[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6361535A - Detection method for data signal - Google Patents

Detection method for data signal

Info

Publication number
JPS6361535A
JPS6361535A JP61203703A JP20370386A JPS6361535A JP S6361535 A JPS6361535 A JP S6361535A JP 61203703 A JP61203703 A JP 61203703A JP 20370386 A JP20370386 A JP 20370386A JP S6361535 A JPS6361535 A JP S6361535A
Authority
JP
Japan
Prior art keywords
phase
data signal
variance
circuit
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61203703A
Other languages
Japanese (ja)
Inventor
Yasushi Yokosuka
横須賀 靖
Yasuyuki Kojima
康行 小嶋
Nobuo Tsukamoto
信夫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61203703A priority Critical patent/JPS6361535A/en
Publication of JPS6361535A publication Critical patent/JPS6361535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To omit the readjustment of a set signal detection sensitivity and avoid a fear that the reception signal detection sensitivity is more dulled than required, by using the distribution state of the baud timing phase in a reception signal. CONSTITUTION:A reception pass band signal 11 is converted to a base band signal 12 by a demodulator 1 and is inputted to an automatic equalizer 2 and a baud timing component extracting filter 3. An output 13 of the filter 3 is inputted to a data signal detecting circuit 4. The output 13 is inputted to a phase calculating circuit 5 to calculate the timing phase of an operating reception-side MODEM. Which one of areas in the range of 0 deg.-360 deg. the calculated phase is in is discriminated by an area discriminating circuit 6, and a counter 7 corresponding to this area is counted up by one. A phase frequency graph is generated in this manner by a histogram generating circuit 8. Thereafter, the variance of an average frequency calculated by the preliminarily determined number of samples and the number of divided areas and the variance of the frequency in each area are calculated by a variance calculating circuit 9. A data signal and a noise are surely distinguished from each other by a discriminator 10 in accordance with this variance value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、モデムの受信側において、S/N比の悪い状
態でも確実にノイズとデータ信号を識別する手法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for reliably distinguishing between noise and data signals on the receiving side of a modem even under conditions of poor S/N ratio.

〔従来の技術〕[Conventional technology]

従来のデータ信号の検出は、例えば、CCITTRED
 BOOIlt話綱におけるデータ通信(Vシリーズ観
告)のv、29113を告に従い着信レベルが一26d
Bm以上あれば、トレーニング信号かデータ<i号が着
信して今ると判断し、トレーニング信号かどうかの判定
を行なった後、もしトレーニング信号ではないと判定す
れば、通例データ信号が着信していると判断するデータ
信号検出法をとっていた。しかし、もしノイズが一26
d[1m以上ある場合、このままでは、信号検出された
後、トレーニング信号ではないと判定され、データ信号
の着信があると誤判定されてしまう。このような場合、
従来は通信伝送路の実態を謳査して信号着信検出レベル
を上げて誤判定を防止していた。
Conventional data signal detection is, for example, CCITTRED
The incoming call level is 126d according to the notice of v, 29113 of data communication (V series observation) in BOOIlt story line.
If it is greater than or equal to Bm, it is determined that a training signal or data < i has arrived, and after determining whether it is a training signal or not, if it is determined that it is not a training signal, it is determined that a data signal has generally arrived. A data signal detection method was used to determine that However, if the noise is 126
d[1 m or more, if the signal is detected as it is, it will be determined that it is not a training signal, and it will be erroneously determined that a data signal has arrived. In such a case,
Conventionally, the actual state of the communication transmission path was investigated and the signal arrival detection level was increased to prevent false determinations.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかし、上記従来技術では、伝送路の実態調査が必要で
あり保守に煩わしい作業が付加されることや、信号検出
感度は固定されてしまうために。
However, with the above-described conventional technology, it is necessary to investigate the actual condition of the transmission path, which adds troublesome maintenance work, and the signal detection sensitivity is fixed.

