[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6365682B2 - - Google Patents

Info

Publication number
JPS6365682B2
JPS6365682B2 JP54072209A JP7220979A JPS6365682B2 JP S6365682 B2 JPS6365682 B2 JP S6365682B2 JP 54072209 A JP54072209 A JP 54072209A JP 7220979 A JP7220979 A JP 7220979A JP S6365682 B2 JPS6365682 B2 JP S6365682B2
Authority
JP
Japan
Prior art keywords
weight
film
thermoplastic resin
lubricant
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54072209A
Other languages
Japanese (ja)
Other versions
JPS55164209A (en
Inventor
Mitsuhiko Takeda
Masatoshi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP7220979A priority Critical patent/JPS55164209A/en
Publication of JPS55164209A publication Critical patent/JPS55164209A/en
Publication of JPS6365682B2 publication Critical patent/JPS6365682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性樹脂滑剤に関するものであ
る。 詳しくは、炭素原子数1〜2個のアルキル基を
もつアクリル酸エステル、炭素原子数が1〜2個
のアルキル基をもつメタクリル酸エステル、の群
より選ばれた一または二以上の単量体;炭素原子
数が11〜20個のアルキル基をもつアクリル酸エス
テル、炭素原子数が11〜20個のアルキル基をもつ
α置換アクリル酸エステル、の群より選ばれた一
または二以上の単量体;及びアクリル酸、メタク
リル酸の群より選ばれた一または二の単量体;
を、特定の割合で共重合させた特定範囲の平均分
子量を有する熱可塑性樹脂滑剤に関するものであ
る。 従来より、ビニル樹脂、アクリル樹脂、ポリア
ミド樹脂、繊維素誘導体樹脂等の熱可塑性樹脂
を、例えばフイルム等の成形品に成形する場合、
該成形品に優れた透明性と外部滑性を同時に付与
するには滑剤上の問題があつた。 従来より、これらの熱可塑性樹脂成形品に外部
滑性を付与する方法として高級脂肪酸および該脂
肪酸のアミド誘導体類、脂肪族高級アルコール
類、金属石ケン類、低分子量のポリエチレンを主
成分とするポリエチレンワツクス類等の滑剤を添
加する方法、スリツプ剤またはアンチブロツキン
グ剤としてシリカ、クレー、珪藻土、タルク、澱
粉等の添加または成形品に後散布する方法等が一
般に用いられている。 しかし、高級脂肪酸および該脂肪酸のアミド誘
導体類、脂肪族高級アルコール類、金属石ケン
類、ポリエチレンワツクス類等を熱可塑性樹脂に
添加する場合、該滑剤が熱可塑性樹脂の相溶性限
界以下の添加量では、該滑剤の殆んどが成形品の
中に透明な状態で相溶されるので、成形品の表面
上に該滑剤の表面層が形成されるに至らず、従つ
て外部滑性効果が発揮されないが、相溶性限界以
上の添加量では、限界を超えた量の殆んどが成形
品の表面上に吹出して微細に結晶し白化するの
で、優れた外部滑性を与える反面、成形品が光沢
を失い不透明化し商品価値を著しく低下させる欠
点がある。更に、相溶性限界付近で透明性と外部
滑性を同時満足する該滑剤の添加量の範囲が極め
て狭いので、熱可塑性樹脂が元来持つ透明性を保
持すると同時に、優れた外部滑性を持つ成形品を
得ることが極めて困難な状況である。 また、スリツプ剤またはアンチブロツキング剤
としてシリカ、クレー、珪藻土、タルク、澱粉等
を添加する場合、該添加剤で成形品の表面が凹凸
化されるので比較的容易に外部滑性が得られる
が、熱可塑性樹脂との相溶性が実質的になく、微
細な粒子として分散しているに過ぎないので成形
品全体が白色に不透明化する欠点がある。また、
後散布する方法では、成形品の表面に粘着性を引
起す、例えば液状可塑剤等の浸出による薄い液状
膜が存在していても、該散布剤で吸収、吸着され
て非粘着性の乾いた表面に変るほかに、該表面を
該散布剤が微細な粉末状態で覆うので、特に優れ
た外部滑性が得られる。しかし、散布方法そのも
のに欠陥があり、散布量の調節が困難で均一に行
なわれないため必然的に濃淡部が発生し外観を損
ねるほか、例えばフイルム等に後散布した場合、
濃く散布された部分では印刷に際してインクむ
ら、あるいはシール加工に際してはシール強度の
低下等を引起す欠点がある。 成形品が外部滑性に劣るとき、例えば成形品が
フイルムでありロール巻き状態で貯蔵される場合
等は、該フイルム相互が経時変化で密着し使用不
能化する問題を引起す。また、外部滑性に劣るフ
イルムを印刷、製袋、包装等の種々の加工を行う
場合、フイルム相互または装置との間の摩擦が大
きいため印刷時のインクずれや、製袋ではフイル
ムが蛇行しシール線が一直線に美しく仕上がらな
かつたり、たとい製袋が出来てもフイルム相互が
密着しているため該袋中に包装物等を入れること
が著しく困難化したり、また包装等においては、
該フイルムが包装装置と粘着し包装作業能率を低
下させたり、更には引掛かりで該フイルムの切
れ、破れ等のフイルムの使用を不能化させる種々
の厄介な問題を引起す。同様に熱可塑性樹脂を成
形品に成形する際にも、該成形品が外部滑性に劣
るときは、金型や成形装置等と粘着を起し、成形
困難化することが容易に理解されよう。 成形品に透明性と外部滑性を同時に付与するた
めに解決すべきこれらの問題は、溶液流延法で成
形されるビニル樹脂、、アクリル樹脂等の場合、
特に複雑化し解決が困難になる。 例えば、溶液流延法で塩化ビニル樹脂をフイル
ムに成形する場合について述べると、溶液流延法
では塩化ビニル樹脂を溶剤(例えばテトラヒドロ
フラン、メチルエチルケトン、アセトン、シクロ
ヘキサノン等)に加熱溶解し、例えばステンレス
ベルト上に流延後、該溶剤を乾燥してフイルムに
成形するが、添加する滑剤は該溶剤に実質的に溶
解している必要がある。このため所謂、溶融押出
法、カレンダー法等で通常使用される金属石ケン
類、ポリエチレンワツクス類や前記せるスリツプ
剤またはアンチブロツキング剤等の溶剤に難溶な
滑材は使用出来ず、滑剤の選択には著しい制限を
受ける。実質的に溶解しない滑剤を使用するとき
は、必然的にフイルム中に該滑材による不透明斑
点が生じ商品価値を著しく阻害する。 更に、溶液流延法塩化ビニル樹脂フイルム原反
には完全に除去困難な溶剤(例えば5%)が残存
し、これが経時変化で添加された可塑剤等と共に
フイルム原反表面へ浸出し、粘着を引起す原因と
なる液状膜を形成するので優れた外部滑性を得る
ことが極めて困難になる。 また、従来より一般に用いられている高級脂肪
酸および該脂肪酸のアミド誘導体類、高級アルコ
ール類等の滑剤は、フイルム原反中の残存溶剤が
浸出するとき該滑剤を伴つてフイルム表面へ浸出
するので、所謂、溶融押出法、カレンダー法等で
フイルム表面に外部滑性を付与するために使用さ
れる添加量より少量(例えば1/5量以下)でも著
しくフイルム表面が白化する。更に、該滑剤のフ
イルム表面へ滲出する度合いは、フイルム原反中
の残存溶剤量の多少によつても異るので、添加す
べき適量をきめることも極めて困難になる。 本発明者等は、熱可塑性樹脂成形品、特に溶液
流延法による熱可塑性樹脂成形品に、透明性と外
部滑性を同時に付与すべく詳細な種々の研究を行
つた結果、従来一般に使用されていた滑剤と全く
異る新規な特定組成と特定平均分子量を有する熱
可塑性樹脂滑剤を使用することで一挙に解決し得
ることを見出した。 即ち、本発明の目的は、熱可塑性樹脂成形品に
優れた透明性を与え、且つ熱可塑性樹脂から成形
品に成形する場合に優れた外扮滑性を示すと共
に、成形された成形品の印刷、製袋、包装等の二
次加工に際して優れた外部滑性、換言すれば優れ
た作業機を付与する熱可塑性樹脂滑剤を提供する
にある。 本発明は、下記のa〜c成分の合計100重量%
に対して、a成分50〜90重量%、b成分40〜10重
量%及びc成分0〜27重量%の割合で主単量体単
位として含有し、平均分子量が5000を越え、
1000000以下の共重合体よりなることを特徴とす
る熱可塑性樹脂滑剤、 a 成分・炭素原子数が1〜2個のアルキル基を
もつアクリル酸エステル、炭素原子数が1〜2
個のアルキル基をもつメタクリル酸エステル、
の群より選ばれた一または二以上の単量体、 b 成分・炭素原子数が11〜20個のアルキル基を
もつアクリル酸エステル、炭素原子数が11〜20
個のアルキル基をもつα置換アクリル酸エステ
ル、の群より選ばれた一または二以上の単量
体、 c 成分・アクリル酸、メタクリル酸の群より選
ばれた一または二の単量体、 に関するものである。 本発明の熱可塑性樹脂滑剤の驚くべき透明性と
外部滑性の作用は、透明性については、熱可塑性
樹脂成形品の表面に形成される表面層が、成形品
の表面上に吹出して微細に結晶化し白化する従来
の単分子または低分子量の滑剤と異り、透明性に
富み、且つ適度の平均分子量を有する白化しない
固体の共重合体層であること、外部滑性について
は、構造的に熱可塑性樹脂と比較的に相溶性を有
するアクリル酸、メタクリル酸、α置換アクリル
酸の共重合体部分が熱可塑性樹脂に食い込む、所
謂アンカー部の存在に均衡し、熱可塑性樹脂と比
較的に非相溶性を有し外部滑性作用を発揮する特
定の高級アルキル基部分が、熱可塑性樹脂成形品
の表面から主に食み出した形で滑性層を形成する
こと、しかも、例え熱可塑性樹脂成形品の表面
に、該熱可塑性樹脂の性能向上等の目的等で添加
された液状の可塑剤、液状の安定剤等が浸出して
も、それらの液状物に対して特定の高級アルキル
基部分が、適度の耐溶剤性を有するために浸出し
た液状物を吸収、吸着し粘着を引起す液状膜の形
成を防止し滑性化することに基くものと推定され
る。 更に、本発明の熱可塑性樹脂滑剤は、適度の平
均分子量を有する共重合体であるので、熱可塑性
樹脂の性能向上等の目的等で添加された液状の可
塑剤、液状の安定剤等の変性剤等や、溶液流延法
で使用された溶剤と共に該成形品の表面に実質的
に浸出しないから、該成形品の表面上における本
発明の熱可塑性樹脂滑剤の分布が経時的に実質的
に不変で、そのため外部滑性を得るために添加す
べき量の把掴が容易である利点がある。 本発明でいうa成分とは、アクリル酸メチル、
メタクリル酸メチル、アクリル酸エチル、メタク
リル酸エチル、の群より選ばれた一または二以上
の単量体を称する。 また本発明でいうb成分とは、炭素原子数が11
〜20個の高級アルキル基を有する高級アルコール
と、アクリル酸、メタクリル酸、またはエタアク
リル酸の高級アルキルエステルで、これらの高級
アルキルエステルの群より選ばれた一または二以
上の単量体を称する。 上記せる高級アルキルエステルは、主に天然に
産出する原料から製造される脂肪族高級アルコー
ルや、主に化学反応で製造される合成高級アルコ
ール等の高級アルコールと、アクリル酸、メタア
クリル酸、エタアクリル酸との反応で、いづれも
容易に作ることが出来る。これらの高級アルコー
ルを例挙すると、ラウリルアルコール、ミリスチ
ルアルコール、セチルアルコール、ステアリルア
ルコール、ウンデシルアルコール、ドデシルアル
コール、ペンタデシルアルコール、ヘプタデシル
アルコール、ノナデシルアルコール、等がある
が、経済的に安価で入手な容易なこと、および透
明性、外部滑性の観点から、高級アルコールとし
てラウリルアルコール、ドデシルアルコール、ミ
リスチルアルコール、セチルアルコール、ステア
リルアルコールを使用することが好ましい。ま
た、アクリル酸、メタクリル酸、エタアクリル酸
のなかでは、経済的であり、且つエステル化反
応、共重合反応等が容易なアクリル酸、メタクリ
ル酸を使用することが好ましく、例えばアクリル
酸高級アルキルエステルとしては、アクリル酸ラ
ウリル、アクリル酸トリデシル、アクリル酸ミリ
スチル、アクリル酸セチル、アクリル酸ステアリ
ル等、メタクリル酸高級アルキルエステルとして
は、メタクリル酸ラウリル、メタクリル酸トリデ
シル、メタクリル酸ミリスチル、メタクリル酸セ
チル、メタクリル酸ステアリル等の使用が好まし
い。 更に本発明でいうc成分とは、アクリル酸、メ
タクリル酸、の群より選ばれた一または二の単量
体である。 本発明でいう熱可塑性樹脂は特に制限されるも
のではなく、例えばビニル樹脂、アクリル樹脂、
ポリアミド樹脂、繊維素誘導体樹脂、石油系樹
脂、スチロール樹脂、アセタール樹脂、テレフタ
ル酸系樹脂、ポリカーボネート樹脂等の熱可塑性
樹脂以外の樹脂の一または二以上からなる樹脂
で、加熱で可塑性になるが常温に戻すと変化し難
い状態になるような樹脂等をいう。これらの樹脂
中で主なものを例挙すると、ビニル樹脂には、塩
化ビニル樹脂、酢酸ビニル樹脂、ビニルアルコー
ル樹脂、ビニルアセタール樹脂、塩化ビニリデン
樹脂等、アクリル樹脂には、アクリル酸エステル
樹脂(アルキル基の炭素原子数が10個以下)、メ
タクリル酸エステル樹脂(アルキル基の炭素原子
数が10個以下)、アクリロニトリル樹脂、アクリ
ル酸樹脂、アクリルアミド樹脂等、ポリアミド樹
脂には、ポリカプラミド樹脂、ポリヘキサメチレ
ンアジパミド樹脂、ポリヘキサメチレンセバテー
ト樹脂、その他、所謂7ナイロン樹脂、8ナイロ
ン樹脂、9ナイロン樹脂、10ナイロン樹脂、11ナ
イロン樹脂、12ナイロン樹脂、芳香族ナイロン樹
脂、樹脂、プロピオン酸繊維素樹脂、エチル繊維
素樹脂等、石油系樹脂には、ポリエチレン、ポリ
プロピレン、ポリブデン、ポリブタジエン、ポリ
イソブチレン等、スチロール樹脂には、ポリスチ
ロール、ABS樹脂、AS樹脂等、アセタール樹脂
には、ホルマル樹脂、ブチラル樹脂等、テレフタ
ル酸系樹脂には、ポリエチレンテレフタレート樹
脂、ポリブチレンテレフタレート樹脂、テレフタ
ル酸フエノールエステル樹脂等、ポリカーボネー
ト樹脂には、ジオキシジフエニルメタンカーボネ
ート樹脂、ジオキシジフエニルエタンカーボネー
ト樹脂、ジオキシフエニル−2,2−プロパンカ
ーボネート樹脂等がある。 本発明においては、前記の如くa〜c成分の合
計100重量%に対して、a成分50〜90重量%、b
成分40〜10重量%及びc成分0〜27重量%の割合
で用い、通常の重合方法、例えば有機過酸化物や
有機アゾ化合物等の触媒を用いた懸濁重合法や、
クメン、イソプロピールアルコール等の溶媒中に
おいて重合開始剤を用いたラジカル重合法や、そ
の他イオン重合法等の方法で、平均分子量が5000
を越え1000000以下の固体の熱可塑性樹脂滑剤に
することが出来る。 本発明で、熱可塑性樹脂滑剤の平均分子量を
5000を越えたものとしたのは、5000以下の低分子
量では常温で液状またはペースト状であり、熱可
塑性樹脂に該共重合体を添加し成形品に成形して
も、該成形品の表面に浸出しやすく、且つ薄い液
状またはペースト状膜を形成し、かえつて粘着性
を増加させるからである。また、平均分子量を
1000000以下としたので、1000000を越えては熱可
塑性樹脂との相溶性が悪くなり、該共重合体を熱
可塑性樹脂に添加し成形品に成形した場合、該成
形品中にあつては不透明化を起したり、或は該成
形品の表面上にあつては不透明な被膜状物を形成
し、商品価値を低下させ好ましくないからであ
る。 本発明の熱可塑性樹脂滑剤の平均分子量は、
5000を越え、1000000以下のものであれば、いづ
れのものでも使用出来るが、平均分子量が10000
を越え200000以下の熱可塑性樹脂滑剤の場合、熱
可塑性樹脂と適度の相溶性等を示し、成形品に特
に優れた透明性と外部滑性を同時に与えるので特
に好ましい。 次に、本発明の熱可塑性樹脂滑剤の組成で、b
成分の共重合割合をa〜c成分の合計100重量%
に対して、40〜10重量%と限定した理由を述べる
と、b成分10重量%未満ではa成分及びc成分と
の相溶性がよく、得られる共重合体自体の透明が
よい。しかし、該共重合体を熱可塑性樹脂に添加
し成形品に成形しても透明性が満足されるが、外
部滑性が不十分となるからである。またb成分40
重量%以下として理由は、40重量%を越えては外
部滑性が満足されるが、a成分及びc成分との相
溶性が悪くなり、該共重合体を熱可塑性樹脂に添
加し成形しても該成形品の透明性が不十分になる
からである。b成分の共重合割合が30〜15重量%
の熱可塑性樹脂滑剤のとき、成形品に特に優れた
透明性と外部滑性を付与するので好ましい。 なお、本発明でa〜c成分の合計100重量%に
対して、a成分50〜90重量%、b成分40〜10重量
%及びc成分0〜27重量%の割合で主単量体単位
として含有するとは、このような割合からなる該
a〜c成分の合計量が、熱可塑性樹脂滑剤の全組
成中80重量%以上、好ましくは90重量%以上含有
する意味で用いるもので、他の成分として、本発
明の熱可塑性樹脂滑剤の透明性と外部滑性作用に
大きな影響を与えない程度の、例えばアクリルア
ミド、メタクリルアミド、アクリロニトリル、メ
タアクリロニトリル、塩化ビニル、塩化ビニリデ
ン、酢酸ビニル、スチレン、ブタジエン等を適
宜、共重合してもよい。 次に、本発明において、熱可塑性樹脂100重量
部に対し、本発明の熱可塑性樹脂滑剤を0.1〜5
重量部に限定した理由を述べれば、0.1重量部未
満であれば熱可塑性樹脂に該滑剤を添加し成形品
に成形しても、該成形品の表面に分布される該滑
剤の濃度が少いため十分な外部滑性が得られず、
例えばフイルム滑性、耐ブロツキング性が不十分
になるからである。また、該滑剤の使用量が5重
量部を越える場合は、十分な外部滑性が得られる
が、該成形品の透明性が減退し、商品価値を低下
させるので好ましくなく、且つ不経済である。本
発明の熱可塑性樹脂滑剤の添加量は、熱可塑性樹
脂100重量部に対して、1〜5重量部範囲が最も
透明性、外部滑性の両性能を発揮しやすく好まし
い。 本発明の熱可塑性樹脂滑剤は、前記した種々の
熱可塑性樹脂に添加され、成形品に優れた透明性
と外部滑性効果を与えるものであるが、熱可塑性
樹脂の成形品で外部滑性が問題の塩化ビニル樹
脂、アクリル樹脂、ポリアミド樹脂、特に半硬
質、軟質塩化ビニル樹脂、メタクリル酸エステル
樹脂に優れた効果を発揮する。 ここでいう塩化ビニル樹脂とは、塩化ビニル単
独重合体、および少くとも75重量%の塩化ビニル
と25重量%までの酢酸ビニル、アクリロニトリ
ル、アクリル酸エチル、塩化ビニリデンおよびジ
エチルマレートのような塩化ビニルと共重合性の
1種またはそれ以上のエチレン状不飽和単量体と
の共重合体をいい、半硬質塩化ビニル樹脂とは、
DOPをはじめとする各種可塑剤を前記塩化ビニ
ル樹脂100重量部に対し約10〜30重量部添加され
たものをいい、軟質塩化ビニル樹脂とは、各種可
塑剤を約30〜50重量部添加されたものをいう。ま
た、アクリル樹脂とは、アクリル酸、アクリル酸
エステル(アルキル基の炭素原子数が10個以下)、
アクリルアミド、アクリロニトリル、メタクリル
酸、メタクリル酸エステル(アルキル基の炭素原
子数が10個以下)、などの重合体、および樹脂改
質のためスチレンなど他の単量体との共重合体を
