[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6369757A - Composite ceramics and manufacture - Google Patents

Composite ceramics and manufacture

Info

Publication number
JPS6369757A
JPS6369757A JP61213930A JP21393086A JPS6369757A JP S6369757 A JPS6369757 A JP S6369757A JP 61213930 A JP61213930 A JP 61213930A JP 21393086 A JP21393086 A JP 21393086A JP S6369757 A JPS6369757 A JP S6369757A
Authority
JP
Japan
Prior art keywords
sic
present
toughness
particles
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213930A
Other languages
Japanese (ja)
Inventor
安富 義幸
英紀 北
浩介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61213930A priority Critical patent/JPS6369757A/en
Publication of JPS6369757A publication Critical patent/JPS6369757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合セラミックス及びその製造法に係り、特
に、耐酸化性、気密性、靭性に優れた51gN4−Si
C系複合材およびその製造法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to composite ceramics and a method for producing the same, and in particular, 51gN4-Si which has excellent oxidation resistance, airtightness, and toughness.
This invention relates to a C-based composite material and its manufacturing method.

〔従来の技術〕[Conventional technology]

一般に、エンジンやタービンなどの構造材料に適するエ
ンジニアリングセラミックスとして。
Generally used as engineering ceramics suitable for structural materials such as engines and turbines.

S 1sNi、 S i Cが考えられている。そして
、5iaN4とSiCの複合セラミックス、特に、反応
焼結法により51gN4とSiCのいずれか一方、また
は、両方を生成させた焼結体は、5i8Nt。
S 1sNi and S i C are considered. A composite ceramic of 5iaN4 and SiC, in particular, a sintered body in which either one or both of 51gN4 and SiC is produced by a reaction sintering method is 5i8Nt.

SiC単独の焼結体よりも耐熱衝撃性にすぐれたものが
得られ、構造用、または、機能用の材料として注目を集
めている。
A sintered body made of SiC alone has better thermal shock resistance, and is attracting attention as a structural or functional material.

従来の5isN+−SiC複合材の製法は、有機Si高
分子化合物を利用する方法(特開昭56−−20574
号公報)と、Si粉末とSiC粉末を出発原料として窒
素雰囲気中で反応焼結する方法(特開昭58−8816
9号公報)であり、これらの焼結体は多孔質で気体透過
率が高く、見掛気孔率が10〜30%もあり、耐酸化性
に劣り、用途によってはこれが不都合をきたしていた。
The conventional manufacturing method of 5isN+-SiC composite material is a method using an organic Si polymer compound (Japanese Patent Application Laid-Open No. 56-20574).
(Japanese Patent Laid-Open No. 58-8816) and a method of reaction sintering in a nitrogen atmosphere using Si powder and SiC powder as starting materials (Japanese Patent Laid-Open No. 58-8816).
These sintered bodies are porous and have a high gas permeability, have an apparent porosity of 10 to 30%, and have poor oxidation resistance, which may be inconvenient depending on the application.

この耐酸化性及び気密性を向上させる方法としく2) て、スパッタ法。CVD法などにより表面にコーティン
グする方法が考えられるが、このような方法は、装置が
複雑で高価であり、量産性に欠け、複雑形状品には不可
能という欠点があり、工業的に適していなかった。
A method for improving this oxidation resistance and airtightness is 2) sputtering. A method of coating the surface using a CVD method or the like is considered, but such a method requires complicated and expensive equipment, lacks mass production, and is not possible for products with complex shapes, so it is not suitable for industrial use. There wasn't.

本発明者らは上記の欠点のない耐酸化性及び気密性向上
法につき、いろいろ検討を行った結果。
The present inventors have conducted various studies on methods for improving oxidation resistance and airtightness that do not have the above drawbacks.

