be inserted.
[作用]
原子炉の主蒸気管に設けられた圧力逃し弁および加圧タ
ンクあるいは重力落下水タンクの組合せ可能となる。ま
たこの注入ではタンクの加圧あるいは重力落下の自然力
を用いているためポンプによる注水と比較して信頼性が
向上する。[Operation] It becomes possible to combine the pressure relief valve provided in the main steam pipe of the reactor with a pressurized tank or a gravity drop water tank. In addition, this injection uses the natural force of tank pressurization or gravity falling, so it is more reliable than water injection using a pump.
また、複数のタンクのうち一部のタンクにほう成木を注
入することにより、炉心でのボイド反応度が零もしくは
負の反応度である自己制御性の良くない原子炉において
、万一の制御棒挿入不能の場合にはホウ酸水の注入が可
能であり、原子炉を安全に停止することが可能となる。In addition, by injecting mature wood into some of the multiple tanks, it is possible to improve control in the event of a nuclear reactor with poor self-control, where the void reactivity in the reactor core is zero or negative. If the rod cannot be inserted, boric acid water can be injected, making it possible to safely shut down the reactor.
[実施例]
第1図は本発明の一実施例である。以下実施例に従って
本発明について説明する。[Example] FIG. 1 shows an example of the present invention. The present invention will be described below with reference to Examples.
本発明では実施例は、沸騰水型原子炉タイプの自然循環
型原子炉を考える。自然@環型原子炉は内部に核分裂反
応により発熱する炉心2を有する原子炉圧力容器1、炉
心2で発生した蒸気をタービン5へ送る主蒸気管3、復
水器6で凝縮した水を再び原子炉圧力容器1へ送る給水
管4で構成される。原子炉圧力容器1内の水の流れは給
水管4で供給された水は自然@環によりシュラウド11
の外側を通って炉心下部に至り、炉心2で熱を受けて蒸
気となり主蒸気管3によりタービン5へ供給される。In the embodiment of the present invention, a boiling water reactor type natural circulation nuclear reactor is considered. A natural@ring type nuclear reactor has a reactor pressure vessel 1 which has a reactor core 2 that generates heat due to a nuclear fission reaction, a main steam pipe 3 that sends steam generated in the reactor core 2 to a turbine 5, and a condenser 6 that recycles condensed water. It consists of a water supply pipe 4 that supplies water to the reactor pressure vessel 1. The flow of water inside the reactor pressure vessel 1 is caused by the water supplied by the water supply pipe 4 being naturally connected to the shroud 11 by the ring.
The steam passes through the outside of the reactor core, reaches the lower part of the reactor core, receives heat in the reactor core 2, becomes steam, and is supplied to the turbine 5 through the main steam pipe 3.
本実施例では主蒸気管3に圧力逃し安全弁7を設け、当
該逃し弁7より出た蒸気はサプレッションチェンバ8で
凝縮される。また、事故時の対応として、FA子炉圧力
容器1より上部におかれた重力落下により圧力容器1内
に注水可能な内圧2〜5気圧程度の低圧注水タンク9お
よび内部にホウ酸水を貯えた内圧5〜10気圧程度の高
圧注水タンク10で構成されこれらのタンクは注入配管
により原子炉圧力容器1と結ばれている。In this embodiment, a pressure relief safety valve 7 is provided in the main steam pipe 3, and the steam discharged from the relief valve 7 is condensed in a suppression chamber 8. In addition, as a response to an accident, boric acid water is stored in a low-pressure water injection tank 9 with an internal pressure of about 2 to 5 atm, which is placed above the FA child reactor pressure vessel 1 and can inject water into the pressure vessel 1 by falling due to gravity. The reactor pressure vessel 1 is composed of high-pressure water injection tanks 10 with an internal pressure of about 5 to 10 atmospheres, and these tanks are connected to the reactor pressure vessel 1 by injection piping.
以下、冷却材喪失事故(LOCA)時の本発明のシステ
ムの作動例について説明する。An example of the operation of the system of the present invention during a loss of coolant accident (LOCA) will be described below.
冷却材喪失事故とは原子炉圧力容器1に接続する配管が
破断することにより圧力容器1内の冷却材が外部へ流出
し、炉心への注水がなければ、炉心露出まで至り、炉心
の健全性が損われるという事故である。A loss of coolant accident is caused by a rupture in the piping connected to the reactor pressure vessel 1, causing the coolant inside the pressure vessel 1 to leak to the outside.If water is not injected into the reactor core, the reactor core will be exposed and the integrity of the reactor core will be compromised. This was an accident that resulted in damage to the equipment.
本発明では炉心への注水機能として高圧注水タンク10
および低圧注水タンク9が設けであるが内圧が低いため
に、本設備を作動するためには原子炉圧力容器1内の圧
力を低下する必要がある。In the present invention, a high pressure water injection tank 10 is used as a water injection function to the reactor core.