包含するものをいう。代表的なものとして、アル
キル基がメチル、エチル、ブチルおよびオクチル
が一般的なアクリル酸エステル樹脂、アルキル基
がメチルが一般的なメタクリル酸エステル樹脂が
ある。またポリアミド樹脂とは分子中にアミド基
(−NHCO−)をもつ重合体で、ラクタムの開環
重合、アミノカルボン酸の自己縮合、ジアミンと
有機二塩基酸との縮合、等で得られ、一般式、
(−NH−R′−CO−)xおよび(−NH−R2
NHCO−R3−CO)xで表わされるものである。
代表的なものとして前者にはナイロン6、ナイロ
ン11、ナイロン12等があり、後者にはナイロン
66、ナイロン610がある。更に、これらの構造単
位を有するものには、他の重合体と同様に2種以
上の単量体からなる共重合体、例えばナイロン6
の単量体とナイロン12の単量体とからなる共重合
体も含まれる。 本発明の熱可塑性樹脂滑剤は、熱可塑性樹脂に
対し前記した添加範囲で、通常用いられる混合方
法、混合装置等で混合することによつて容易に優
れた易滑性熱可塑性樹脂組成物とすることが出来
る。これらには多種多様あるが代表的混合装置を
挙げると、リボンブレンダー、Vブレンダー、バ
ンバリミキサー、高速流動式ミキサー(スーパー
ミキサー)、ボールミル、らい潰機等があるが、
高品質の組成物を得るには使用する混合装置の特
徴、条件を把掴し、可及的に均一に熱可塑性樹脂
滑剤を分散することが好ましい。 また、本発明に係る易滑性熱可塑性樹脂組成物
には、各種の加工方法に適するように更に適宜、
可塑剤、安定剤、界面活性剤、帯電防止剤、紫外
線吸収剤、抗酸化剤、充填剤、染料等を添加して
所謂溶融押出法、カレンダー法または溶液流延法
等によつて成形品に成形し得る。ただし、適宜加
えられるべき可塑剤、安定剤、充填剤、染料等に
よる成形品の外観および機械的性質等における効
果に対して使用される変性剤は本発明に係る組成
物の本質的な成分ではない。 更に、本発明の熱可塑性樹脂滑剤は、単独で使
用しても、従来の滑剤では得られない優れた透明
性と外部滑性を有する成形品を与えるものである
が、溶融押出法、カレンダー法、溶液流延法等の
種々の加工方法において、該滑剤以外に、熱可塑
性樹脂の溶融粘度を下げ流動性を改善するための
内部滑剤あるいは例えば流延面上に形成したフイ
ルムの剥離性の向上のために滑剤等として従来一
般に使用されていた炭化水素、脂肪酸系、脂肪酸
アミド系、エステル系滑剤等を、本発明の熱可塑
性樹脂滑剤と併用することも出来る。 次に、本発明を更に詳細に説明するために実施
例を挙げるが、本発明はこれらの実施例により限
定されるものではない。 熱可塑性樹脂滑剤の調製 実施例 1 メタクリル酸メチル77重量%とメタクリル酸ス
テアリル23重量%に対して、ラウリルパーオキシ
ド3.3重量%を混合した混合液を、ポリビニール
アルコール(日本合成化学(株)製ゴーセノールKH
−7)0.5重量%を溶解させた脱イオン水300重量
%中へ常温下で撹拌しながら滴下懸濁させ、反応
機内を窒素ガスで置換し、75℃に加熱し、5時間
撹拌反応した。その後、過、乾燥後、メタクリ
ル酸メチルとメタクリル酸ステアリルを主成分と
するパール状で固体の平均分子量約100000の熱可
塑性樹脂滑剤を得た。 実施例2〜10及び比較例1 実施例1において、ラウリルパーオキシドの使
用量、反応温度及び反応時間を変えた以外は同様
にして、第1表に示す平均分子量約7000〜約
1200000の固体の熱可塑性樹脂滑剤を得た。 比較例 2 実施例1と同様の反応器を用い、窒素雰囲気下
で、メタクリル酸メチル77重量%とメタクリル酸
ステアリル23重量%の合計100重量%に対してt
−ブチルパーオキシピバレート1重量%を混合
し、これをイソプロピールアルコール200重量%
の入つた75℃に加熱された反応器中に撹拌下に2
時間で滴下し、さらに6楠間撹拌反応させた。こ
の反応液を400重量%の水中に滴下し、過乾燥
後第1表に示す平均分子量約2000の液状共重合体
を得た。 実施例11,12及び比較例3,4 実施例1において、メタクリル酸メチルを55〜
93重量%に、メタクリル酸ステアリル45〜7重量
%に変えた外に、ラウリルパーオキシドの使用量
と反応時間を若干変えた以外は実施例1と同様に
して、第1表に示す平均分子量約125000の固体の
熱可塑性樹脂滑剤を得た。 実施例 13〜15 実施例1において、メタクリル酸メチルを70〜
75重量%に変えメタクリル酸ステアリル23重量%
の代りにメタクリル酸ラウリル、メタクリル酸ド
デシル、メタクリル酸セチルを25〜30重量%を用
い、更にラウリルパーオキシドの使用量と反応時
間が若干変える以外は実施例1と同様にして、第
1表に示す平均分子量約80000〜約180000の固体
の熱可塑性樹脂滑剤を得た。 実施例 16 実施例1において、メタクリル酸メチル77重量
%の代りにメタクリル酸エチル75重量部を、メタ
クリル酸ステアリル23重量部の代りにメタクリル
酸ラウリル25重量部を用い、更にラウリルパーオ
キシドの使用量と反応時間を若干変えて、第1表
に示す平均分子量約190000の固体の熱可塑性樹脂
滑剤を得た。 実施例 17 実施例1において、第1表に示すようにメタク
リル酸メチルの代りにアクリル酸エチル80重量%
とし、メタクリル酸ステアリルの代りにアクリル
酸ステアリル20重量%とし、その他反応温度を若
干変えた以外は実施例1と同様な方法で平均分子
量約160000の固体の熱可塑性樹脂滑剤を得た。 実施例 18 実施例1において、メタクリル酸メチル77重量
%及びメタクリル酸ステアリル23重量%の代り
に、メタクリル酸メチル50重量%、メタクリル酸
27重量%及びメタクリル酸ステアリル23重量%に
変えた以外は実施例1と同様な方法で平均分子量
約150000の固体の熱可塑性樹脂滑剤を得た。 比較例 5 実施例1において、メタクリル酸メチル77重量
%及びメタクリル酸ステアリル23重量%の代り
に、メタクリル酸メチル37重量%、メタクリル酸
40重量%及びメタクリル酸ステアリル23重量%に
変え、更に、ポリビニルアルコール0.5重量%の
代りにアラビアゴム2重量%に変えた以外は実施
例1と同様な方法で平均分子量約150000の固体の
共重合体を得た。 比較例 6 アクリル酸60重量部、メチルメタクリレート15
重量部、ラウリルメタクリート25重量部を675重
量部のフレオン113の中でカプリリルペルオキシ
ド15ml(フレオン113中1%溶液)の存在下に65
℃で重合した。析出した、共重合体を分離し、60
℃真空オープン中で15〜20時間乾燥して平均分子
量約150000の固体共重合体を得た。 以上の実施例1〜18で得られた熱可塑性樹脂滑
剤は、いずれも固体の透明性のよい共重合物であ
り、特に実施例1〜7および11〜18で得られた熱
可塑性樹脂滑剤の透明性が優れていた。 一方、比較例1で得られたものは固体であるが
該共重合体の平均分子量が大きく、実施例1〜18
で得られた熱可塑性樹脂滑剤のどれよりも透明性
で劣つており、また、比較例2で得られたものは
液状の共重合体であつた。 これらの熱可塑性樹脂滑剤と液状および固体の
共重合体の、共重合における主成分の重量%、平
均分子量及び性能の対照のために成形品に適用し
た実施例と比較例をまとめて第1表に示す。 なお、平均分子量は下記の測定方法から求め
た。 平均分子量 試料濃度0.4重量%のテトラヒドロフラン溶液
500mlを、昭和電工(株)製シヨウデツクスA型及び
島津製作所(株)製HSG型のカラム、RIシヨウデツ
クスSE−11検出器を装備した、ウオーターズ社
製6000A型ゲルパーミエクシヨンクロマトグラフ
装置に注入したのち、室温でテトラヒドロフラン
の流速1ml/分の展開条件で分離する。試料の平
均分子量はスチレン換算の重量平均分子量として
算出する。
The present invention relates to thermoplastic resin lubricants. Specifically, one or more monomers selected from the group of acrylic esters having an alkyl group having 1 to 2 carbon atoms, and methacrylic esters having an alkyl group having 1 to 2 carbon atoms. ; One or more monomers selected from the group of acrylic esters having an alkyl group having 11 to 20 carbon atoms, and α-substituted acrylic esters having an alkyl group having 11 to 20 carbon atoms. and one or two monomers selected from the group of acrylic acid and methacrylic acid;
This invention relates to a thermoplastic resin lubricant having an average molecular weight within a specific range, which is copolymerized in a specific ratio. Conventionally, when molding thermoplastic resins such as vinyl resins, acrylic resins, polyamide resins, and cellulose derivative resins into molded products such as films,
In order to simultaneously impart excellent transparency and external lubricity to the molded article, there was a problem regarding the lubricant. Conventionally, as a method of imparting external lubricity to these thermoplastic resin molded articles, polyethylene mainly composed of higher fatty acids and amide derivatives of these fatty acids, higher aliphatic alcohols, metal soaps, and low molecular weight polyethylene has been used. Generally used methods include adding lubricants such as waxes, adding silica, clay, diatomaceous earth, talc, starch, etc. as slip agents or anti-blocking agents, or post-spraying them onto molded products. However, when adding higher fatty acids, amide derivatives of the fatty acids, aliphatic higher alcohols, metal soaps, polyethylene waxes, etc. to thermoplastic resins, the addition of lubricants below the compatibility limit of the thermoplastic resins Since most of the lubricant is dissolved in the molded article in a transparent state, a surface layer of the lubricant is not formed on the surface of the molded article, and therefore there is no external lubricity effect. However, if the amount added exceeds the compatibility limit, most of the amount exceeding the limit will blow out onto the surface of the molded product, forming fine crystals and whitening. This has the disadvantage that the product loses its luster and becomes opaque, significantly reducing its commercial value. Furthermore, since the range of the amount of lubricant added that satisfies both transparency and external lubricity at the same time near the compatibility limit is extremely narrow, the thermoplastic resin retains its original transparency and at the same time has excellent external lubricity. It is extremely difficult to obtain molded products. In addition, when adding silica, clay, diatomaceous earth, talc, starch, etc. as a slipping agent or anti-blocking agent, the surface of the molded product is roughened by the additive, so external lubricity can be obtained relatively easily. However, since it has virtually no compatibility with the thermoplastic resin and is only dispersed as fine particles, it has the disadvantage that the entire molded product becomes white and opaque. Also,
In the post-spraying method, even if there is a thin liquid film on the surface of the molded product due to leaching of liquid plasticizer, etc., which causes stickiness, it is absorbed and adsorbed by the spraying agent and becomes a non-stick dry film. In addition to changing the surface, a particularly good external lubricity is obtained since the surface is covered with the dusting agent in fine powder form. However, there are flaws in the spraying method itself, and it is difficult to control the amount of spraying and it is not done uniformly, which inevitably results in dark and light areas, which impairs the appearance.
Areas where the ink is densely sprayed have the disadvantage of causing ink unevenness during printing or a decrease in seal strength during seal processing. When the molded product has poor external lubricity, for example, when the molded product is a film and is stored in a rolled state, there is a problem that the films stick together over time and become unusable. In addition, when performing various processing such as printing, bag making, and packaging on films with poor external lubricity, the large friction between the films and the equipment may cause ink misalignment during printing and the film meandering during bag making. The seal line may not be beautifully finished in a straight line, and even if bags are made, the films are in close contact with each other, making it extremely difficult to place packages into the bag.
The film may stick to the packaging equipment, lowering the efficiency of packaging operations, or may become caught, causing various troublesome problems such as cutting or tearing of the film, making the film unusable. Similarly, when molding a thermoplastic resin into a molded product, it is easy to understand that if the molded product has poor external lubricity, it will stick to the mold, molding equipment, etc., making molding difficult. . These problems must be solved in order to simultaneously impart transparency and external lubricity to molded products.
