[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6372893A - Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride - Google Patents

Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride

Info

Publication number
JPS6372893A
JPS6372893A JP21416186A JP21416186A JPS6372893A JP S6372893 A JPS6372893 A JP S6372893A JP 21416186 A JP21416186 A JP 21416186A JP 21416186 A JP21416186 A JP 21416186A JP S6372893 A JPS6372893 A JP S6372893A
Authority
JP
Japan
Prior art keywords
copper
cathode
electrolysis
hydrochloric acid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21416186A
Other languages
Japanese (ja)
Inventor
Osahiro Nakagawa
中川 修太
Akihiro Sakata
昭博 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP21416186A priority Critical patent/JPS6372893A/en
Publication of JPS6372893A publication Critical patent/JPS6372893A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To efficiently recover metal copper by using the cathode etched with HF and consisting of Ti, Zr, Nb, or Ta, and electrolyzing the soln. contg. hydrochloric acid and copper chloride to deposit metal copper in the form of fine particles. CONSTITUTION:Metal copper and gaseous chlorine are recovered by electrolysis from the soln. contg. hydrochloric acid and copper chloride such as a copper waste soln. In such a method, the cathode etched with HF and consisting of Ti, Zr, Nb, or Ta is used. The cathode is obtained by etching the metal with 5% HF until generation of hydrogen due to the activated dissolution of the metal is remarkably exhibited. Besides, the electrolysis is preferably carried out while keeping loss in the current efficiency at 15-50%. As a result, the fine particles of metal copper having excellent releasability are deposited on the cathode. The fine copper particles can be easily released by the vibration imparted to the cathode, and recovered as a solid-liq. mixture with the catholyte. Accordingly, the exchange and extraction of the cathode and the stoppage of electrolysis can be dispensed with.

Description

【発明の詳細な説明】 (1)発明の目的 〔産業上の利用分野〕 本発明は金属銅回収用陰極、特に塩酸及び塩化銅を含有
する溶液から電解により金属銅を回収するに通した陰極
並びにこれを用いた金属銅の回収方法に関するものであ
る。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a cathode for recovering metallic copper, particularly a cathode which is used to recover metallic copper from a solution containing hydrochloric acid and copper chloride by electrolysis. The present invention also relates to a method for recovering metallic copper using the same.

更に詳しくは、電解により金属銅を回収するに際し、陰
極の交換、抜き出し、電解の停止を行うことなく連続し
て金属銅の回収を行うことができる陰極及びこれを用い
た金属銅の回収方法に関するものであり、この陰極及び
回収方法は特にプリント配線基板製造工程で生成するよ
うな高濃度の塩酸を含む塩化銅廃液がら、銅を回収する
際に通したものである。
More specifically, the present invention relates to a cathode that enables continuous recovery of copper metal when recovering metal copper by electrolysis without replacing or extracting the cathode or stopping electrolysis, and a method for recovering metal copper using the cathode. This cathode and recovery method are particularly used when recovering copper from copper chloride waste liquid containing high concentration hydrochloric acid, such as that produced in the printed wiring board manufacturing process.

〔従来の技術〕[Conventional technology]

塩酸及び塩化銅を含有する溶液、特に銅廃液から金属銅
を回収する方法としては、下式のようなイオン化傾向の
差を利用した銅イオンと金属鉄の置換反応が利用されて
いる。
As a method for recovering metallic copper from a solution containing hydrochloric acid and copper chloride, particularly from a copper waste solution, a substitution reaction between copper ions and metallic iron using the difference in ionization tendency as shown in the following formula is used.

CuC12+F e−ecu +F e C12ここで
得られる副生成物である塩化第1鉄水溶液は、更に塩素
ガスにより塩素化され、塩化第2鉄水溶液(過鉄)とし
て再利用されている。
CuC12+F e-ecu +F e C12 The ferrous chloride aqueous solution, which is a by-product obtained here, is further chlorinated with chlorine gas and reused as a ferric chloride aqueous solution (perferrous).

しかし近年、銅エツチング廃液等の銅廃液の量が多いた
め、過鉄及びこの原料である塩化第1鉄水溶液は、過剰
気味である。
However, in recent years, due to the large amount of copper waste liquid such as copper etching waste liquid, the amount of superferrous metal and its raw material, ferrous chloride aqueous solution, has become excessive.