回線状態が良くなった場合でも感度はいつでも鈍くなっ
たままであり、必要以上に感度を鈍らせてしまうことに
もなりかねない。
Even if the line condition improves, the sensitivity will always remain low, and there is a risk that the sensitivity will become unnecessarily low.

本発明の目的は、−度設定した信号検出感度の人手によ
る再調型を省くとともに、必要以上に受信信号検出感度
を鈍らせる危険性を回避し、ノイズレベルが高い場合で
も常にデータ信号を正確に検出するためのデータ信号検
出法を提供することである。
The purpose of the present invention is to eliminate the manual re-adjustment of the signal detection sensitivity set by − degrees, avoid the risk of unnecessarily dulling the received signal detection sensitivity, and always accurately detect data signals even when the noise level is high. An object of the present invention is to provide a data signal detection method for detecting data signals.

〔問題点を解決するための手段〕[Means for solving problems]

通常の同期式モデムでは、送信側のボータイミングを受
信側で再生し正しいボータイミングでデータを受信する
必要があるために、ボータイミング同期用の回路を備え
ている。この回路を利用し。
A typical synchronous modem is equipped with a baud timing synchronization circuit because it is necessary to reproduce the baud timing on the transmitting side on the receiving side and receive data at the correct baud timing. Use this circuit.

受信側のボータイミング毎にその時刻において受信信号
検出レベル以上でトレーニング信号ではないと判定され
た受信中の信号のボータイミング成分の位相を計算する
。受信すべきデータ信号が着信している場合は、そのボ
ータイミング成分の位相は、受信側のボータイミング位
相でその位相を測定すると、規則性があるためにあるボ
ータイミング位相周辺に算出結果が集中するという性質
がある。しかし、ノイズだけの場合は、ある受信信号が
あるとみなして同様にしてボータイミング成分を抽出し
て位相を算出しても、規則性がないために0°〜360
°の位相全体に算出結果が平均的に分布する。このため
O°〜360″′の位相をいくつかの領域に分割し1位
相の計算結果がどこの領域に入るか判別し、その数をカ
ウントし、そのカウント数の゛、サンプルとして使用す
る受信信号の数と分割領域の数から予め設定できる平均
カウント数からの分散の大きさを検査すると、その大き
さには明らかな差異が生ずるために、適切な閾値を設定
すれば、信号検出感度の再調整が不要要で尚かつ正しく
データ信号の検出ができる。
For each baud timing on the receiving side, the phase of the baud timing component of the signal being received that is equal to or higher than the received signal detection level and determined to be not a training signal at that time is calculated. When a data signal to be received arrives, the phase of its baud timing component can be determined by measuring the phase using the baud timing phase of the receiving side. Due to the regularity, the calculation results will be concentrated around a certain baud timing phase. It has the property of doing. However, in the case of only noise, even if it is assumed that there is a certain received signal and the bow timing component is extracted in the same way and the phase is calculated, there is no regularity, so
The calculation results are distributed evenly over the entire phase of °. For this purpose, we divide the phase from 0° to 360'' into several regions, determine which region the calculation result of one phase falls into, count the number, and receive the counted number ゛ to be used as a sample. When examining the magnitude of the variance from the average count number, which can be set in advance from the number of signals and the number of divided regions, there is a clear difference in the magnitude, so if an appropriate threshold is set, the signal detection sensitivity can be improved. There is no need for readjustment, and data signals can be detected correctly.

〔作用〕[Effect]

前記のような受信信号中のボータイミング位相の分布状
態を利用するデータ信号検出法は、ノイズレベルが設定
した信号検出感度以上でもノイズを正確に区別すること
ができるので、信号検出感度を鈍らせるという煩わしい
調節を省き受信側モデムも誤動作することもない。
The data signal detection method that utilizes the distribution state of the baud timing phase in the received signal as described above can accurately distinguish noise even when the noise level is higher than the set signal detection sensitivity, so it can reduce the signal detection sensitivity. This eliminates the need for troublesome adjustments and prevents the receiving modem from malfunctioning.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に従い、説明する。第1
図は、高速モデムの受信側において、復調信号を利用し
てデータ信号を検出する手法を示すブロック図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram showing a method of detecting a data signal using a demodulated signal on the receiving side of a high-speed modem.