In particular, it becomes more complex and difficult to solve. For example, in the case of molding vinyl chloride resin into a film using the solution casting method, vinyl chloride resin is heated and dissolved in a solvent (e.g., tetrahydrofuran, methyl ethyl ketone, acetone, cyclohexanone, etc.), After casting, the solvent is dried and formed into a film, but the lubricant added must be substantially dissolved in the solvent. For this reason, it is not possible to use lubricants that are poorly soluble in solvents, such as metal soaps, polyethylene waxes, or slip agents or anti-blocking agents that are commonly used in the so-called melt extrusion method, calender method, etc. The choice of lubricant is subject to significant limitations. When a substantially insoluble lubricant is used, opaque spots are inevitably produced in the film due to the lubricant, which significantly impairs commercial value. Furthermore, solvent (for example, 5%) that is difficult to completely remove remains in the solution-casting vinyl chloride resin film, and as time passes, this leaches out to the surface of the film along with the added plasticizer, etc., and causes adhesion. This makes it extremely difficult to obtain excellent external lubricity because a liquid film is formed which causes the drying. In addition, lubricants such as higher fatty acids, amide derivatives of these fatty acids, and higher alcohols, which have been commonly used in the past, are leached to the film surface along with the lubricants when the residual solvent in the film material is leached. Even if the amount added is smaller (for example, 1/5 or less) than the amount used to impart external lubricity to the film surface in the so-called melt extrusion method, calender method, etc., the film surface will noticeably whiten. Furthermore, since the degree to which the lubricant oozes out onto the film surface varies depending on the amount of solvent remaining in the film material, it is extremely difficult to determine the appropriate amount to add. The present inventors have conducted various detailed studies in order to simultaneously impart transparency and external lubricity to thermoplastic resin molded products, particularly thermoplastic resin molded products produced by solution casting, and have found that they have developed a method that has not been commonly used in the past. We have discovered that the problem can be solved at once by using a thermoplastic resin lubricant that has a new specific composition and a specific average molecular weight that are completely different from the existing lubricants. That is, an object of the present invention is to provide a thermoplastic resin molded article with excellent transparency, exhibit excellent external lubricity when molded from the thermoplastic resin, and provide printing of the molded article. It is an object of the present invention to provide a thermoplastic resin lubricant that provides excellent external lubricity during secondary processing such as bag making and packaging, in other words, provides excellent working equipment. The present invention consists of a total of 100% by weight of the following components a to c.
50 to 90% by weight of component a, 40 to 10% by weight of component b, and 0 to 27% by weight of component c as main monomer units, with an average molecular weight exceeding 5000,
A thermoplastic resin lubricant characterized by consisting of a copolymer of 1,000,000 or less, a component: an acrylic ester having an alkyl group having 1 to 2 carbon atoms, and 1 to 2 carbon atoms;
methacrylic acid ester with alkyl groups,
One or more monomers selected from the group of b component - acrylic ester having an alkyl group with 11 to 20 carbon atoms, 11 to 20 carbon atoms
One or more monomers selected from the group of α-substituted acrylic acid esters having alkyl groups, and (c) one or two monomers selected from the group of component acrylic acid and methacrylic acid. It is something. The surprising transparency and external lubricity of the thermoplastic resin lubricant of the present invention is that the surface layer formed on the surface of the thermoplastic resin molded product is blown out onto the surface of the molded product and Unlike conventional monomolecular or low molecular weight lubricants that crystallize and whiten, it is a solid copolymer layer that is highly transparent and has a moderate average molecular weight and does not whiten. The copolymer portion of acrylic acid, methacrylic acid, and α-substituted acrylic acid, which are relatively compatible with thermoplastic resin, bites into the thermoplastic resin, which is balanced by the existence of a so-called anchor portion, and the copolymer portion is relatively compatible with the thermoplastic resin. A specific higher alkyl group moiety that has compatibility and exhibits an external lubricating effect mainly protrudes from the surface of a thermoplastic resin molded product to form a lubricating layer. Even if liquid plasticizers, liquid stabilizers, etc. added for the purpose of improving the performance of the thermoplastic resin are leached onto the surface of the molded product, certain higher alkyl group moieties may be removed from the liquid. However, this is presumed to be based on the fact that it absorbs and adsorbs leached liquid substances due to its moderate solvent resistance, thereby preventing the formation of a liquid film that causes adhesion and making it lubricant. Furthermore, since the thermoplastic resin lubricant of the present invention is a copolymer having a suitable average molecular weight, it is difficult to modify liquid plasticizers, liquid stabilizers, etc. added for the purpose of improving the performance of thermoplastic resins. Since the thermoplastic resin lubricant of the present invention does not substantially leach onto the surface of the molded product together with the lubricant and the solvent used in the solution casting method, the distribution of the thermoplastic resin lubricant of the present invention on the surface of the molded product does not substantially change over time. It has the advantage that it remains unchanged, so it is easy to determine the amount to be added to obtain external lubricity. In the present invention, component a refers to methyl acrylate,
Refers to one or more monomers selected from the group of methyl methacrylate, ethyl acrylate, and ethyl methacrylate. In addition, the component b as used in the present invention refers to a component having 11 carbon atoms.
A higher alcohol having ~20 higher alkyl groups and a higher alkyl ester of acrylic acid, methacrylic acid, or ethacrylic acid, and refers to one or more monomers selected from the group of these higher alkyl esters. . The above-mentioned higher alkyl esters are mainly aliphatic higher alcohols manufactured from naturally occurring raw materials, higher alcohols such as synthetic higher alcohols mainly manufactured through chemical reactions, acrylic acid, methacrylic acid, and ethacrylic acid. Both can be easily made by reaction with acids. Examples of these higher alcohols include lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, undecyl alcohol, dodecyl alcohol, pentadecyl alcohol, heptadecyl alcohol, and nonadecyl alcohol, which are economically inexpensive. From the viewpoints of easy availability, transparency, and external lubricity, it is preferable to use lauryl alcohol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol as the higher alcohol. Furthermore, among acrylic acid, methacrylic acid, and ethacrylic acid, it is preferable to use acrylic acid and methacrylic acid, which are economical and easy to undergo esterification reactions, copolymerization reactions, etc. For example, acrylic acid higher alkyl esters Examples include lauryl acrylate, tridecyl acrylate, myristyl acrylate, cetyl acrylate, and stearyl acrylate. Examples of higher alkyl methacrylate esters include lauryl methacrylate, tridecyl methacrylate, myristyl methacrylate, cetyl methacrylate, and methacrylic acid. Preferably, stearyl or the like is used. Furthermore, component c as used in the present invention is one or two monomers selected from the group of acrylic acid and methacrylic acid. The thermoplastic resin referred to in the present invention is not particularly limited, and includes, for example, vinyl resin, acrylic resin,