このため銅廃液の処理方法として、副生物の塩化第1鉄
が生成せず、金属銅と塩素ガスが同時に回収できる電解
法が注目されている。
For this reason, as a method for treating copper waste liquid, an electrolytic method that does not produce the by-product ferrous chloride and can recover metallic copper and chlorine gas at the same time is attracting attention.

しかし、この場合、通常は生成物である金属銅は結晶状
で陰極上に析出するため、これを電解槽外へ抜き出すに
は気体や液体と異なり、人為的作業が必要であった。
However, in this case, the product, metallic copper, is usually crystalline and deposited on the cathode, so unlike gas or liquid, manual work is required to extract it from the electrolytic cell.

例えば一定時間電解後、電解を停止して析出銅が付着し
た陰極を交換したり、或いは陰極上の析出銅を剥離させ
電解槽外へ取り出す等の作業を行わなければならず、時
間及び労力の点で好ましくなかった。
For example, after electrolysis for a certain period of time, it is necessary to stop electrolysis and replace the cathode with deposited copper attached, or to peel off the deposited copper on the cathode and take it out of the electrolytic cell, which saves time and effort. I didn't like it in that respect.

これらの欠点を補うため、陰極から容易に剥離すること
ができる微粒子状の金属銅を、電解により析出させ、固
−液温送流(金属微粒子を懸濁させた溶液の流れ)とし
て電解槽外へ取り出す方法が提案されている。
In order to compensate for these drawbacks, fine-particle metallic copper, which can be easily peeled off from the cathode, is deposited by electrolysis and sent outside the electrolytic cell as a solid-liquid hot flow (flow of a solution containing fine metal particles suspended). A method has been proposed to extract the

このプロセスで最も重要なことは陰極上で常に微粒子状
の金属銅が生成することである。
The most important thing in this process is that fine particles of metallic copper are always produced on the cathode.

このような機能を有する陰極材質として、特開昭56−
29686にTi或いはTi合金からなる陰極が提案さ
れている。
As a cathode material having such a function, JP-A-56-
No. 29686 proposes a cathode made of Ti or a Ti alloy.

この発明は銅を熔解した鉄液から、溶存する銅を電解析
出させる再に、チタンを陰極板として電解した場合に、
適切な条件下では、銅が極板に固着することがない、高
純度の、美麗な結晶相として析出する特別の効果がある
と述べている。
This invention involves electrolytically depositing dissolved copper from an iron solution containing dissolved copper, and then electrolyzing titanium as a cathode plate.
It states that under appropriate conditions, copper has the special effect of precipitating as a highly pure, beautiful crystalline phase that does not stick to the electrode plate.

しかし、実際にはこの電極の機能は充分でなく、本発明
の比較例1に記載のように陰極表面に析出銅の強固な付
着が起こり、その剥離は困難であった。
However, in reality, the function of this electrode was not sufficient, and as described in Comparative Example 1 of the present invention, deposited copper strongly adhered to the surface of the cathode, and it was difficult to peel it off.

又剥離しやすい銅微粒子を製造する電解方法として特開
昭57−192283に陰極電流密度を陽極のそれの1
00〜500倍として電解する方法が提案されている。
In addition, as an electrolytic method for producing fine copper particles that are easy to peel off, Japanese Patent Application Laid-Open No. 192283/1983 reported that the current density at the cathode was one of that at the anode.
A method of electrolyzing with a magnification of 00 to 500 times has been proposed.

しかしこの方法は析出金属と同一の金冗板を可溶性陽極
として使用し金属微粒子を製造する方法に関するもので
あり、本発明のように陽極でガスの発生、陰極で金属銅
の回収を目的とするシステムに応用することは不可能に
近い。
However, this method is related to a method for producing metal fine particles using the same gold plate as the deposited metal as a soluble anode, and as in the present invention, the purpose is to generate gas at the anode and recover metallic copper at the cathode. It is almost impossible to apply it to a system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

塩酸及び塩化銅を含有する溶液から電解により金属銅を
回収しようとする場合、通常は陰極表面上に結晶性の金
属銅が析出するため、これを電解槽外へ取り出すための
時間及び労力が必要であった。
When attempting to recover metallic copper from a solution containing hydrochloric acid and copper chloride by electrolysis, crystalline metallic copper is usually deposited on the cathode surface, which requires time and effort to remove from the electrolytic cell. Met.