Although a low-pressure water injection tank 9 is provided, the internal pressure is low, so it is necessary to reduce the pressure inside the reactor pressure vessel 1 in order to operate this equipment.
本発明では圧力逃し安全弁7を開放することにより原子
炉圧力容器1内の蒸気をサブレッション心の冠水が維持
される。In the present invention, by opening the pressure relief safety valve 7, the steam in the reactor pressure vessel 1 is kept submerged in water.
また、沸騰水型原子炉においては、原子炉が何らかの原
因で通常の運転状態を逸脱すると制御棒が挿入され原子
炉は停止するようになっているが万一制御棒がそう入で
きない場合には炉心内でのボイドが増加することにより
炉心内の核反応は抑制される方向に働く、シかし、この
ボイドによる反応度がOもしくは負であっても非常に小
さい場合を想定しても本発明では、圧力逃し安全弁7の
作動による減圧後、高圧注水タンク10によるホウ耐水
の注入により原子炉を安全に停止することができる。In addition, in a boiling water reactor, if the reactor deviates from normal operating conditions for some reason, control rods are inserted to shut down the reactor, but in the unlikely event that the control rods cannot be inserted, As the number of voids in the reactor core increases, the nuclear reaction inside the reactor core will be suppressed. However, even if we assume that the reactivity due to these voids is O or negative, it is still very small. In the present invention, after the pressure is reduced by operating the pressure relief safety valve 7, the reactor can be safely stopped by injecting water into the high-pressure water injection tank 10.
なお1本実施例では炉心の冠水維持のために大容量の低
圧注水タンク9および炉心の出力制御のため低容址の高
圧注水タンク10の2つを設けるため、低圧注水タンク
の容量は炉心冠水に必要な容量とし、高圧注水タンクの
容量は原子炉を安全に停止できるホウ耐水の量で最適化
することが可能である。Note that in this embodiment, two large-capacity low-pressure water injection tanks 9 are provided to maintain the reactor core flooding, and a low-volume high-pressure water injection tank 10 is provided to control the core output. The capacity of the high-pressure water injection tank can be optimized based on the amount of water that can safely shut down the reactor.
第4図に本発明の他の実施例を示す。FIG. 4 shows another embodiment of the invention.
本実施例では、本発明と原子炉陽射時冷却系12を組合
わせたものであるゆ
原子炉隔離時冷却系(RCIC)12は原子炉停止後何
らかの原因で復水、給水が停止した場合に、原子炉水位
を維持するため、原子炉蒸気の一部を用いたタービン駆
動ポンプによりサプレッションチェンバー8の水を炉心
2に注水することを目的としており原子炉圧力が高い場
合にも炉心への注水が可能となっている。In this embodiment, the reactor isolation cooling system (RCIC) 12, which is a combination of the present invention and the reactor solar radiation cooling system 12, is used when condensate water and water supply are stopped for some reason after the reactor is shut down. In order to maintain the reactor water level, the purpose is to inject water from the suppression chamber 8 into the reactor core 2 using a turbine-driven pump that uses part of the reactor steam. Water injection is possible.
以下、本実施例の冷却材喪失事故時のシステムの作動に
ついて説明する。The operation of the system in the event of a loss of coolant accident according to this embodiment will be described below.
先の実施例では高圧注水タンク10の作動圧力がRCI
(”l:ポンプの圧力よりも低いため大幅な減圧が必要
であったが1本実施例ではRCICポンプの締切圧力が
高いため、圧力の高い時点での注水が可能であり、それ
により原子炉圧力が低下し。In the previous embodiment, the operating pressure of the high pressure water injection tank 10 was RCI
("l: It was lower than the pump pressure, so a significant depressurization was necessary. However, in this example, the shutoff pressure of the RCIC pump is high, so it is possible to inject water at a time when the pressure is high, and as a result, the reactor pressure drops.
低圧注水タンク9と組合わせることにより、冷却材喪失
事故時にも炉心は冠水維持される。In combination with the low-pressure water injection tank 9, the core can be maintained submerged even in the event of a loss of coolant accident.
また、本実施例では万−何らかの原因で制御棒が挿入不
能の場合にのみ高圧注水タンクを用いて原子炉を安全に
停止させる。Further, in this embodiment, the high-pressure water injection tank is used to safely stop the reactor only if the control rods cannot be inserted for some reason.
[発明の効果] 本発明によれば以下の効果がある。[Effect of the invention] According to the present invention, there are the following effects.
工)非常炉心冷却系からポンプ等の動的機器を削減し、
信頼性の高いECC5構成となる。Engineering) Reduce dynamic equipment such as pumps from the emergency core cooling system,
It has a highly reliable ECC5 configuration.