A resin consisting of one or more resins other than thermoplastic resins, such as polyamide resin, cellulose derivative resin, petroleum resin, styrene resin, acetal resin, terephthalic acid resin, and polycarbonate resin, which becomes plastic when heated but remains at room temperature. Refers to resins that are difficult to change when returned to normal conditions. The main examples of these resins include vinyl resins such as vinyl chloride resin, vinyl acetate resin, vinyl alcohol resin, vinyl acetal resin, vinylidene chloride resin, etc., and acrylic resins such as acrylate ester resins (alkyl Polyamide resins include polycapramide resin, polyhexamethylene, etc. Adipamide resin, polyhexamethylene sebatate resin, other so-called 7 nylon resin, 8 nylon resin, 9 nylon resin, 10 nylon resin, 11 nylon resin, 12 nylon resin, aromatic nylon resin, resin, propionic acid cellulose resin, ethyl cellulose resin, etc. Petroleum resins include polyethylene, polypropylene, polybutene, polybutadiene, polyisobutylene, etc. Styrol resins include polystyrene, ABS resin, AS resin, etc. Acetal resins include formal resins, butyral resins, etc. Resins, etc. Terephthalic acid resins include polyethylene terephthalate resin, polybutylene terephthalate resin, terephthalic acid phenol ester resin, etc. Polycarbonate resins include dioxydiphenylmethane carbonate resin, dioxydiphenyl ethane carbonate resin, dioxyphenyl-2 , 2-propane carbonate resin, etc. In the present invention, as mentioned above, based on the total 100% by weight of components a to c, 50 to 90% by weight of component a, and 50 to 90% by weight of component b.
The component is used in a proportion of 40 to 10% by weight and the c component is 0 to 27% by weight, and the usual polymerization method is used, such as a suspension polymerization method using a catalyst such as an organic peroxide or an organic azo compound.
A radical polymerization method using a polymerization initiator in a solvent such as cumene or isopropyl alcohol, or other ionic polymerization methods is used to achieve an average molecular weight of 5000.
It can be made into a solid thermoplastic resin lubricant with a weight of more than 1,000,000 and less than 1,000,000. In the present invention, the average molecular weight of the thermoplastic resin lubricant is
The reason for the reason why it exceeds 5,000 is that low molecular weights of 5,000 or less are liquid or paste-like at room temperature, and even if the copolymer is added to a thermoplastic resin and molded into a molded product, it will not coat the surface of the molded product. This is because it easily leaches and forms a thin liquid or pasty film, which actually increases tackiness. Also, the average molecular weight
1,000,000 or less, if it exceeds 1,000,000, the compatibility with thermoplastic resin becomes poor, and when the copolymer is added to thermoplastic resin and molded into a molded product, it becomes opaque in the molded product. This is because it is undesirable because it may cause problems or form an opaque film on the surface of the molded product, reducing its commercial value. The average molecular weight of the thermoplastic resin lubricant of the present invention is:
Any substance with an average molecular weight of over 5,000 and under 1,000,000 can be used, but those with an average molecular weight of 10,000
A thermoplastic resin lubricant having a molecular weight of more than 200,000 is particularly preferred because it exhibits appropriate compatibility with the thermoplastic resin and provides particularly excellent transparency and external lubricity to the molded product at the same time. Next, in the composition of the thermoplastic resin lubricant of the present invention, b
The copolymerization ratio of components is 100% by weight in total of components a to c.
The reason for limiting the amount of component b to 40 to 10% by weight is as follows: When component b is less than 10% by weight, it has good compatibility with component a and component c, and the resulting copolymer itself has good transparency. However, even if the copolymer is added to a thermoplastic resin and molded into a molded article, the transparency will be satisfied, but the external lubricity will be insufficient. Also b component 40
The reason for setting the copolymer below 40% by weight is that although external lubricity is satisfied, the copolymer becomes less compatible with components a and c. This is also because the transparency of the molded article becomes insufficient. Copolymerization ratio of component b is 30 to 15% by weight
A thermoplastic resin lubricant is preferred because it imparts especially excellent transparency and external lubricity to the molded product. In addition, in the present invention, based on the total 100% by weight of components a to c, component a is 50 to 90% by weight, component b is 40 to 10% by weight, and component c is 0 to 27% by weight as the main monomer unit. Containing is used to mean that the total amount of components a to c in such proportions is 80% by weight or more, preferably 90% by weight or more of the total composition of the thermoplastic resin lubricant, and other components For example, acrylamide, methacrylamide, acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, vinyl acetate, styrene, butadiene, etc., to an extent that does not significantly affect the transparency and external lubricity of the thermoplastic resin lubricant of the present invention. may be appropriately copolymerized. Next, in the present invention, 0.1 to 5 parts of the thermoplastic resin lubricant of the present invention is added to 100 parts by weight of the thermoplastic resin.
The reason for limiting it to parts by weight is that if it is less than 0.1 part by weight, even if the lubricant is added to a thermoplastic resin and molded into a molded product, the concentration of the lubricant distributed on the surface of the molded product will be small. Sufficient external lubricity cannot be obtained,
For example, the film's slipperiness and blocking resistance become insufficient. Furthermore, when the amount of the lubricant used exceeds 5 parts by weight, sufficient external lubricity can be obtained, but the transparency of the molded product decreases and the commercial value decreases, which is undesirable and uneconomical. . The addition amount of the thermoplastic resin lubricant of the present invention is preferably in the range of 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic resin, as this is the most effective in achieving both transparency and external lubricity. The thermoplastic resin lubricant of the present invention is added to the various thermoplastic resins mentioned above to give molded products excellent transparency and external lubricity. It exhibits excellent effects on vinyl chloride resins, acrylic resins, and polyamide resins, especially semi-rigid and soft vinyl chloride resins, and methacrylic acid ester resins. Vinyl chloride resins herein refer to vinyl chloride homopolymers and at least 75% by weight vinyl chloride and up to 25% by weight vinyl chloride such as vinyl acetate, acrylonitrile, ethyl acrylate, vinylidene chloride and diethyl maleate. Semi-rigid vinyl chloride resin refers to a copolymer of polyvinyl chloride and one or more copolymerizable ethylenically unsaturated monomers.
Approximately 10 to 30 parts by weight of various plasticizers such as DOP are added to 100 parts by weight of the vinyl chloride resin, and soft vinyl chloride resin refers to resins to which approximately 30 to 50 parts by weight of various plasticizers are added. refers to something that In addition, acrylic resins include acrylic acid, acrylic ester (alkyl group has 10 or less carbon atoms),
Polymers such as acrylamide, acrylonitrile, methacrylic acid, methacrylic acid esters (alkyl group has 10 or less carbon atoms), and copolymers with other monomers such as styrene for resin modification. means. Typical examples include acrylate ester resins in which the alkyl group is generally methyl, ethyl, butyl, and octyl, and methacrylate ester resins in which the alkyl group is generally methyl. Polyamide resin is a polymer with an amide group (-NHCO-) in the molecule, and is obtained by ring-opening polymerization of lactam, self-condensation of aminocarboxylic acid, condensation of diamine and organic dibasic acid, etc. formula,
(−NH−R′−CO−)x and (−NH−R 2
It is expressed as NHCO- R3 -CO)x.
Typical examples of the former include nylon 6, nylon 11, and nylon 12, and the latter include nylon.
66 and nylon 610. Furthermore, those having these structural units include copolymers consisting of two or more types of monomers, such as nylon 6, as well as other polymers.