SigN番−SiC焼結体表面に5iC)zのガラス層
を形成すれば良いことを見出し、又、これにより靭性も
向上することを発見した。
It has been found that it is sufficient to form a glass layer of 5iC)z on the surface of the SigN-SiC sintered body, and that this also improves toughness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、耐酸化性、気密性の点で、考慮がされ
ておらず、大気中、高温下での使用や気密性を必要とす
る部分での使用に問題があった。
The above-mentioned conventional technology does not take into consideration oxidation resistance and airtightness, and has problems when used in the atmosphere, at high temperatures, or in areas that require airtightness.

本研究の目的は、耐酸化性、気密性、靭性に優れた51
gN4−SiC系複合材を提供することにある。
The purpose of this research is to provide 51
An object of the present invention is to provide a gN4-SiC composite material.

〔問題点を解決するための手段〕 本発明はS 1sN4−SiC系複合材の表面のSiと
粒子及び5isN4粒子相互間の空隙をSiOzを主成
分とするガラス相で埋めた複合セラミックスと、得られ
たS i 11N4− S i C系複合材を酸素含有
ガス雰囲気下、1000〜1300℃で処理することを
特徴とする複合セラミックスの製法にある。
[Means for Solving the Problems] The present invention provides a composite ceramic in which the Si and particles on the surface of an S1sN4-SiC composite material and the voids between the 5isN4 particles are filled with a glass phase containing SiOz as a main component; The present invention provides a method for producing composite ceramics, characterized in that the obtained Si 11N4-S i C composite material is treated at 1000 to 1300° C. in an oxygen-containing gas atmosphere.

本発明の焼結体は、第1図に示すように、5iaN番粒
子1及びSiC粒子2相互間の空隙3をガラス層4が埋
めており、ガラス層4の厚さは、通常、5〜30μmで
ある。そして、ガラス層の主成分は5iftでこれにS
 i 、 S 1aN4*5izN20などが若干混入
している。このガラス層により、酸素と5iaN+−S
iC系複合材との反応が抑制される。従って、酸化速度
が急激に低下する。
In the sintered body of the present invention, as shown in FIG. It is 30 μm. The main component of the glass layer is 5ift and S
i, S 1aN4*5izN20, etc. are slightly mixed. This glass layer allows oxygen and 5iaN+-S
Reaction with iC-based composite material is suppressed. Therefore, the oxidation rate decreases rapidly.

本発明では、加熱処理温度は1000〜1300℃、好
ましくは、1100〜1250℃とすることが重要であ
り、1000℃未満では表面に酸化が起こり、重量増加
はするがガラス質膜が形成されず酸化防止効果が少ない
。また、1300℃をこえると酸化防止効果は、130
0℃とほぼ同等であるが、ガラス皮膜の厚さが大きくな
り寸法精度が悪くなり好ましくない。
In the present invention, it is important that the heat treatment temperature is 1000 to 1300°C, preferably 1100 to 1250°C. If it is lower than 1000°C, oxidation will occur on the surface and the weight will increase, but no vitreous film will be formed. Low antioxidant effect. In addition, when the temperature exceeds 1300℃, the antioxidant effect decreases to 130℃.
Although it is almost equivalent to 0°C, the thickness of the glass film becomes large and the dimensional accuracy deteriorates, which is not preferable.

本発明において、51gNa−SiC系複合材は開気孔
(連続気孔)からなっているため、加熱処理を受けると
ガラス質の薄膜が焼結体内部のS 1gN4. S i
 C粒子表面に形成され、51gN4粒子とSiC粒子
との結合強度が大きくなり、靭性を向上させることがで
きる。しかし、加熱温度が1000℃より高いと5ia
N+粒子の酸化が激しくなり、セラミックス本来の強度
を弱める。従って、1000〜1300℃であることが
必要でこの範囲ならば強度及び靭性を向上させることが
できる。
In the present invention, since the 51gNa-SiC composite material has open pores (continuous pores), when subjected to heat treatment, a glassy thin film forms inside the sintered body. Si
Formed on the surface of the C particles, the bonding strength between the 51 g N4 particles and the SiC particles increases, making it possible to improve toughness. However, if the heating temperature is higher than 1000℃, 5ia
The oxidation of N+ particles becomes intense, weakening the original strength of the ceramic. Therefore, it is necessary that the temperature is 1000 to 1300°C, and within this range, strength and toughness can be improved.