本発明は金属銅を微粒子状で析出させ、固−液温送流と
して電解槽外へ連続して抜き出すことを可能ならしめた
ものである。
The present invention makes it possible to precipitate metallic copper in the form of fine particles and continuously extract it out of the electrolytic cell as a solid-liquid hot flow.

(2)発明の構成 〔問題点を解決するためのための手段〕本発明は塩酸及
び塩化銅を含有する溶液から電解により金属銅を回収す
るに際し、フッ化水素酸でエツチング処理されたT 1
% Z r −、N b或いはTaからなる陰極を用い
るごとによって上記の問題を解決したものであり、これ
に加えて本発明者等は更に研究を重ねた結果、水素発生
による電流効率の損失を15〜50%に維持しつつ電解
を行うと、より剥離性の優れた微粒子状の金属銅を析出
させ得るとの予想外の知見を得て、本発明を完成させた
ものである。
(2) Structure of the Invention [Means for Solving Problems] The present invention uses T 1 etched with hydrofluoric acid when recovering metallic copper from a solution containing hydrochloric acid and copper chloride by electrolysis.
The above problem was solved by using a cathode made of %Zr-, Nb, or Ta.In addition, the inventors conducted further research and found that the loss of current efficiency due to hydrogen generation can be reduced. The present invention was completed based on the unexpected finding that if electrolysis is carried out while maintaining the concentration of copper at 15 to 50%, it is possible to precipitate metallic copper in the form of fine particles with better releasability.

〔作用〕[Effect]

本発明の陰極を用いた場合、微粒子状の金属銅が析出す
る理由は明確ではないが、走査型電子顕微鏡で調べると
、エツチング処理を施されたT i s Z r % 
N b或いはTaの表面は非常に平滑化されているのが
認められる。
When using the cathode of the present invention, the reason why fine particles of metallic copper are precipitated is not clear, but when examined with a scanning electron microscope, the etched TisZr%
It is observed that the surface of Nb or Ta is extremely smooth.

このような平滑な電極表面に加え、発生した水素による
エロージョンの相乗効果、更に発生水素ガスの攪拌効果
に基づく銅イオン濃度の均−化等の効果により、剥離性
の優れた微粒子状の金属銅が析出するものと思われる。
In addition to this smooth electrode surface, the synergistic effect of erosion caused by the generated hydrogen, and the equalization of the copper ion concentration based on the stirring effect of the generated hydrogen gas, make it possible to create fine particles of metallic copper with excellent removability. is expected to precipitate.

これらに加え、陰極を構成している金属の結晶構造や、
溶解性の水素化物が生成するという物性も関連している
と思われるが、詳細は不明である。
In addition to these, the crystal structure of the metal that makes up the cathode,
The physical property of producing soluble hydrides is thought to be related, but the details are unknown.

〔エツチング処理〕[Etching treatment]

本発明における陰極を製造するために行うエツチング処
理の望ましい条件は、対象とする金属の耐蝕性により異
なる。
Desirable etching conditions for producing the cathode of the present invention vary depending on the corrosion resistance of the target metal.

例えば、5%(重量%:以下同じ)フッ化水素酸を用い
る場合、TiおよびZrでは室温で1〜3分間浸漬すれ
ば充分であるが、Nbでは60℃で1時間前後の浸漬を
、Taでは60℃で3〜5時間程度の浸漬を行うことが
望ましい。
For example, when using 5% (wt%) hydrofluoric acid, immersion for 1 to 3 minutes at room temperature is sufficient for Ti and Zr, but for Nb, immersion for about 1 hour at 60°C is sufficient for Ti and Zr. Then, it is desirable to perform immersion at 60° C. for about 3 to 5 hours.

又この浸漬時間は、フッ化水素酸の濃度及び温度により
ある程度コントロールすることができる。
Moreover, this immersion time can be controlled to some extent by the concentration of hydrofluoric acid and temperature.

実際には、金属の活性熔解に基づく水素発生が顕著にな
るまでエツチング処理を行う方法を取ればよい。
Actually, it is sufficient to carry out the etching process until hydrogen generation due to active melting of the metal becomes noticeable.