It also includes a copolymer consisting of a monomer of Nylon 12 and a monomer of Nylon 12. The thermoplastic resin lubricant of the present invention can easily be mixed with a thermoplastic resin within the above-mentioned addition range using a commonly used mixing method, mixing device, etc. to easily form an excellent slippery thermoplastic resin composition. I can do it. There are a wide variety of these devices, but typical mixing devices include ribbon blenders, V-blenders, Banbury mixers, high-speed fluid mixers (super mixers), ball mills, and crushers.
In order to obtain a high quality composition, it is preferable to understand the characteristics and conditions of the mixing device used and to disperse the thermoplastic resin lubricant as uniformly as possible. In addition, the easily slippery thermoplastic resin composition according to the present invention may further include, as appropriate, so as to be suitable for various processing methods.
Plasticizers, stabilizers, surfactants, antistatic agents, ultraviolet absorbers, antioxidants, fillers, dyes, etc. are added to molded products by the so-called melt extrusion method, calendar method, solution casting method, etc. Can be molded. However, modifiers used to improve the appearance and mechanical properties of molded products by plasticizers, stabilizers, fillers, dyes, etc. that should be added as appropriate are not essential components of the composition according to the present invention. do not have. Furthermore, even when used alone, the thermoplastic resin lubricant of the present invention provides molded products with excellent transparency and external lubricity that cannot be obtained with conventional lubricants. In various processing methods such as , solution casting, etc., in addition to the lubricant, an internal lubricant is used to lower the melt viscosity of the thermoplastic resin and improve fluidity, or for example, to improve the peelability of a film formed on the casting surface. Hydrocarbon, fatty acid, fatty acid amide, and ester lubricants that have been commonly used as lubricants for this purpose can also be used in combination with the thermoplastic resin lubricant of the present invention. Next, Examples will be given to explain the present invention in more detail, but the present invention is not limited to these Examples. Preparation Example of Thermoplastic Resin Lubricant 1 A mixture of 77% by weight of methyl methacrylate, 23% by weight of stearyl methacrylate, and 3.3% by weight of lauryl peroxide was mixed with polyvinyl alcohol (manufactured by Nippon Gosei Kagaku Co., Ltd.). GOHSENOL KH
-7) The product was added dropwise and suspended in 300% by weight of deionized water in which 0.5% by weight was dissolved with stirring at room temperature, the inside of the reactor was purged with nitrogen gas, the mixture was heated to 75°C, and the mixture was reacted with stirring for 5 hours. Thereafter, after filtering and drying, a pearl-like solid thermoplastic resin lubricant having an average molecular weight of about 100,000 was obtained, the main components being methyl methacrylate and stearyl methacrylate. Examples 2 to 10 and Comparative Example 1 In the same manner as in Example 1, except that the amount of lauryl peroxide used, the reaction temperature, and the reaction time were changed, the average molecular weight shown in Table 1 was about 7,000 to about 7,000.
1200000 solid thermoplastic lubricant was obtained. Comparative Example 2 Using the same reactor as in Example 1, under a nitrogen atmosphere, t was added to 100% by weight of a total of 77% by weight of methyl methacrylate and 23% by weight of stearyl methacrylate.
- Mix 1% by weight of butyl peroxypivalate and mix this with 200% by weight of isopropyl alcohol.
2.0 kg under stirring into a reactor heated to 75°C containing
The mixture was added dropwise over a period of time, and the reaction was further stirred for 6 hours. This reaction solution was dropped into 400% by weight water, and after over-drying, a liquid copolymer having an average molecular weight of about 2000 as shown in Table 1 was obtained. Examples 11 and 12 and Comparative Examples 3 and 4 In Example 1, methyl methacrylate was
The average molecular weight shown in Table 1 was obtained in the same manner as in Example 1, except that stearyl methacrylate was changed to 93% by weight and stearyl methacrylate was changed to 45 to 7% by weight, and the amount of lauryl peroxide used and reaction time were slightly changed. 125,000 solid thermoplastic lubricants were obtained. Examples 13-15 In Example 1, methyl methacrylate was added to 70-
75% by weight replaced with 23% by weight of stearyl methacrylate
Table 1 shows the results in the same manner as in Example 1 except that 25 to 30% by weight of lauryl methacrylate, dodecyl methacrylate, and cetyl methacrylate were used instead, and the amount of lauryl peroxide used and reaction time were slightly changed. A solid thermoplastic resin lubricant having an average molecular weight of about 80,000 to about 180,000 was obtained. Example 16 In Example 1, 75 parts by weight of ethyl methacrylate was used instead of 77 parts by weight of methyl methacrylate, 25 parts by weight of lauryl methacrylate was used instead of 23 parts by weight of stearyl methacrylate, and the amount of lauryl peroxide used was By changing the reaction time slightly, solid thermoplastic resin lubricants having an average molecular weight of about 190,000 as shown in Table 1 were obtained. Example 17 In Example 1, 80% by weight of ethyl acrylate was used instead of methyl methacrylate as shown in Table 1.
A solid thermoplastic resin lubricant having an average molecular weight of about 160,000 was obtained in the same manner as in Example 1, except that stearyl methacrylate was replaced by 20% by weight of stearyl acrylate and the reaction temperature was slightly changed. Example 18 In Example 1, 50% by weight of methyl methacrylate and methacrylic acid were used instead of 77% by weight of methyl methacrylate and 23% by weight of stearyl methacrylate.
A solid thermoplastic resin lubricant having an average molecular weight of about 150,000 was obtained in the same manner as in Example 1 except that the amounts were changed to 27% by weight and 23% by weight of stearyl methacrylate. Comparative Example 5 In Example 1, 37% by weight of methyl methacrylate and 23% by weight of stearyl methacrylate were used instead of 77% by weight of methyl methacrylate and 23% by weight of stearyl methacrylate.
A solid copolymer with an average molecular weight of about 150,000 was prepared in the same manner as in Example 1, except that 40% by weight and 23% by weight of stearyl methacrylate were used, and 2% by weight of gum arabic was used instead of 0.5% by weight of polyvinyl alcohol. Obtained union. Comparative example 6 60 parts by weight of acrylic acid, 15 parts by weight of methyl methacrylate
65 parts by weight, 25 parts by weight of lauryl methacrylate in 675 parts by weight of Freon 113 in the presence of 15 ml of caprylyl peroxide (1% solution in Freon 113).
Polymerized at ℃. The precipitated copolymer was separated and 60
The solid copolymer having an average molecular weight of about 150,000 was obtained by drying in an open vacuum at 15 to 20 hours. The thermoplastic resin lubricants obtained in Examples 1 to 18 above are all solid copolymers with good transparency. Transparency was excellent. On the other hand, although the copolymer obtained in Comparative Example 1 is solid, the average molecular weight of the copolymer is large, and Examples 1 to 18
It was inferior in transparency to any of the thermoplastic resin lubricants obtained in Comparative Example 2, and the one obtained in Comparative Example 2 was a liquid copolymer. Table 1 summarizes examples and comparative examples in which these thermoplastic resin lubricants and liquid and solid copolymers were applied to molded products for comparison of the weight percent of the main component in copolymerization, average molecular weight, and performance. Shown below. In addition, the average molecular weight was calculated|required from the following measuring method. Average molecular weight Tetrahydrofuran solution with sample concentration of 0.4% by weight
After injecting 500 ml into a Waters 6000A gel permeation chromatograph equipped with Showa Denko Co., Ltd. Syodex type A and Shimadzu Corporation HSG column and RI Syodex SE-11 detector. Separation was carried out at room temperature and at a flow rate of 1 ml/min of tetrahydrofuran. The average molecular weight of the sample is calculated as the weight average molecular weight in terms of styrene.