第2図はデータ信号検出回路内の詳細な機能を示すブロ
ック図である。
FIG. 2 is a block diagram showing detailed functions within the data signal detection circuit.

第1図において、1は復調部を示し、2は自動等化器示
し、3はボータイミング成分抽出用のフィルタであり、
4がデータ信号検出回路である。
In FIG. 1, 1 represents a demodulator, 2 represents an automatic equalizer, and 3 represents a filter for extracting bow timing components.
4 is a data signal detection circuit.

受信パスバンド信号11は、復調器1でベースバンド信
号12に変換され、自動等化器2とボータイミング成分
抽出用フィルタ3に入力される。ボータイミング成分抽
出用フィルタ3の出力13は、さらにデータ信号検出回
路4に入力される。
A received passband signal 11 is converted into a baseband signal 12 by a demodulator 1 and input to an automatic equalizer 2 and a baud timing component extraction filter 3. The output 13 of the bow timing component extraction filter 3 is further input to a data signal detection circuit 4.

次に、データ信号検出回路の内部機能を図2の機能ブロ
ック図に従って説明する。フィルタリングされたボータ
イミング成分13が、位相計算回路5に入力され、動作
中の受信側モデムのタイミング位相を計算する。計算し
た位相が0゜〜360”の範囲で例えば40°毎に領域
分けされた位相のどの領域に入る位相であるか領域判定
回路6で判断し、該当する領域のカウンタ7を1増加さ
せる。
Next, the internal functions of the data signal detection circuit will be explained according to the functional block diagram of FIG. The filtered baud timing component 13 is input to a phase calculation circuit 5 to calculate the timing phase of the receiving modem in operation. The region determination circuit 6 determines which region the calculated phase falls in, for example, in a phase divided into regions of 40 degrees within the range of 0.degree. to 360", and the counter 7 of the corresponding region is incremented by 1.

このようにして、位相頻度グラフ(以下、ヒストグラム
と呼ぶ)がヒストグラム作成回路8で作成される。その
−例を図3に示す。同図aはデータ信号の場合のヒスト
グラムの様子を示したものであり、同図すはノイズだけ
の場合である。即ち、データ信号では゛変調レート毎に
前の信号点と異なった位相または異なった振幅の信号点
が選択されれば、ボータイミング位相情報が確実に含ま
れた信号となるため、受信側でこの成分を抽出し逆にボ
ータイミング位相を計算すれば、ボータイミング位相が
再生でき、かつ位相もそろっている。このため特定位相
領域に判定される回数が多くなり、a図のようになる。
In this way, a phase frequency graph (hereinafter referred to as a histogram) is created by the histogram creation circuit 8. An example is shown in FIG. Figure a shows the state of the histogram in the case of a data signal, and Figure 3 shows the state of the histogram in the case of only noise. In other words, in a data signal, if a signal point with a phase or amplitude different from the previous signal point is selected for each modulation rate, the signal will definitely contain baud timing phase information; By extracting the components and conversely calculating the bow timing phase, the bow timing phase can be reproduced and the phases are also consistent. For this reason, the number of times that the specific phase region is determined increases, resulting in a situation as shown in figure a.