本発明において、成形用バインダはポリビニルブチラー
ルやポリエチレンなどの有機高分子化合物、シリコンイ
ミド化合物やポリシラン化合物などの有機珪素高分子化
合物、熱可塑性樹脂、可塑剤、潤滑剤などを1〜20重
量部添加し、焼結体の相対密度を80%以上とするのが
好ましい。
In the present invention, the molding binder contains 1 to 20 parts by weight of an organic polymer compound such as polyvinyl butyral or polyethylene, an organic silicon polymer compound such as a silicon imide compound or a polysilane compound, a thermoplastic resin, a plasticizer, a lubricant, etc. However, it is preferable that the relative density of the sintered body is 80% or more.

本発明において、金属Si粉末とSiC粉末からなる出
発原料に5iaN4粉末を添加してもよい。
In the present invention, 5iaN4 powder may be added to the starting material consisting of metal Si powder and SiC powder.

適量な5iaNi粉末は金属Siを窒化反応により5i
sN4相に変化させる時の核となり、窒化反応が促進さ
れるからである。また、金属Si粉末。
Appropriate amount of 5iaNi powder converts metal Si into 5i by nitriding reaction.
This is because it becomes a nucleus when changing to the sN4 phase and promotes the nitriding reaction. Also, metal Si powder.

SiC粉末、51gNa粉末は市販のものをそのまま使
用でき、ミルなどにより粉砕した丸みを帯びた粒子を使
用してもよい。
Commercially available SiC powder and 51 g Na powder can be used as they are, or rounded particles pulverized by a mill or the like may be used.

本発明において、ガラス相の厚みを0.5〜50μmと
する理由は、0.5μm より薄いと靭性に対する効果
がなく、0.5μmより厚くなるにつれ靭性が大きくな
り、50μmより厚くなるとセラミック本来の強度が弱
まり、靭性が低下する。従って、0.5〜50μmの厚
みであれば耐酸化性、気密性も良く、曲げ強さ、靭性を
大きくすることができる。
In the present invention, the reason why the thickness of the glass phase is set to 0.5 to 50 μm is that if it is thinner than 0.5 μm, it has no effect on toughness, if it is thicker than 0.5 μm, the toughness increases, and if it is thicker than 50 μm, it is difficult to improve the toughness. Strength weakens and toughness decreases. Therefore, if the thickness is 0.5 to 50 μm, oxidation resistance and airtightness are good, and bending strength and toughness can be increased.

〔作用〕[Effect]

本発明では、5isN4−SiC系複合材の表面及び内
部のSiC粒子、5isN4粒子相互間の空隙を5iO
zを主成分とするガラス相で埋めることにより、耐酸化
性、気密性に優れ、高靭性をもつ複合材が得られる。
In the present invention, 5iO
By filling it with a glass phase containing z as a main component, a composite material with excellent oxidation resistance, airtightness, and high toughness can be obtained.

〔実施例〕〔Example〕

〈実施例 1〉 平均粒径1μmのSiC粉末60重量部と平均粒径0.
9μmの金属Si粉末40重量部の混合粉末に成形助剤
として、ポリエチレン系樹脂を9重量部添加し原料とし
た。この原料をメカニカルプレスを用いて成形圧力10
0100O/co?、成形温度160℃で直径50nm
、厚さ10mmのものを成形した。この成形体から成形
助剤を分解揮散させた後、窒素ガス中1000℃から1
350℃まで段階的に加熱して51gNt−SiC系複
合材を得た。
<Example 1> 60 parts by weight of SiC powder with an average particle size of 1 μm and an average particle size of 0.
A raw material was prepared by adding 9 parts by weight of polyethylene resin as a molding aid to a mixed powder of 40 parts by weight of 9 μm metal Si powder. This raw material was molded using a mechanical press under a pressure of 10
0100O/co? , diameter 50nm at molding temperature 160℃
, and a thickness of 10 mm was molded. After decomposing and volatilizing the molding aid from this molded body,
The mixture was heated stepwise to 350° C. to obtain 51 g of Nt-SiC composite material.