【表】【table】

【表】 熱可塑性樹脂滑剤の成形品への適用 実施例21〜24及び比較例21〜24 塩化ビニル樹脂(菱日(株)製、商品名SG−1100、
平均重合度1100)100重量部、ジオクチルセバケ
ート20重量部に、実施例1で得た熱可塑性樹脂滑
剤を下記第2表に示す量で添加したのち、メチル
エチルケトンとトルエンの混合溶媒(メチルエチ
ルケトン対トルエンの重量比、8対2)を400重
量部加え、オートクレープ中撹拌しつつ100℃、
30分で完全溶解した。。この溶液を冷却及び脱泡
して60℃でステンレス製の流延面に厚さ60ミクロ
ンのフイルムが生成するように流延して平均90℃
の熱風で20分間乾燥後、流延面よりフイルムを剥
離しフイルム原反を得た。次に、このフイルム原
反を105℃に維持した延伸機中に入れフイルムが
該温度と平衡に達した後、30秒で縦横各々2倍に
2軸延伸して厚み15ミクロンの延伸フイルムを得
た。 かくして得られた延伸フイルムは、優れた透明
性と外部滑性を示した皺の全くないきれいな状態
でロールフイルムとして巻取ることが出来た。。
また、これらのロールフイルムを長期間貯蔵した
が、ブロツキングや透明性が減退することがなく
長期間優れた透明性と外部滑性を持続すると共
に、印刷加工、製袋加工、熱収縮包装に使用の際
に加工機械等との摩擦がなく、印刷インクずれ、
印刷インクの接着不良、シール線の蛇行、包装中
のフイルム破れ、不完全熱収縮等の包装不良品の
発生がなく美しいものに加工することが出来た。 また、実施例21〜24で、第2表に示すように、
実施例1で得た熱可塑性樹脂滑剤の添加量を変え
たこと、及び該熱可塑性樹脂滑剤の代りにステア
リン酸アミド0.6重量部またはステアリン酸カル
シウム0.6重量部を用いたこと以外は同様な方法
で、比較例21〜24の延伸フイルムを得た。以上の
実施例21〜24、比較例21〜24に使用した滑剤の種
類、添加量と共に、これらの延伸フイルムの曇り
度、静止摩擦、ブロツキンギを試験した結果も合
せて第2表に示す。 第2表に記載した各試験方法は次のようにして
行つた。 1 曇り度 フイルム調製後、25℃、相対湿度55%の恒温恒
湿室に15日間貯蔵したのち、3cm×2cmの試験片
を採取し、積分球式濁度計でJIS.K−6714に準じ
て曇り度(%)を測定する。 2 静止摩擦 フイルム調製後、25℃、相対湿度55%の恒温恒
湿室に40時間貯蔵したのち、25cm×30cmの試験片
を採取し、摩擦試験機でASTM.D1894−75に準
じて静止摩擦係数を測定する。 3 ブロツキング フイルム調製後、25℃、相対湿度55%の恒温恒
湿室に30cm×40cmの試験片を2枚重ね合せ、1cm2
当り25gの荷重をかけ40時間貯蔵したのち、その
2枚重ね合せた試験片を25cm〜30cmに切りブロツ
キング試験機でASTM.D1893−67に準じてブロ
ツキングを測定する。
[Table] Examples 21 to 24 and Comparative Examples 21 to 24 of application of thermoplastic resin lubricant to molded products Vinyl chloride resin (manufactured by Ryoichi Co., Ltd., trade name SG-1100,
The thermoplastic resin lubricant obtained in Example 1 was added to 100 parts by weight (average degree of polymerization 1100) and 20 parts by weight of dioctyl sebacate in the amount shown in Table 2 below. Add 400 parts by weight of (weight ratio of 8:2) and heat to 100℃ while stirring in an autoclave.
Completely dissolved in 30 minutes. . This solution was cooled and degassed, and then cast on a stainless steel casting surface at an average temperature of 90°C to form a film with a thickness of 60 microns.
After drying with hot air for 20 minutes, the film was peeled off from the casting surface to obtain an original film. Next, this original film was placed in a stretching machine maintained at 105°C, and after the film reached equilibrium with the temperature, it was biaxially stretched to double the length and width in 30 seconds to obtain a stretched film with a thickness of 15 microns. Ta. The thus obtained stretched film exhibited excellent transparency and external smoothness, and could be wound up as a roll film in a clean state with no wrinkles. .
In addition, even when these roll films are stored for a long period of time, they maintain excellent transparency and external smoothness for a long time without blocking or deterioration of transparency, and can be used for printing processing, bag making processing, and heat shrink packaging. There is no friction with processing machines, etc. during printing, and there is no misalignment of printing ink.
We were able to create beautiful products without any packaging defects such as poor adhesion of printing ink, meandering seal lines, tearing of the film during packaging, or incomplete heat shrinkage. In addition, in Examples 21 to 24, as shown in Table 2,
The same method was used except that the amount of the thermoplastic resin lubricant obtained in Example 1 was changed, and 0.6 parts by weight of stearamide or 0.6 parts by weight of calcium stearate was used instead of the thermoplastic resin lubricant. Stretched films of Comparative Examples 21 to 24 were obtained. Table 2 shows the types and amounts of lubricants used in Examples 21 to 24 and Comparative Examples 21 to 24, as well as the results of testing the haze, static friction, and blocking properties of these stretched films. Each test method listed in Table 2 was performed as follows. 1. Haze After preparing the film, store it in a constant temperature and humidity room at 25℃ and 55% relative humidity for 15 days, then take a 3cm x 2cm test piece and measure it using an integrating sphere turbidity meter according to JIS.K-6714. Measure the degree of haze (%). 2 Static friction After the film was prepared, it was stored in a constant temperature and humidity room at 25℃ and 55% relative humidity for 40 hours, and then a 25cm x 30cm test piece was taken and tested for static friction using a friction tester according to ASTM.D1894-75. Measure the coefficient. 3 Blocking After preparing the film, stack two 30cm x 40cm test pieces in a constant temperature and humidity room at 25℃ and 55% relative humidity, and place 1cm 2 on top of each other.
After storing for 40 hours with a load of 25 g per piece, the two stacked test pieces are cut into 25-30 cm pieces and the blocking is measured using a blocking tester according to ASTM.D1893-67.

【表】 前記第2表の試験結果より明らかなように実施
例21〜24の延伸フイルムは透明性、フイルム滑
性、耐ブロツキング性に著しく優れ、該フイルム
を使用して印刷、製袋、自動包装した際には、従
来の滑剤では得られない優れた作業性等も得られ
た。一方、比較例21では透明性はよいが、粘着
性、ブロツキング性が大きく、ロールフイルムに
巻取る時に多数の皺が発生し、長期間貯蔵したと
ころ特に皺のある部分が著しくブロツキングが増
加した。また、粘着が強く印刷、製袋、自動包装
等の加工に適さなかつた。たとい、無理に製袋し
チユーブに加工してもフイルム相互が密着し、袋
中に包装物を入れることが出来ず(開口性不良)
全く使用出来なかつた。 また、比較例22ではフイルム滑性、耐ブロツキ
ング性には満足すべき結果が得られたが、不透明
性が強く包装内容物を一層美しく鮮明に見せ購買
意欲を高める包装フイルムとして不十分であつ
た。比較例23,24ではフイルム調製初期ではフイ
ルム滑性がなく粘着が強いため、ロールフイルム
に多数の皺が発生し、平滑な商品価値のあるフイ
ルムに巻取ることが出来なかつた。また、比較例
24のフイルムは、溶剤に不溶性の滑材を添加した
ため、フイルム中に微細な不透明滑剤斑点が発生
した。更に、比較例23,24のフイルムを長期間貯
蔵したところ、経時変化によつてフイルム表面に
著しく吹出した滑剤で黴が発生したような斑点が
生じ透明性と外観が全く阻害され、この欠点だけ
でも包装フイルムとして不適であつた。また印刷
した後、インクの接着性試験をしたところ、殆ん
ど完全に剥離し不適であり、シール加工後、シー
ル強度試験をしたところ、シール強度に強弱が生
じ、包装品の運搬中に弱い部分から破袋が生じ
た。 実施例25〜32及び比較例25,26 実施例21〜24において、実施例1で得た熱可塑
性樹脂滑剤の代りに、下記第3表に示す実施例2
〜4及び6〜10で得た平均分子量の異る熱可塑性
樹脂滑剤を2.2重量部使用する以外は同様にして、
厚み15ミクロンの塩化ビニル樹脂延伸フイルムを
得た。 かくして得られた延伸フイルムは、優れた透明
性と外部滑性を該フイルムの調整の初期から長期
間貯蔵した後も維持すると共に、印刷加工、製袋
加工、熱収縮包装等の使用の際にはその優れた性
能を発揮した。 また、上記実施例25〜32で、実施例2〜4及び
6〜10で得た平均分子量の熱可塑性樹脂滑剤の代
りに、比較例2で調製した平均分子量約2000の液
状共重合体、及び比較例1で調製した平均分子量
約1200000の固体共重合体を使用する以外は同様
な方法で、比較例25及び比較例26の延伸フイルム
を得た。 以上の実施例25〜32、比較例25,26に使用した
滑剤の種類、平均分子量と共に、これらの延伸フ
イルムの試験結果も合せて第3表に示す。
[Table] As is clear from the test results in Table 2 above, the stretched films of Examples 21 to 24 have excellent transparency, film smoothness, and anti-blocking properties, and can be used for printing, bag making, and automatic production. When packaged, it also provided excellent workability that could not be achieved with conventional lubricants. On the other hand, in Comparative Example 21, the transparency was good, but the adhesiveness and blocking were large, and many wrinkles were generated when the film was wound into a roll film, and when stored for a long period of time, blocking increased significantly, especially in the wrinkled areas. In addition, the adhesive was strong and it was not suitable for processing such as printing, bag making, and automatic packaging. Even if the bag is forcibly made and processed into a tube, the films stick together and the package cannot be placed inside the bag (poor opening ability).
It was completely unusable. In Comparative Example 22, satisfactory results were obtained in terms of film slipperiness and anti-blocking properties, but the film was highly opaque and was insufficient as a packaging film that made the packaged contents more beautiful and clear and increased purchase motivation. . In Comparative Examples 23 and 24, the film had no slipperiness and had strong adhesion at the early stage of film preparation, so many wrinkles were generated in the roll film, and it was not possible to wind it into a smooth, commercially valuable film. Also, comparative example
Film No. 24 contained fine opaque lubricant spots in the film because an insoluble lubricant was added to the solvent. Furthermore, when the films of Comparative Examples 23 and 24 were stored for a long period of time, the lubricant that had blown out significantly on the film surface caused spots that looked like mold, completely impairing the transparency and appearance. However, it was unsuitable as a packaging film. In addition, when we conducted an ink adhesion test after printing, we found that the ink almost completely peeled off and was unsuitable.After seal processing, we conducted a seal strength test, and found that the seal strength varied and was weak during transportation of the packaged product. The bag broke from some parts. Examples 25 to 32 and Comparative Examples 25 and 26 In Examples 21 to 24, in place of the thermoplastic resin lubricant obtained in Example 1, Example 2 shown in Table 3 below was used.
In the same manner except that 2.2 parts by weight of the thermoplastic resin lubricants having different average molecular weights obtained in Steps 4 and 6 to 10 were used,
A vinyl chloride resin stretched film with a thickness of 15 microns was obtained. The stretched film thus obtained maintains excellent transparency and external slipperiness from the initial stage of preparation of the film even after long-term storage, and is also suitable for use in printing processing, bag making processing, heat shrink packaging, etc. demonstrated its excellent performance. In addition, in Examples 25 to 32 above, in place of the thermoplastic resin lubricant having an average molecular weight obtained in Examples 2 to 4 and 6 to 10, a liquid copolymer having an average molecular weight of about 2000 prepared in Comparative Example 2, and Stretched films of Comparative Examples 25 and 26 were obtained in the same manner except that the solid copolymer having an average molecular weight of about 1,200,000 prepared in Comparative Example 1 was used. Table 3 shows the types and average molecular weights of the lubricants used in Examples 25 to 32 and Comparative Examples 25 and 26, as well as the test results of these stretched films.