〔電極形状〕[Electrode shape]

本発明における電極は、Tt、Zr、NbあるいはTa
からなるものであれば、形状は特に規定はなく、板状、
ラス網状、スダレ状等が使用可能であるが、エツチング
処理の簡便さ及び溶接部分の耐蝕性等の点から、板状が
好ましい形状である。
The electrode in the present invention is made of Tt, Zr, Nb or Ta.
As long as it is made of
A lath net shape, a sag shape, etc. can be used, but a plate shape is preferable from the viewpoint of ease of etching treatment and corrosion resistance of the welded portion.

〔電解条件〕[Electrolysis conditions]

本発明の電解による金属銅の回収法においては、副反応
である水素発生に基づ(電流効率の損失を15〜50%
に維持しつつ電解を行うことが好ましい。
The method of recovering metallic copper by electrolysis of the present invention is based on hydrogen generation as a side reaction (loss of current efficiency is reduced by 15 to 50%).
It is preferable to perform electrolysis while maintaining the temperature at

具体的には通ff1fflに対して50〜85%当量の
銅イオンを含む塩酸含有鋼溶液を電解槽に供給して、通
電量の15〜50%を強制的に水素発生で消費させる方
法が取られる。
Specifically, a method is adopted in which a hydrochloric acid-containing steel solution containing 50 to 85% equivalent of copper ions per ffl of current is supplied to the electrolytic cell, and 15 to 50% of the current is forcibly consumed by hydrogen generation. It will be done.

通電量に対して水素発生の割合が15%未満では剥離性
の優れた銅微粒子が生成しにくく、50%を超えると銅
回収に要する電力原単位の悪化および設備の大型化に直
結し好ましくない。
If the ratio of hydrogen generation to the amount of electricity applied is less than 15%, copper fine particles with excellent releasability will be difficult to generate, and if it exceeds 50%, it will directly lead to a worsening of the electricity consumption rate required for copper recovery and an increase in the size of the equipment, which is undesirable. .

最も好ましい水素発生に基づく電流効率の損失の割合は
20〜40%である。
The most preferred rate of current efficiency loss due to hydrogen generation is 20-40%.

〔塩酸及び塩化銅を含有する溶液〕[Solution containing hydrochloric acid and copper chloride]

本発明の金属銅の回収方法に用いる塩酸及び塩化銅を含
有する溶液としては、特にf!i類は問わないが、塩酸
含有銅廃液、特にプリント配線基板のエツチング等で生
じる塩酸含有銅廃液は、不純物が少なくかつ廃液の生産
量が多いので、技術的、経済的に最も好ましいものであ
る。
Especially f! Although type i does not matter, hydrochloric acid-containing copper waste liquid, especially hydrochloric acid-containing copper waste liquid generated from etching of printed wiring boards, etc., is technically and economically the most preferable because it has few impurities and produces a large amount of waste liquid. .

〔実施例及び比較例〕[Examples and comparative examples]

以下に実施例及び比較例を挙げて本発明をさらに詳しく
説明する。
The present invention will be explained in more detail by giving examples and comparative examples below.

実施例1 10 cmX 20 cmのTi板(JIS規格1種品
)を5%フッ化水素酸水溶液に室温で2分間浸漬し、水
洗後10cwXIOcmだけ電解液に接するようにテー
ピングした。
Example 1 A 10 cm x 20 cm Ti plate (JIS standard type 1 product) was immersed in a 5% hydrofluoric acid aqueous solution at room temperature for 2 minutes, and after washing with water, was taped so that it was in contact with the electrolyte by 10 cw x IO cm.

これをフルオロカーボン陽イオン交換19iNafio
n−117(Du  Pont社製)を隔膜とする電解
槽の陰極とした。
Fluorocarbon cation exchange 19iNafio
The cathode of the electrolytic cell was made of n-117 (manufactured by Du Pont) as a diaphragm.

陽極にはRuO2TiO2型金属陽極を用い、銅の電解
試験を行った。
A copper electrolysis test was conducted using a RuO2TiO2 type metal anode as the anode.