これを電気炉に入れ、大気中で第1表に示す加熱処理条
件で処理し、焼結体を得た。その焼結体の特性値を第1
表に示す。
This was placed in an electric furnace and treated in the atmosphere under the heat treatment conditions shown in Table 1 to obtain a sintered body. The characteristic values of the sintered body are
Shown in the table.

次に、加熱処理後のS i lIN! −S i C系
複合材ヲ温度1000’Cで300時間及び1000時
間酸化し、酸化後の物性を測定した結果を第2表に示す
Next, S i l IN! after heat treatment! -S i C-based composite materials were oxidized at a temperature of 1000'C for 300 hours and 1000 hours, and the physical properties after oxidation were measured. Table 2 shows the results.

第  1 表 第1図に1本発明品のNα5の加熱処理後の焼結体表面
及び断面の図を示す。これにより、表面は完全に酸化膜
でおおわれていることが判る。また、表面の気孔部を酸
化膜が埋めるような形になっているのが断面の図より判
る。
Table 1 Figure 1 shows the surface and cross-section of a sintered body after heat treatment of Nα5 of a product of the present invention. This shows that the surface is completely covered with an oxide film. Also, it can be seen from the cross-sectional view that the oxide film fills the pores on the surface.

第  2 表 これより、本発明品は耐酸化性にすぐれ、曲げ強さも大
きく、気密性にもすぐれていることが判る。
From Table 2, it can be seen that the products of the present invention have excellent oxidation resistance, high bending strength, and excellent airtightness.

〈実施例 2〉 実施例1で得られた1000℃(大気中)酸化後の試料
について破壊靭性値Kycを求めた、Krcはノツチド
ビーム法により測定した。その結果を第3表に示す。
<Example 2> Fracture toughness value Kyc was determined for the sample obtained in Example 1 after oxidation at 1000° C. (in the atmosphere), and Krc was measured by the notched beam method. The results are shown in Table 3.

第  3  表 これにより、本発明品は靭性にすぐれていることが判る
Table 3 This shows that the products of the present invention have excellent toughness.

〈実施例 3〉 実施例1で得られた加熱処理前のS i sNa −S
iC系複合材を1200℃で数分から数時間まで酸化時
間を変化させて、表面に生成するガラス相の厚みを0.
3μm〜100μmまで種々の複合材を作製し、破壊靭
性値2曲げ強さを測定した。
<Example 3> Si sNa -S obtained in Example 1 before heat treatment
The iC-based composite was oxidized at 1200°C for varying oxidation times from several minutes to several hours, and the thickness of the glass phase formed on the surface was reduced to 0.
Various composite materials having a thickness of 3 μm to 100 μm were prepared, and the fracture toughness value 2 and bending strength were measured.

その結果を第4表に示す。これより本発明品は、曲げ強
さ、靭性にすぐれていることが判る。
The results are shown in Table 4. This shows that the product of the present invention has excellent bending strength and toughness.

第4表 〔発明の効果〕 本発明によれば、耐酸化性、気密性、靭性が向上する。Table 4 〔Effect of the invention〕 According to the present invention, oxidation resistance, airtightness, and toughness are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法による51gN4−SiC系複合
材の表面(a)及び断面(b)を示す図である。 1・・・SiC粒子、2・・・5iaN4粒子、3山空
隙、4・・・酸化膜(ガラス層)。
FIG. 1 is a diagram showing the surface (a) and cross section (b) of a 51gN4-SiC composite material produced by the method of the present invention. 1... SiC particles, 2... 5iaN4 particles, 3 mountain voids, 4... oxide film (glass layer).