【表】 上記第3表の試験結果より明らかなように実施
例25〜32の延伸フイルムは透明性、フイルム滑
性、耐ブロツキング性に優れていたが、実施例26
〜29で曇り度が1.2〜1.5であり、静止摩擦は0.2〜
0.6であり、ブロツキングは0.9〜1.3と特に優れた
透明性と外部滑性を共有する延伸フイルムを与え
た。一方、比較例25では、平均分子量が小さい液
状共重合体のため延伸フイルムの表面は、該液状
共重合体の浸出でかえつてベタツキが多くなりフ
イルム調製の初期から長期貯蔵後も粘着が強く、
フイルムとして全く使用し得なかつた。また比較
例26では、フイルム滑性に優れていたが平均分子
量が高過ぎるため半硬質塩化ビニル樹脂との相溶
性が低下し、ポリエチレン状の不透明な外観を与
え包装用の用途には適さなかつた。また、経時変
化によつてシール強度の低下及び不透明性の増加
が若干認められた。 実施例33,34及び比較例27,28 塩化ビニル樹脂(菱日(株)製、商品名SG1300、
平均重合度1300)100重量部、ジオクチルアゼレ
ート15重量部、ジオクチール錫マレート0.05重
量部に、実施例11及び12で得た熱可塑性樹脂滑剤
を1.8重量部添加したのち、メチルエチルケトン
420重量部加えオートクレーブ中撹拌しつつ105
℃、20分で完全溶解した。この溶液を冷却及び脱
泡して60℃でステンレス製の流延面に厚さ60ミク
ロンのフイルムが生成するように流延したのち、
以後実施例21〜24と同様な方法で乾燥、剥離、延
伸して厚さ15ミクロンの延伸フイルムを得た。。
かくして得られた延伸フイルムは、実施例21〜32
の延伸フイルムと同様にフイルム調製初期から優
れた透明性と外部滑性を維持した。 また、上記実施例33,34において、実施例11及
び12で得た熱可塑性樹脂滑剤の代りに、比較例7
及び8で得た固体共重合体を使用する以外は同様
な方法で比較例27及び比較例28の延伸フイルムを
得た。 以上の実施例33,34、比較例27,28に使用した
滑剤の種類、共重合割合と共に、これらの延伸フ
イルムの試験結果も含めて第4表に示す。
[Table] As is clear from the test results in Table 3 above, the stretched films of Examples 25 to 32 were excellent in transparency, film slipperiness, and blocking resistance.
~29, haze is 1.2~1.5, and static friction is 0.2~
0.6, and blocking was 0.9 to 1.3, giving a stretched film that shares especially excellent transparency and external slipperiness. On the other hand, in Comparative Example 25, since the liquid copolymer had a small average molecular weight, the surface of the stretched film became more sticky due to leaching of the liquid copolymer, and the film remained sticky from the initial stage of film preparation to after long-term storage.
It could not be used as a film at all. In Comparative Example 26, the film had excellent lubricity, but the average molecular weight was too high, so its compatibility with semi-rigid vinyl chloride resin decreased, giving it an opaque appearance similar to polyethylene, making it unsuitable for packaging applications. . In addition, a slight decrease in seal strength and an increase in opacity were observed due to changes over time. Examples 33, 34 and Comparative Examples 27, 28 Vinyl chloride resin (manufactured by Ryoichi Co., Ltd., trade name SG1300,
After adding 1.8 parts by weight of the thermoplastic resin lubricant obtained in Examples 11 and 12 to 100 parts by weight (average degree of polymerization 1300), 15 parts by weight of dioctyl azelate, and 0.05 parts by weight of dioctyl tin malate, methyl ethyl ketone was added.
Add 420 parts by weight and add 105 parts by weight while stirring in the autoclave.
It was completely dissolved in 20 minutes at ℃. This solution was cooled and degassed and cast on a stainless steel casting surface at 60°C to form a film with a thickness of 60 microns.
Thereafter, the film was dried, peeled, and stretched in the same manner as in Examples 21 to 24 to obtain a stretched film with a thickness of 15 microns. .
The thus obtained stretched films were prepared in Examples 21 to 32.
As with the stretched film, excellent transparency and external slipperiness were maintained from the initial stage of film preparation. Furthermore, in Examples 33 and 34, Comparative Example 7 was used instead of the thermoplastic resin lubricant obtained in Examples 11 and 12.
Stretched films of Comparative Examples 27 and 28 were obtained in the same manner except that the solid copolymers obtained in 8 and 8 were used. Table 4 shows the types of lubricants and copolymerization ratios used in Examples 33 and 34 and Comparative Examples 27 and 28, as well as the test results of these stretched films.

【表】 上記第4表の試験結果より明らかなように実施
例33,34の延伸フイルムは透明性、フイルム滑
性、耐ブロツキング性、すべてに優れ包装フイル
ムとして好適であつたが、比較例27では実施例
33,34の熱可塑性樹脂滑剤の平均分子量と同等の
平均分子量を有する固体の共重合体を添加したに
もかかわらず、外部滑性作用を発揮するステアリ
ル基の成分が少く、外観的には透明性が実施例34
の延伸フイルムと略同等で優れていた反面、フイ
ルム滑性、耐ブロツキング性が不十分でやや粘着
性を帯び、該フイルムの加工に際しては印刷、製
袋、包装等における作業性が不十分であつた。ま
た、比較例28では、ステアリル基の成分が多いた
めフイルム滑性、耐ブロツキング性に優れ、該フ
イルムの加工に際しては満足すべき性能が発揮さ
れたが、前記比較例16の延伸フイルムと同様に、
透明性に劣りポリエチレン状の不透明な外観を与
える等、包等には適しなかつた。 実施例35及び比較例29,30 実施例33及び34において、実施例11及び12で得
た熱可塑性樹脂滑剤の代りに、実施例18で得た熱
可塑性樹脂滑剤を使用する以外は同様な方法で厚
さ15ミクロンの塩化ビニル樹脂延伸フイルムを得
た。 かくして得られた延伸フイルムは、実施例33及
び34延伸フイルムと同様にフイルム調製初期から
優れた透明性と外部滑性を示した。 また、上記実施例35で、実施例18の熱可塑性樹
脂滑剤の代りに比較例5及び6の固体共重合体を
用いる以外は同様の方法で比較例29及び30の延伸
フイルムを得た。 上記比較例29及び30のフイルムはいずれもステ
ンレス製の流延面からの剥離が極めて重く、ま
た、得られたフイルムも透明性が悪く、外部滑性
も不十分であつた。 以上の実施例35及び比較例29,30に使用した滑
剤の種類、共重合割合と共に、これら延伸フイル
ムの試験結果も含めて第5表に示す。
[Table] As is clear from the test results in Table 4 above, the stretched films of Examples 33 and 34 were excellent in transparency, film slipperiness, and anti-blocking properties and were suitable as packaging films, but Comparative Example 27 Here's an example
Despite the addition of a solid copolymer with an average molecular weight equivalent to that of thermoplastic resin lubricants No. 33 and 34, the stearyl group component that exerts external lubricating action is small, and the product is transparent in appearance. Sex Example 34
On the other hand, the film had insufficient slipperiness and anti-blocking properties and was somewhat sticky, and the workability of the film in printing, bag making, packaging, etc. was insufficient. Ta. Furthermore, in Comparative Example 28, the film had excellent lubricity and anti-blocking properties due to the large amount of stearyl group components, and satisfactory performance was exhibited during processing of the film. ,
It is not suitable for packaging, etc. as it has poor transparency and gives an opaque appearance similar to polyethylene. Example 35 and Comparative Examples 29 and 30 In Examples 33 and 34, the same method was used except that the thermoplastic resin lubricant obtained in Example 18 was used instead of the thermoplastic resin lubricant obtained in Examples 11 and 12. A vinyl chloride resin stretched film with a thickness of 15 microns was obtained. The thus obtained stretched film exhibited excellent transparency and external slipperiness from the initial stage of film preparation, similar to the stretched films of Examples 33 and 34. Further, stretched films of Comparative Examples 29 and 30 were obtained in the same manner as in Example 35 except that the solid copolymers of Comparative Examples 5 and 6 were used instead of the thermoplastic resin lubricant of Example 18. The films of Comparative Examples 29 and 30 were both extremely difficult to peel from the stainless steel casting surface, and the obtained films also had poor transparency and insufficient external slipperiness. Table 5 shows the types and copolymerization ratios of the lubricants used in Example 35 and Comparative Examples 29 and 30, as well as the test results of these stretched films.

【表】 実施例 36〜40 実施例33及び34において、実施例11及び12で得
た熱可塑性樹脂滑剤の代りに、下記第6表に示す
実施例13〜18で得た熱可塑性樹脂滑剤を各々2重
量部使用する以外は同様な方法で厚さ15ミクロン
の塩化ビニル樹脂延伸フイルムを得た。 上記実施例36〜40に使用した熱可塑性樹脂滑剤
の共重合割合、平均分子量と共に、これらの延伸
フイルムの試験結果も合せて第6表に示す。
[Table] Examples 36 to 40 In Examples 33 and 34, the thermoplastic resin lubricants obtained in Examples 13 to 18 shown in Table 6 below were used instead of the thermoplastic resin lubricants obtained in Examples 11 and 12. A vinyl chloride resin stretched film having a thickness of 15 microns was obtained in the same manner except that 2 parts by weight of each was used. Table 6 shows the copolymerization ratio and average molecular weight of the thermoplastic resin lubricants used in Examples 36 to 40, as well as the test results of these stretched films.

【表】 上記第6表の試験結果より明らかなように実施
例36〜40の延伸フイルムは、2重量部添加した熱
可塑性樹脂滑剤のいづれもが、該滑剤の共重合成
分でa成分が70〜80重量%、b成分が30〜20重量
%で且つ平均分子量が80000〜190000で、熱可塑
性樹脂に対し特に優れた透明性と外部滑性を与え
る範囲内にあるため、フイルム調整初期から長期
間の貯蔵後も、透明性、フイルム滑性、耐ブロツ
キング性等に経時変化もなく、印刷、製袋、包装
等の加工等の際には優れた性能を発揮した。 実施例 41,42 メタクリル酸メチル70重量%とアクリル酸ブチ
ル30重量%共重合のアクリル樹脂(平均分子量約
80000)80重量部と、セルローズアセテートブチ
レート樹脂(イーストマンコダツク社製、商品名
テナイトブチレート、平均分子量約20000)の20
重量部、合計100重量部の熱可塑性樹脂に対して、
実施例5で得た熱可塑性樹脂滑剤を下記第7表に
示す量で添加したのち、テトラヒドロフラン570
重量部を加え、オートクレーブ中撹拌しつつ100
℃、20分で完全溶解した、この溶液を冷却及び脱
泡して60℃でステンレス製の流延面に厚さ50ミク
ロンのフイルムが生成するように流延して平均95
℃で25分間乾燥後、流延面よりフイルムを剥離し
アクリル樹脂系フイルム原反を得た。かくして得
られたアクリル樹脂系フイルム原反の試験結果も
含め第7表に示す。
[Table] As is clear from the test results in Table 6 above, in the stretched films of Examples 36 to 40, each of the thermoplastic resin lubricants to which 2 parts by weight was added had a copolymerized component of the lubricant with component a of 70%. ~80% by weight, component b is 30~20% by weight, and the average molecular weight is 80,000~190,000, which is within the range that provides particularly excellent transparency and external slipperiness for thermoplastic resins, so it can be used for a long time from the initial stage of film preparation. Even after storage for a period of time, there was no change in transparency, film smoothness, blocking resistance, etc. over time, and it exhibited excellent performance in processing such as printing, bag making, and packaging. Examples 41, 42 Acrylic resin copolymerized with 70% by weight methyl methacrylate and 30% by weight butyl acrylate (average molecular weight approx.
80,000) and 20 parts by weight of cellulose acetate butyrate resin (manufactured by Eastman Kodak Co., trade name Tenite Butyrate, average molecular weight approximately 20,000).
parts by weight, for a total of 100 parts by weight of thermoplastic resin,
After adding the thermoplastic resin lubricant obtained in Example 5 in the amount shown in Table 7 below, tetrahydrofuran 570
Add parts by weight and add 100 parts by weight while stirring in the autoclave.
The solution was completely dissolved in 20 minutes at 60°C, cooled and degassed, and cast on a stainless steel casting surface at 60°C to form a film with a thickness of 50 microns.
After drying at ℃ for 25 minutes, the film was peeled off from the casting surface to obtain an original acrylic resin film. Table 7 also includes the test results for the acrylic resin film material thus obtained.