陽極室には2N−HClを500 cc/ llrで供
給し、陰極室には銅廃液としてlIC112g/l、C
uCl237 g/lを含む液(産廃液の10倍希釈’
e、、>を500 cc/ Hrで供給し、室温、電解
電流10Aで電解を行った。
2N-HCl was supplied to the anode chamber at 500 cc/llr, and the cathode chamber was supplied with 112 g/l of lIC and C as copper waste liquid.
Liquid containing uCl237 g/l (10-fold dilution of industrial waste liquid)
e, ,> was supplied at 500 cc/Hr, and electrolysis was performed at room temperature with an electrolytic current of 10 A.

24時間電解後に、陰極室流出液の流量、キレート滴定
法及びKMnO4酸化還元滴定法の併用による同波中の
第1銅イオン及び第2銅イオンの濃度及び水素発生に基
づく電流効率の損失を測定した。この測定結果を表1に
示すが、陰極室流出液中に銅イオンは殆ど認められなか
った。
After 24 hours of electrolysis, we measured the flow rate of the cathode chamber effluent, the concentration of cuprous ions and cupric ions in the same wave using a combination of chelate titration and KMnO4 redox titration, and the loss of current efficiency due to hydrogen generation. did. The measurement results are shown in Table 1, and almost no copper ions were observed in the cathode chamber effluent.

又析出銅の大部分は、電解液中にフロック状で浮遊し、
陰極に付着していた析出銅も電極に軽い振動を与えると
容易に脱落した。
In addition, most of the deposited copper is suspended in the electrolyte in the form of flocs,
The deposited copper adhering to the cathode also easily fell off when the electrode was subjected to light vibration.

実施例2 10c、mX20cmのZr板(純度99.9%)を用
いた以外は、実施例1と同じ条件でエツチングと電解試
験を行った。
Example 2 Etching and electrolysis tests were carried out under the same conditions as in Example 1, except that a 10 cm x 20 cm Zr plate (purity 99.9%) was used.

この測定結果を表1に示すが、陰極室流出液中に銅イオ
ンは殆ど認められながった。
The measurement results are shown in Table 1, and it was found that almost no copper ions were observed in the cathode chamber effluent.

又析出銅の大部分は、電解液中にフロック状で浮遊し、
陰極に付着していた析出銅も電極に軽い振動を与えると
容易に脱落した。
In addition, most of the deposited copper is suspended in the electrolyte in the form of flocs,
The deposited copper adhering to the cathode also easily fell off when the electrode was subjected to light vibration.

実施例3 10 cmX 20 cmのNb板(純度99.9%)
を5%フッ化水素酸水溶液に60’cで1時間浸漬し、
水洗後、実施例1と同じ条件で電解試験を行った。
Example 3 10 cm x 20 cm Nb plate (purity 99.9%)
immersed in 5% hydrofluoric acid aqueous solution at 60'C for 1 hour,
After washing with water, an electrolytic test was conducted under the same conditions as in Example 1.

この測定結果を表1に示すが、陰極室流出液中に銅イオ
ンは殆ど認められなかった。
The measurement results are shown in Table 1, and almost no copper ions were observed in the cathode chamber effluent.

又析出銅の大部分は、電解液中にフロック状で浮遊し、
陰極に付着していた析出鋼も電極に軽い振動を与えると
容易にy!A落した。
In addition, most of the deposited copper is suspended in the electrolyte in the form of flocs,
The precipitated steel attached to the cathode can be easily removed by applying light vibration to the electrode. I dropped A.

実施例4 10cmX20cmのTi板(JIS規格品)を5%フ
ッ化水素酸水溶液に60℃で5時間浸漬し、水洗後、実
施例1と同じ条件で電解試験を行った。
Example 4 A 10 cm x 20 cm Ti plate (JIS standard product) was immersed in a 5% aqueous hydrofluoric acid solution at 60° C. for 5 hours, and after washing with water, an electrolytic test was conducted under the same conditions as in Example 1.

この測定結果を表1に示すが、陰極室流出液中に銅イオ
ンは殆ど認められなかった。
The measurement results are shown in Table 1, and almost no copper ions were observed in the cathode chamber effluent.

又析出銅の大部分は、電解液中にフロック状で浮遊し、
陰極に付着していた析出銅も電極に軽い振動を与えると
容易に脱落した。
In addition, most of the deposited copper is suspended in the electrolyte in the form of flocs,
The deposited copper adhering to the cathode also easily fell off when the electrode was subjected to light vibration.