しかし、ノイズだけの場合は、タイミング位相情報が含
まれる部分の周波数を抽出し、その位相を計算しても、
ノイズの位相はそろっていないためどの位相領域に判定
される回数もほぼ一様となり、b図のようになるにのよ
うにしてヒストグラムを作成した後、予め定めておいた
サンプル数と分割領域の数より算出される平均度数と各
領域の度数との分散σ”= (xt  xav) ” を分散計算回路9で計算する。ここでxlは各領域の度
数でありxavは平均度数を示す。その計算結果の一例
を図4に示す。図3のa、bに示すように、データ信号
の場合は度数の特定領域への集中であるため分散値は大
きくなり、ノイズだけの場合は度数に大きな差はないた
め分散値は小さくなる。このことから、図4に示したよ
うに閾値σo2を統計的性質から適切に定めれば、判定
識別器10によってデータ信号とノイズを確実に区別で
き、ノイズをデータ信号と誤って検出することなく正し
くデータ信号を検出できることになる。
However, in the case of only noise, even if you extract the frequency of the part that contains timing phase information and calculate its phase,
Since the phase of the noise is not aligned, the number of times it is determined in any phase region is almost the same, and it becomes as shown in figure b.After creating a histogram, the predetermined number of samples and the number of divided regions are determined. The variance calculation circuit 9 calculates the variance σ''=(xt xav)'' between the average frequency calculated from the number and the frequency of each area. Here, xl is the frequency of each region, and xav is the average frequency. An example of the calculation result is shown in FIG. As shown in FIGS. 3A and 3B, in the case of a data signal, the frequency is concentrated in a specific area, so the dispersion value becomes large, and in the case of only noise, there is no large difference in the frequency, so the dispersion value becomes small. From this, if the threshold value σo2 is appropriately determined based on statistical properties as shown in FIG. This means that the data signal can be detected correctly.

尚、ヒストグラム作成後は、平均度数を上まわっている
かいないかでランの個数(第3図aでは2、bでは6)
から判断する手法、平均度数以外にランの個数を測る閾
値を与えてランの個数を測定する手法等も考えられる。
After creating the histogram, the number of runs is determined by whether or not it exceeds the average frequency (2 in Figure 3 a, 6 in b)
Possible methods include a method of determining the number of runs based on the average frequency, and a method of measuring the number of runs by giving a threshold value for measuring the number of runs in addition to the average frequency.

また、分散とこれらの手法とを組合わせて実施すること
もできる。
It is also possible to combine dispersion and these techniques.

〔発明の効果〕〔Effect of the invention〕

以上説明しように、本発明によればノイズをデータ信号
であると誤まって検出することはなく、正しくデータ信
号を検出できるため、受信側モデムの誤動作を防止でき
、正しく受側モデムのモード選択ができる効果がある。
As explained above, according to the present invention, noise is not mistakenly detected as a data signal, and the data signal can be detected correctly, thereby preventing malfunction of the receiving modem and correctly selecting the mode of the receiving modem. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発゛明の回路が用いられる受信側モデムの簡
単なブロック図、第2図は本発明であるデータ信号検出
回路のブロック図、第3図はボータイミング位相の計算
結果から作成したヒストグラムの一例を示す図、第4図
はデータ信号とノイズを識別する識別判定処理を示す図
である。 1・・・復調器、2・・・自動等化器、3・・・ボータ
イミング信号抽出フィルタ、4・・・データ信号検出回
路。
Figure 1 is a simple block diagram of a receiving modem using a previously unknown circuit, Figure 2 is a block diagram of the data signal detection circuit of the present invention, and Figure 3 is a diagram created from the calculation results of the baud timing phase. FIG. 4 is a diagram illustrating an example of a histogram, and is a diagram illustrating a discrimination determination process for distinguishing between a data signal and noise. DESCRIPTION OF SYMBOLS 1... Demodulator, 2... Automatic equalizer, 3... Baud timing signal extraction filter, 4... Data signal detection circuit.

Claims (1)