2)炉心のボイド反応度が零もしくは負であっても非常
に小さい自然循環型原子炉において万一の制御棒挿入不
能の事態において安全に原子炉を停止することが可能で
ある。2) Even if the void reactivity in the core is zero or negative, it is possible to safely shut down the reactor in a very small natural circulation reactor in the unlikely event that a control rod cannot be inserted.
3)注水タンクを複数設けることにより、注入圧力、タ
ンク容−辰およびタンク中の水を変えて本タンクの作動
目的を変えることが可能である。3) By providing a plurality of water injection tanks, it is possible to change the purpose of operation of this tank by changing the injection pressure, tank capacity, and water in the tank.
第1図は本発明の一実施例を示す構成図、第2図は従来
の自然循環型原子炉のECC5の構成図。
第3図は本発明の他の実施例の構成図である。
1・・・原子炉圧力容器、2・・・炉心、3・・・主蒸
気管、4・・・給水管、5・・・タービン、6・・・復
水器、7・・・圧力逃し安全弁、8・・・サプレッショ
ンチェンバ、9・・・低圧注水タンク、10・・・高圧
注水タンク、11・・・シュラウド、12・・・原子炉
隔跪時冷却系、13・・・原子炉格納容器、14・・・
プール、15・・・アイソレーションコンデンサ
:、−\E;ト:、”:に51
代理人 弁理士 小川勝馬 ”:u:J第 は
X2圓
ノンFIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram of an ECC 5 of a conventional natural circulation reactor. FIG. 3 is a block diagram of another embodiment of the present invention. 1... Reactor pressure vessel, 2... Reactor core, 3... Main steam pipe, 4... Water supply pipe, 5... Turbine, 6... Condenser, 7... Pressure relief Safety valve, 8... Suppression chamber, 9... Low pressure water injection tank, 10... High pressure water injection tank, 11... Shroud, 12... Reactor alternate cooling system, 13... Reactor containment Container, 14...
Pool, 15...Isolation capacitor
:、-\E;ト:、”:に51 Agent Patent attorney Katsuma Ogawa ”:u:Jth is X2 Ennon
Claims (1)
る沸騰水型原子炉において冷却材喪失事故時、または制
御棒挿入不能により原子炉の停止が困難な場合、原子炉
圧力容器内の蒸気を逃がすことにより当該圧力容器内の
減圧を促進することを目的とした圧力逃がし安全弁およ
び圧力容器の減圧後重力落下により当該圧力容器内に注
水可能な圧力に加圧された水を蓄えたタンクにより構成
された非常用炉心冷却系を設けたことを特徴とした自然
循環型原子炉。 2、特許請求の範囲第1項記載において、水を蓄わえた
タンクを複数設けて一方にはホウ酸水を蓄え、またそれ
ぞれの容量および加圧力を変えた非常用炉心冷却系を設
けたことを特徴とした自然循環型原子炉。 3、特許請求の範囲第1項または第2項の記載において
、炉心部におけるボイド反応度が零あるいは小さく負に
したことを特徴とした自然循環型原子炉。[Claims] 1. In a boiling water reactor consisting of a pressure vessel, a reactor core, and a shroud surrounding the reactor core, in the event of a loss of coolant accident or when it is difficult to shut down the reactor due to the inability to insert control rods, the reactor pressure vessel A pressure relief safety valve is designed to promote depressurization within the pressure vessel by releasing the steam inside the vessel, and a pressure relief valve that stores water pressurized to a pressure that allows water to be injected into the pressure vessel through gravity fall after depressurization of the pressure vessel. A natural circulation nuclear reactor characterized by an emergency core cooling system consisting of a tank. 2. In claim 1, a plurality of tanks storing water are provided, one of which stores boric acid water, and an emergency core cooling system is provided in which each tank has a different capacity and pressure. A natural circulation nuclear reactor featuring 3. A natural circulation nuclear reactor according to claim 1 or 2, characterized in that the void reactivity in the reactor core is zero or small and negative.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61219468A JPS6375691A (en) | 1986-09-19 | 1986-09-19 | Natural circulation type reactor |
CN87106445A CN1012769B (en) | 1986-09-19 | 1987-09-18 | Nuclear-powered apparatus |
US07/098,530 US5011652A (en) | 1986-09-19 | 1987-09-18 | Nuclear power facilities |
KR1019870010357A KR950009881B1 (en) | 1986-09-19 | 1987-09-18 | Neclear power facilities |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61219468A JPS6375691A (en) | 1986-09-19 | 1986-09-19 | Natural circulation type reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6375691A true JPS6375691A (en) | 1988-04-06 |
Family
ID=16735905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61219468A Pending JPS6375691A (en) | 1986-09-19 | 1986-09-19 | Natural circulation type reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6375691A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195592A (en) * | 1987-02-09 | 1988-08-12 | 株式会社日立製作所 | Output controller for natural circulation reactor |
JPH02268295A (en) * | 1989-03-20 | 1990-11-01 | General Electric Co <Ge> | Heat removing system for containment vessel |