比較例1 10 caX 20 cmのTi板(JIS規格1種品
)を10cmX10cmだけ電解液に接するようにテー
ピングし、陰極液の供給速度を680 cc/ Hrと
した以外は、実施例1と同じ条件で電解試験を行った。
Comparative Example 1 Same conditions as Example 1, except that a 10 ca x 20 cm Ti plate (JIS standard 1 type product) was taped so that it was in contact with the electrolyte by 10 cm x 10 cm, and the catholyte supply rate was 680 cc/Hr. An electrolytic test was conducted.

この測定結果を表1に示すが、水素発生による電流効率
の損失は11%で、陰掻上に析出銅が強固に付着してい
た。
The measurement results are shown in Table 1, and the loss in current efficiency due to hydrogen generation was 11%, and the deposited copper was firmly attached to the scratches.

比較例2 陰極液の供給速度を500 cc/ llrとした以外
は、比較例1と同じ条件で電解試験を行った。
Comparative Example 2 An electrolytic test was conducted under the same conditions as Comparative Example 1 except that the catholyte supply rate was 500 cc/llr.

この測定結果を表1に示す。The measurement results are shown in Table 1.

陰極室流出液中に銅イオンは殆ど認められなかったが、
陰極に析出銅が付着しており、電極に軽い撮動を与えて
も剥離はしなかった。
Although almost no copper ions were observed in the cathode chamber effluent,
Precipitated copper adhered to the cathode, and did not peel off even when the electrode was subjected to light imaging.

実施例5 陰極液の供給速度を680 cc/ llrとした以外
は、実施例1と同じ条件で電解試験を行った。
Example 5 An electrolytic test was conducted under the same conditions as in Example 1, except that the catholyte supply rate was 680 cc/llr.

この測定結果を表1に示すが、水素発生による電流効率
の損失は12%で、陰極表面に銅粉がフィルム状に付着
していた。
The measurement results are shown in Table 1, and the loss in current efficiency due to hydrogen generation was 12%, and copper powder was attached to the cathode surface in the form of a film.

電極に軽い振動を与えても、この銅粉は剥離しなかった
Even when the electrode was subjected to slight vibrations, this copper powder did not peel off.

表1 (3)発明の効果 塩酸及び塩化銅を含有する溶液から電解により金属銅を
回収するに際し、本発明の陰極を用い並びに本発明の金
B銅の回収方法を利用すれば、軽い振動を与えることに
よって容易にa落する微粒子状の金属銅を析出させるこ
とができ、これを固−液温送流として、電解槽外へ抜き
出すことが可能となった。
Table 1 (3) Effects of the Invention When recovering metallic copper by electrolysis from a solution containing hydrochloric acid and copper chloride, by using the cathode of the present invention and the method of recovering gold B copper of the present invention, light vibrations can be suppressed. By applying this, it was possible to precipitate metallic copper in the form of fine particles that easily fall off, and it became possible to extract this as a solid-liquid heated flow to the outside of the electrolytic cell.

このため従来析出金属銅回収のために行っていた陰極の
交換、抜き出し、電解の停止等が不要となり、連続して
金属銅を回収することができ、金属銅の電解回収の時間
および労力が大幅に削減できるものである。
This eliminates the need for replacing the cathode, extracting the cathode, stopping electrolysis, etc. that were conventionally required to recover precipitated metallic copper, allowing continuous recovery of metallic copper, which significantly reduces the time and labor required for electrolytic recovery of metallic copper. This can be reduced to

Claims (1)

【特許請求の範囲】 1、フッ化水素酸でエッチング処理されたTi、Zr、
Nb或いはTaからなる金属銅回収用陰極。 2、塩酸及び塩化銅を含有する溶液から電解により金属
銅を回収する方法において、フッ化水素酸でエッチング
処理されたTi、Zr、Nb或いはTaからなる陰極を
使用することを特徴とする金属銅を回収する方法。 3、水素発生による電流効率の損失を、15〜50%に
維持しつつ電解を行うことを特徴とする特許請求の範囲
第2項記載の金属銅を回収する方法。
[Claims] 1. Ti, Zr etched with hydrofluoric acid,
A cathode for recovering metallic copper made of Nb or Ta. 2. A method for recovering metallic copper from a solution containing hydrochloric acid and copper chloride by electrolysis, characterized by using a cathode made of Ti, Zr, Nb or Ta that has been etched with hydrofluoric acid. How to recover. 3. The method for recovering metallic copper according to claim 2, wherein the electrolysis is carried out while maintaining the loss of current efficiency due to hydrogen generation at 15 to 50%.
JP21416186A 1986-09-12 1986-09-12 Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride Pending JPS6372893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21416186A JPS6372893A (en) 1986-09-12 1986-09-12 Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21416186A JPS6372893A (en) 1986-09-12 1986-09-12 Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride

Publications (1)

Publication Number Publication Date
JPS6372893A true JPS6372893A (en) 1988-04-02

Family

ID=16651244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21416186A Pending JPS6372893A (en) 1986-09-12 1986-09-12 Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride

Country Status (1)

Country Link
JP (1) JPS6372893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131393A (en) * 1990-09-21 1992-05-06 Power Reactor & Nuclear Fuel Dev Corp Method and device for recovering palladium by electrolysis method
JPH04314899A (en) * 1990-11-16 1992-11-06 Macdermid Inc Method and device for electrolytically sampling heavy metal from waste bath
JP2020160065A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Copper valence fractionation quantification method and copper quantification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916167A (en) * 1972-06-09 1974-02-13
JPS5210823A (en) * 1975-07-15 1977-01-27 Kobe Steel Ltd Cathode plate made of titanium for electrolysis of copper
JPS531603A (en) * 1976-06-29 1978-01-09 Asahi Glass Co Ltd Pretreatment of cathode to be used at deposition of metal by electrolysis from solution containing metal salt
JPS5394218A (en) * 1977-01-28 1978-08-18 Inco Ltd Method of electrolytically recovering nickel or cobalt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916167A (en) * 1972-06-09 1974-02-13
JPS5210823A (en) * 1975-07-15 1977-01-27 Kobe Steel Ltd Cathode plate made of titanium for electrolysis of copper
JPS531603A (en) * 1976-06-29 1978-01-09 Asahi Glass Co Ltd Pretreatment of cathode to be used at deposition of metal by electrolysis from solution containing metal salt
JPS5394218A (en) * 1977-01-28 1978-08-18 Inco Ltd Method of electrolytically recovering nickel or cobalt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131393A (en) * 1990-09-21 1992-05-06 Power Reactor & Nuclear Fuel Dev Corp Method and device for recovering palladium by electrolysis method
JPH04314899A (en) * 1990-11-16 1992-11-06 Macdermid Inc Method and device for electrolytically sampling heavy metal from waste bath
JP2020160065A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Copper valence fractionation quantification method and copper quantification device

Similar Documents

Publication Publication Date Title
JP5469157B2 (en) Electrochemical process for recovering valuable metal iron and sulfuric acid from iron-rich sulfate waste, mining residues, and pickling liquors
JP4840808B2 (en) High purity nickel, high purity nickel target and high purity nickel thin film
JP4647695B2 (en) Method for recovering valuable metals from ITO scrap
JP5043028B2 (en) Recovery method of valuable metals from ITO scrap
CN101528989A (en) Method for collection of valuable metal from ITO scrap
JP4519294B2 (en) Indium recovery method
US3788915A (en) Regeneration of spent etchant
JPH036228B2 (en)
JPH0356686A (en) Simultaneous recovery of manganese dioxide and zinc
JP2009097072A (en) Electrolytic refining method for bismuth
JP4598921B2 (en) Indium recovery method
JPS6372893A (en) Cathode for recovering metal copper and method for recovering metal copper from solution containing hydrochloric acid and copper chloride
JPH0733595B2 (en) Conversion of manganate to permanganate
JP4607303B2 (en) Method for recovering platinum group metals from metal electrodes
US4895626A (en) Process for refining and purifying gold
JPS59145739A (en) Method for recovering ruthenium and iridium from metallic electrode
JP2012092447A (en) Cobalt electrowinning method
JP2002201025A (en) Method for recovering indium hydroxide or indium
US3334034A (en) Electrolytic method for the recovery of nickel and cobalt
JPS5845316B2 (en) Waste liquid treatment method
JPH06172881A (en) Desilvering or silver recovering method
JPS6363637B2 (en)
JP2965457B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JPH0215187A (en) Production of iron and chlorine from aqueous solution containing iron chloride
US2626895A (en) Electrolytic production of iron