【特許請求の範囲】 1、受信側のボータイミングで、送信側のボータイミン
グ位相を受信信号から計算する回路を備えたモデムの受
信側装置において、データ信号を計算されたボータイミ
ング位相のある一定の位相への集中度の度合いから判定
することを特徴とするデータ信号検出法。 2、請求の範囲第1項において、ボータイミング位相を
0゜〜360゜の間の位相で適当な個数に分割された領
域をもった位相に識別する識別器と、各々の領域に計算
された位相をもった受信信号がいくつあったかをカウン
トするカウンター回路と、カウントされた各領域のカウ
ント数が予め総計いくつの信号から位相を計算するか定
めておいた数と前記のように分割された位相領域の数か
ら計算される平均カウント数に対する分散を計算する分
散計算回路と、該分散の大きさからデータ信号を判定す
る判定回路を具備することを特徴とするデータ信号検出
法。
[Claims] 1. In the receiving side device of the modem, which is equipped with a circuit that calculates the baud timing phase of the transmitting side from the received signal, the baud timing phase of the data signal is adjusted to a certain constant value. A data signal detection method characterized by making a determination based on the degree of concentration in a phase. 2. In claim 1, there is provided a discriminator for identifying the bow timing phase into a phase having an appropriate number of regions divided into phases between 0° and 360°; A counter circuit that counts how many received signals with a phase were received, and the count number of each counted area is a predetermined number that determines the total number of signals from which the phase will be calculated, and the divided phase as described above. A data signal detection method comprising: a variance calculation circuit that calculates a variance with respect to an average count number calculated from the number of regions; and a determination circuit that determines a data signal from the magnitude of the variance.
JP61203703A 1986-09-01 1986-09-01 Detection method for data signal Pending JPS6361535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203703A JPS6361535A (en) 1986-09-01 1986-09-01 Detection method for data signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203703A JPS6361535A (en) 1986-09-01 1986-09-01 Detection method for data signal

Publications (1)

Publication Number Publication Date
JPS6361535A true JPS6361535A (en) 1988-03-17

Family

ID=16478452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203703A Pending JPS6361535A (en) 1986-09-01 1986-09-01 Detection method for data signal

Country Status (1)

Country Link
JP (1) JPS6361535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225101A1 (en) * 2018-05-21 2019-11-28 オリンパス株式会社 Wireless communication device and capsule-type endoscope system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225101A1 (en) * 2018-05-21 2019-11-28 オリンパス株式会社 Wireless communication device and capsule-type endoscope system
JPWO2019225101A1 (en) * 2018-05-21 2021-03-11 オリンパス株式会社 Wireless communication device, capsule endoscopy system and judgment method
US11265515B2 (en) 2018-05-21 2022-03-01 Olympus Corporation Wireless communication apparatus, capsule endoscope system, and judgment method

Similar Documents

Publication Publication Date Title
US4467634A (en) Internal combustion engine knocking sensing and recognition system
US8170148B2 (en) Demodulation circuit, digital microwave system and demodulation method
US5832038A (en) Method and apparatus for classifying a multi-level signal
CA1307341C (en) Voiceband signal classification
CA1067632A (en) Call progress signal detector
JP2885267B2 (en) Digitally modulated signal receiver
US3605029A (en) Signal detection apparatus
KR900001161A (en) DTMF receiver
JPS6361535A (en) Detection method for data signal
JP2007336078A (en) Modulated wave discriminating device, modulated wave discriminating method, and receiving device
JPS59501437A (en) Adaptive signal reception method and device
US5764708A (en) Device for identifying a predetermined sequence of signals in a modem
US4777659A (en) Detector for indicating reception disturbances during ultrashort wave broadcast reception
US4742570A (en) Multipath noise detecting circuit
US7308046B1 (en) System and method for detecting presence of digitally modulated waveform
DE10233909A1 (en) Radio signal receiver arrangement has detection unit with high pass filter deriving reception field strength signal, threshold comparator outputting value representing radio signal modulation method
JPS60154756A (en) Signal identification system
GB2234077A (en) Spectrum analysis in a communications system
CA1227541A (en) Method of and apparatus for determining time origin of timer for modem
EP0660536B1 (en) Microcomputer-based carrier detection system for a cordless telephone
EP0387839B1 (en) MSK signal detector
JPH07298316A (en) Push button signal detection device
Kostrhoun et al. Problems of multi-level automatic classification of M-PSK modulated signal
EP0020827A1 (en) An arrangement for monitoring the performance of a digital transmission system
JPH0746275A (en) Data discrimination method by pulse width