US5059385A (en) * | 1990-05-04 | 1991-10-22 | General Electric Company | Isolation condenser passive cooling of a nuclear reactor containment |
JP2007315938A (en) * | 2006-05-26 | 2007-12-06 | Toshiba Corp | Method of testing flow force vibration in natural circulation type boiling water reactor |
JP2008249348A (en) * | 2007-03-29 | 2008-10-16 | Toshiba Corp | Boiling water reactor and its emergency core cooling system |
JP2009074980A (en) * | 2007-09-21 | 2009-04-09 | Toshiba Corp | Nuclear power facility and static cooling system pool |
JP2013195428A (en) * | 2012-03-21 | 2013-09-30 | Ge-Hitachi Nuclear Energy Americas Llc | Low pressure reactor safety systems and methods |
-
1986
- 1986-09-19 JP JP61219468A patent/JPS6375691A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195592A (en) * | 1987-02-09 | 1988-08-12 | 株式会社日立製作所 | Output controller for natural circulation reactor |
JPH02268295A (en) * | 1989-03-20 | 1990-11-01 | General Electric Co <Ge> | Heat removing system for containment vessel |
US5106571A (en) * | 1989-03-20 | 1992-04-21 | Wade Gentry E | Containment heat removal system |
US5059385A (en) * | 1990-05-04 | 1991-10-22 | General Electric Company | Isolation condenser passive cooling of a nuclear reactor containment |
JP2007315938A (en) * | 2006-05-26 | 2007-12-06 | Toshiba Corp | Method of testing flow force vibration in natural circulation type boiling water reactor |
JP2008249348A (en) * | 2007-03-29 | 2008-10-16 | Toshiba Corp | Boiling water reactor and its emergency core cooling system |
JP4675926B2 (en) * | 2007-03-29 | 2011-04-27 | 株式会社東芝 | Boiling water reactor |
JP2009074980A (en) * | 2007-09-21 | 2009-04-09 | Toshiba Corp | Nuclear power facility and static cooling system pool |
JP4568315B2 (en) * | 2007-09-21 | 2010-10-27 | 株式会社東芝 | Nuclear power generation equipment and static cooling system pool |
JP2013195428A (en) * | 2012-03-21 | 2013-09-30 | Ge-Hitachi Nuclear Energy Americas Llc | Low pressure reactor safety systems and methods |
US9460818B2 (en) | 2012-03-21 | 2016-10-04 | Ge-Hitachi Nuclear Energy Americas Llc | Low pressure reactor safety systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6795518B1 (en) | Integral PWR with diverse emergency cooling and method of operating same | |
US4473528A (en) | Passive containment system | |
US10726961B2 (en) | PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel | |
US7983376B2 (en) | Boiling water nuclear reactor and emergency core cooling system of the same | |
EP2839480B1 (en) | Defense in depth safety paradigm for nuclear reactor | |
US20130259183A1 (en) | Passive cooling and depressurization system and pressurized water nuclear power plant | |
JPH032277B2 (en) | ||
JPS6375691A (en) | Natural circulation type reactor | |
KR20060020756A (en) | Integral pwr with diverse emergency cooling and method of operating same | |
JP2548838B2 (en) | Core collapse heat removal system for pressurized water reactor | |
JPS6225999B2 (en) | ||
Iwamura et al. | A concept and safety characteristics of JAERI passive safety reactor (JPSR) | |
Conway et al. | Simplified safety and containment systems for the IRIS reactor | |
JPS62182697A (en) | Nuclear reactor cooling system | |
Chang et al. | Advanced design features adopted in SMART | |
Hannerz et al. | The PIUS pressurized water reactor: aspects of plant operation and availability | |
Lekakh et al. | ACR-1000 passive features | |
Makihara et al. | Study of the PWR hybrid safety system | |
Ke et al. | The emergency operating strategy analysis of medium LOCA with MHSI unavailable | |
JPH05215886A (en) | Emergency reactor core cooling system | |
Muellner et al. | Investigation of a possible emergency procedure for the VVER 1000 NPP in case of a total loss of feedwater and a main steam line break | |
Baranaev et al. | Emergency heat removal in the integral water cooled ABV-6 reactor for the Volnolom floating nuclear power plant | |
JPS62228197A (en) | Light water type reactor | |
Yang et al. | Preliminary Study of Large-Power PWR With Safety Balanced Design | |
Allen et al. | Inherent safety features of the CANDU reactor |