Claims (1)

【特許請求の範囲】 1、Si_8N_4−SiC系複合材において、表面の
SiC粒子及びSi_3N_4粒子相互間の空隙をSi
O_2を主成分とするガラス相で埋めたことを特徴とす
る複合セラミックス。 2、表面のガラス相の厚みを0.5〜50μmとするこ
とを特徴とする特許請求の範囲第1項記載の複合セラミ
ックス。 3、Si_3N_4−SiC系複合材を酸素含有ガス雰
囲気下、温度1000〜1300℃で加熱処理すること
を特徴とする複合セラミックスの製造法。
[Claims] 1. In the Si_8N_4-SiC composite material, the voids between the SiC particles on the surface and the Si_3N_4 particles are
Composite ceramics characterized by being filled with a glass phase whose main component is O_2. 2. The composite ceramic according to claim 1, wherein the thickness of the glass phase on the surface is 0.5 to 50 μm. 3. A method for producing composite ceramics, which comprises heat-treating a Si_3N_4-SiC-based composite material at a temperature of 1000 to 1300°C in an oxygen-containing gas atmosphere.
JP61213930A 1986-09-12 1986-09-12 Composite ceramics and manufacture Pending JPS6369757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213930A JPS6369757A (en) 1986-09-12 1986-09-12 Composite ceramics and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213930A JPS6369757A (en) 1986-09-12 1986-09-12 Composite ceramics and manufacture

Publications (1)

Publication Number Publication Date
JPS6369757A true JPS6369757A (en) 1988-03-29

Family

ID=16647394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213930A Pending JPS6369757A (en) 1986-09-12 1986-09-12 Composite ceramics and manufacture

Country Status (1)

Country Link
JP (1) JPS6369757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317672A (en) * 1988-06-14 1989-12-22 Hitachi Metals Ltd Stoke for low pressure casting
JPH04114968A (en) * 1990-08-31 1992-04-15 Ngk Insulators Ltd Silicon nitride-based sic refractory material and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317672A (en) * 1988-06-14 1989-12-22 Hitachi Metals Ltd Stoke for low pressure casting
JPH04114968A (en) * 1990-08-31 1992-04-15 Ngk Insulators Ltd Silicon nitride-based sic refractory material and production thereof

Similar Documents

Publication Publication Date Title
JP2535768B2 (en) High heat resistant composite material
JPS6369757A (en) Composite ceramics and manufacture
JPS5888171A (en) Manufacture of high density silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JPS59116176A (en) Manufacture of ceramic sintered body
JPS61158866A (en) Ceramic sintered body and manufacture
JPS60251175A (en) Manufacture of formed body made from silicon carbide and carbon
JPH0881742A (en) Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance
JPH01115876A (en) Oxidation-resistant sintered form of high strength
JP2811493B2 (en) Silicon nitride sintered body
JPH0513906B2 (en)
JPH0568428B2 (en)
JPS61201662A (en) Manufacture of composite ceramics
JPH01183465A (en) Silicon nitride base multiple ceramics and production thereof
JP2694369B2 (en) Silicon nitride sintered body
JPH0585506B2 (en)
JPS6127357B2 (en)
JP2742596B2 (en) Silicon nitride sintered body and method for producing the same
JPS61247662A (en) Electroconductive ceramics and manufacture
JP2757031B2 (en) Method for producing mullite sintered body
JPH01168845A (en) Iron-iron oxide sintered compact and its production
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPS5888172A (en) Manufacture of high strength silicon nitride sintered body
JPS61281082A (en) Manufacture of porous ceramics
JPH11139891A (en) Production of laminated ceramics