【表】 上記第7表の試験結果より明らかなように、実
施例41,42のフイルム原反は透明性と外部滑性に
優れ、従来の高級脂肪酸や高級脂肪酸のアミド誘
導体、その他一般に使用されている滑剤に見られ
る吹出しによる透明性、光沢性の減退がなく、長
期間の貯蔵後も調製直後の著しく優れた透明性、
光沢性を維持する一方、ロールフイルムとして長
期間貯蔵したが、フイルム滑性に優れているの
で、該フイルムの印刷に際して巻戻しが極めて円
滑であり、装置等の摩擦が極めて小さいのでイン
クずれが全くなく、且つインクの接着性が極めて
良好で、従来の滑剤では不能であつた高級美術模
様の印刷をすることが出来た。 実施例 43 塩化ビニル樹脂(菱日(株)製、商品名SG800、平
均重合度800)100重量部、ジオクチルフタレート
12重量部、エポキシ化大豆油3重量部、オクチル
錫系安定剤3重量部に、実施例5で得た熱可塑性
樹脂滑剤4重量部を添加し、リボンブレンダーで
混合しコンパウンドを調整した。このコンパウン
ドを40mm押出機及び300mm巾のTダイスを用い、
シリンダ温度180℃、ダイス温度185℃、押出量10
Kg/Hの条件で厚さ60ミクロンのフイルム原反と
なし、次いでこのフイルム原反を100℃に維持し
た延伸機中に入れ、フイルムが該温度と平衡に達
した後、30秒間で縦横各々2倍に2軸延伸した厚
み15ミクロンの延伸フイルムを得た。かくして得
られた延伸フイルムは、透明性、外部滑性に優
れ、曇り度は2.3、静止摩擦は0.3、ブロツキング
は0.8で、この性能はフイルム調製直後も長期間
貯蔵後も経時変化することがなく、優れた透明性
と外部滑性を維持した。 以上の実施例からも理解されるように本発明の
熱可塑性樹脂滑剤を含有する易滑性熱可塑性樹脂
組成物を用いると、従来の方法に基く熱可塑性樹
脂成形品に比較して著しく優れた透明性と外部滑
性を共有するものを極めて容易に製造し得ること
が解る。この特徴は、特に溶液流延法で製造され
るビニル樹脂、アクリル樹脂において顕著な効果
を発揮するものである。そして従来より、成形直
後から長期間の経時後も優れた透明性と外部滑性
を付与する単一の滑性がなく、滑剤の複雑な種類
の組合せ、量的調整等の方法等で不十分ながらも
成形品が製造されて来たことを考えると、本発明
の熱可塑性樹脂滑剤及び該滑剤を含有する易滑性
熱可塑性樹脂組成物の意義は極めて大きい。
[Table] As is clear from the test results in Table 7 above, the film bases of Examples 41 and 42 have excellent transparency and external slipperiness, and are compatible with conventional higher fatty acids, amide derivatives of higher fatty acids, and other commonly used films. There is no decrease in transparency or gloss caused by blowing out, which occurs with lubricants, and the product maintains outstanding transparency immediately after preparation, even after long-term storage.
While maintaining its luster, it has been stored as a roll film for a long time, and since the film has excellent slipperiness, it can be unwound very smoothly when printing, and the friction of the equipment is extremely small, so there is no ink shift. Moreover, the adhesiveness of the ink was extremely good, and it was possible to print high-quality artistic patterns that were impossible with conventional lubricants. Example 43 100 parts by weight of vinyl chloride resin (manufactured by Ryoichi Co., Ltd., trade name SG800, average degree of polymerization 800), dioctyl phthalate
4 parts by weight of the thermoplastic resin lubricant obtained in Example 5 were added to 12 parts by weight of epoxidized soybean oil, 3 parts by weight of epoxidized soybean oil, and 3 parts by weight of octyltin stabilizer, and mixed with a ribbon blender to prepare a compound. This compound is processed using a 40mm extruder and a 300mm wide T-die.
Cylinder temperature 180℃, die temperature 185℃, extrusion amount 10
Kg/H to make a film with a thickness of 60 microns.Then, this film was put into a stretching machine maintained at 100℃, and after the film reached equilibrium with the temperature, it was stretched in both length and width for 30 seconds. A stretched film with a thickness of 15 microns was obtained by biaxially stretching twice. The stretched film thus obtained has excellent transparency and external slipperiness, with a haze of 2.3, static friction of 0.3, and blocking of 0.8, and these properties do not change over time either immediately after film preparation or after long-term storage. , maintained excellent transparency and external lubricity. As can be understood from the above examples, when the easily slippery thermoplastic resin composition containing the thermoplastic resin lubricant of the present invention is used, it is significantly superior to thermoplastic resin molded products based on conventional methods. It can be seen that it is very easy to produce a material that shares both transparency and external lubricity. This feature is particularly effective in vinyl resins and acrylic resins produced by solution casting. Conventionally, there has been no single lubricant that provides excellent transparency and external lubricity immediately after molding and after a long period of time, and methods such as complex combinations of lubricant types and quantitative adjustment are insufficient. However, considering that molded products have been manufactured, the thermoplastic resin lubricant of the present invention and the easily slippery thermoplastic resin composition containing the lubricant are extremely significant.

Claims (1)

【特許請求の範囲】 1 下記のa〜c成分の合計100重量%に対して、
a成分50〜90重量%、b成分40〜10重量%及びc
成分0〜27重量%の割合で主単量体単位として含
有し、平均分子量が5000を越え、1000000以下の
共重合体よりなることを特徴とする熱可塑性樹脂
滑剤。 a 成分・炭素原子数が1〜2個のアルキル基を
もつアクリル酸エステル、炭素原子数が1〜2
個のアルキル基をもつメタクリル酸エステル、
の群より選ばれた一または二以上の単量体。 b 成分・炭素原子数が11〜20個のアルキル基を
もつアクリル酸エステル、炭素原子数が11〜20
個のアルキル基をもつα置換アクリル酸エステ
ル、の群より選ばれた一または二以上の単量
体。 c 成分・アクリル酸、メタクリル酸の群より選
ばれた一または二の単量体。
[Claims] 1. Based on the total 100% by weight of the following components a to c,
50 to 90% by weight of component a, 40 to 10% by weight of component b, and c
1. A thermoplastic resin lubricant comprising a copolymer containing 0 to 27% by weight of components as main monomer units and having an average molecular weight of more than 5,000 and less than 1,000,000. a Ingredients: Acrylic acid ester with an alkyl group having 1 to 2 carbon atoms, 1 to 2 carbon atoms
methacrylic acid ester with alkyl groups,
One or more monomers selected from the group. b Component: Acrylic acid ester with an alkyl group having 11 to 20 carbon atoms, 11 to 20 carbon atoms
One or more monomers selected from the group of α-substituted acrylic acid esters having 5 alkyl groups. c Component - One or two monomers selected from the group of acrylic acid and methacrylic acid.
JP7220979A 1979-06-11 1979-06-11 Thermoplastic resin lubricant and lubricating thermoplastic resin composition Granted JPS55164209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220979A JPS55164209A (en) 1979-06-11 1979-06-11 Thermoplastic resin lubricant and lubricating thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220979A JPS55164209A (en) 1979-06-11 1979-06-11 Thermoplastic resin lubricant and lubricating thermoplastic resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8628188A Division JPS63284264A (en) 1988-04-09 1988-04-09 Easily lubricative thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS55164209A JPS55164209A (en) 1980-12-20
JPS6365682B2 true JPS6365682B2 (en) 1988-12-16

Family

ID=13482612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220979A Granted JPS55164209A (en) 1979-06-11 1979-06-11 Thermoplastic resin lubricant and lubricating thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS55164209A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335954A1 (en) * 1983-10-04 1985-04-04 Roland Dipl.-Kaufm. 7022 Leinfelden-Echterdingen Belz METHOD FOR CARRYING OUT CHEMICAL REACTIONS, ESPECIALLY FOR THE PRODUCTION OF PLASTICS WITH THE AID OF EXTRUDERS, AND SYSTEM FOR THAT
JPS62215648A (en) * 1986-03-14 1987-09-22 Takiron Co Ltd Molded article of chlorine-containing resin
MX168195B (en) * 1985-10-03 1993-05-11 Goodrich Co B F IMPROVED PROCEDURE FOR PROCESSING IN MELTING, VINYL CHLORIDE AND PROCESSABLE VINYL CHLORIDE COMPOSITIONS IN MELTING
US4963622A (en) * 1989-06-28 1990-10-16 Union Carbide Chemicals And Plastics Company Inc. Paraloid extrusion aids for high molecular weight HDPE film resins
DE4220453A1 (en) * 1992-06-23 1994-01-05 Degussa Thermoplastic polymer composition with processing aids, process for producing the polymer composition and molded parts from this polymer composition, and copolymers which can be used as processing aids
EP0779336B1 (en) 1995-12-13 2004-03-03 Mitsubishi Rayon Co., Ltd A lubricant for a thermoplastic resin
JP6657619B2 (en) * 2015-07-01 2020-03-04 三菱ケミカル株式会社 Molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123490A (en) * 1977-04-04 1978-10-27 Goodrich Co B F Waterrabsorptive polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123490A (en) * 1977-04-04 1978-10-27 Goodrich Co B F Waterrabsorptive polymer

Also Published As

Publication number Publication date
JPS55164209A (en) 1980-12-20

Similar Documents

Publication Publication Date Title
CA1131084A (en) Polymer compound coating, and process for manufacturing multilayered packaging materials
US5324572A (en) Multilayer laminated film having an improved gas barrier action
GB2244220A (en) Packaging materials
JP4954875B2 (en) Polyvinylidene chloride coating, coating production method and use thereof
JP5632266B2 (en) Printable single-layer polyvinylidene chloride structure
JPS6365682B2 (en)
US3375215A (en) Cellophane coating compositions comprising vinylidene chloride copolymer, candelillawax and stearate salt
US2941254A (en) Process of forming polyethylene film and product
JPH0262589B2 (en)
WO1996034050A1 (en) Vinylidene chloride copolymer resin composition, film produced therefrom, extrusion process for the composition, and process for producing the film
JP2000191874A (en) Preparation of resin composition
JP2911917B2 (en) Heat sealable coating agent for coating film formation
JP3999880B2 (en) Vinylidene chloride copolymer resin composition, film thereof, extrusion method thereof
US5843582A (en) Heat sealable film
EP0403542A1 (en) Extrusion formulation package for thermally sensitive resins and polymeric composition containing said package.
JP4823405B2 (en) Resin composition, production method thereof, and use thereof
CN107922701A (en) Vinylidene chloride polymer composition and the product for including it
US3003982A (en) Vinyl resin coating compositions and process for coating polymeric films
Moroi New production technologies and applications of poly (vinyl alcohol) film
JP3810284B2 (en) Antifogging styrene-based transparent resin sheet and molded product thereof
JP2000212344A (en) Ethylene-vinyl acetate copolymer saponified product and laminate
JPH0374438A (en) Matte heat-shrinkable film
JP3360427B2 (en) Extrusion molding resin composition
US3442836A (en) Vinylidene chloride copolymer coating composition for water-sensitive organic polymer film
JPH06128524A (en) Liquid surface treatment for polyvinyl alcohol film