JPS6359527A - Manufacture of ceramics molded form - Google Patents
Manufacture of ceramics molded formInfo
- Publication number
- JPS6359527A JPS6359527A JP61203131A JP20313186A JPS6359527A JP S6359527 A JPS6359527 A JP S6359527A JP 61203131 A JP61203131 A JP 61203131A JP 20313186 A JP20313186 A JP 20313186A JP S6359527 A JPS6359527 A JP S6359527A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- molded body
- aspect ratio
- short fibers
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000835 fiber Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 11
- 239000002002 slurry Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000007569 slipcasting Methods 0.000 description 3
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000001272 pressureless sintering Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、成形時に割れ、破損等の少ないセラミックス
成形体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing a ceramic molded body that is less likely to crack or break during molding.
(従来の技術)
セラミックス粉体を所定の形状に成形し高温で焼成して
なるセラミックス焼結体は、耐熱性および耐摩耗性が特
に優れた材料であり、近年この性質を利用して種々の製
品に使用されている。(Prior art) Ceramic sintered bodies, which are made by molding ceramic powder into a predetermined shape and firing it at high temperatures, are materials with particularly excellent heat resistance and wear resistance. used in products.
従来より、セラミックス材料の成形方法の1つとして、
セラミックススラリーを用いたスリップキャスティング
法が知られている。この方法は、他の方法に比べ、金型
が不要で設備費が安く、作業が簡単なため、大型製品や
複雑な形状の製品の成形に特に適している。Conventionally, one of the methods for molding ceramic materials is
A slip casting method using ceramic slurry is known. Compared to other methods, this method does not require a mold, has low equipment costs, and is easy to work with, so it is particularly suitable for molding large products or products with complex shapes.
(発明の解決しようとする問題点)
しかしながら、成形体の形状がH型のようにコーナ一部
を持っているものや複雑な形状のものは、乾燥による収
縮の際、内部応力が発生して、成形体に割れ、破損等の
欠点を生じやすいという問題がありその改善が望まれて
いた。(Problems to be Solved by the Invention) However, if the shape of the molded product is H-shaped, has some corners, or has a complex shape, internal stress will occur when it shrinks due to drying. However, there is a problem in that the molded product is susceptible to defects such as cracking and breakage, and an improvement has been desired.
本発明はこのような従来の事情に対処してなされたもの
で、焼結後のセラミックスの特性を損うことなく、強度
が高く、割れ、破損等の少ないセラミックス成形体を製
造する方法を提供することを目的とする。The present invention has been made in response to these conventional circumstances, and provides a method for producing a ceramic molded body with high strength and less cracking, breakage, etc., without impairing the properties of the ceramic after sintering. The purpose is to
[発明の構成]
(問題点を解決するための手段)
本発明のセラミックス成形体の製造方法は、セラミック
ス粉体に焼成後のセラミックスの特性を損うことのない
短繊維を配合したセラミックススラリーを用いて、セラ
ミックス成形体を製造することを特徴とする。[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a ceramic molded body of the present invention includes a ceramic slurry containing ceramic powder mixed with short fibers that do not impair the properties of the ceramic after firing. It is characterized in that it is used to produce a ceramic molded body.
本発明に使用する短繊維としては、セラミックス粉体と
同組成のウィスカーや、有機繊維を用いることができる
。短繊維としてセラミックス粉体と同組成のウィスカー
を使用する場合の配合量は、セラミックス粉体100重
量部に対して、0.01〜40重量部、好ましくは0.
05〜10重量部が適している。0.01重量部未満で
は短m維の効果が充分に得られず、また40重量部を越
えて配合しても、それ以上の効果が得られないばかりか
経済的にも不利である。なお、有機繊維の場合には、こ
の配合量を基準にし、比重に応じて減りした量が適して
いる。As the short fibers used in the present invention, whiskers having the same composition as the ceramic powder or organic fibers can be used. When whiskers having the same composition as the ceramic powder are used as short fibers, the blending amount is 0.01 to 40 parts by weight, preferably 0.01 to 40 parts by weight, based on 100 parts by weight of the ceramic powder.
05 to 10 parts by weight are suitable. If it is less than 0.01 parts by weight, the effect of short m fibers cannot be sufficiently obtained, and if it is added in excess of 40 parts by weight, not only no further effect can be obtained, but it is also economically disadvantageous. In addition, in the case of organic fibers, an amount reduced according to the specific gravity based on this blending amount is suitable.
短繊維の平均アスペクト比は、5以上が適当であり、直
径0.01〜10μm1長さ5〜1000μmの範囲が
よい。アスペクト比が5未満のものは、短繊維の効果が
充分に得られない。また余り長尺の繊維状物質では、強
度は上がるが焼成時に変形を起こすことがある。The average aspect ratio of the short fibers is suitably 5 or more, with a diameter of 0.01 to 10 μm and a length of 5 to 1000 μm. If the aspect ratio is less than 5, the effect of short fibers cannot be sufficiently obtained. Furthermore, if the fibrous material is too long, the strength will be increased, but deformation may occur during firing.
また、短繊維のアスペクト比は、成形体の形状、大きさ
により選定する事が望ましく、例えば成形体形状が薄肉
かつ小型のものでは、アスペクト比70程度のもの、逆
に成形体形状が厚肉で長尺のものでは、同300程度も
のが、耐割れ性や焼結時の変型防止の点で比較的良好な
結果が得られる。In addition, it is desirable to select the aspect ratio of the short fibers depending on the shape and size of the molded product. For example, if the molded product is thin and small, an aspect ratio of about 70 is preferable, whereas if the molded product is thick For long lengths of 300 or so, relatively good results can be obtained in terms of crack resistance and prevention of deformation during sintering.
(作 用)
本発明においては、成形体の製造段階における乾燥の不
均一等による内部応力が増大してもセラミックス粉体中
に配合された短繊維が、成形体の強度を上げるので、割
れ、破損等を生じることはない。(Function) In the present invention, even if the internal stress increases due to non-uniform drying during the manufacturing stage of the molded body, the short fibers blended into the ceramic powder increase the strength of the molded body, so that it will not crack or crack. No damage will occur.
さらに、セラミックス粉体と同組成のウィスカーを用い
た場合には、セラミックス粉体と同組成であるので焼成
後のセラミックスの特性を損うことはない。また有機繊
維は、脱脂焼成時に分解連敗してしまうのでセラミック
スの焼成後の特性になんら影響をあたえない。Furthermore, when a whisker having the same composition as the ceramic powder is used, the characteristics of the ceramic after firing are not impaired because the whisker has the same composition as the ceramic powder. Furthermore, since organic fibers decompose and fail during degreasing and firing, they do not affect the properties of ceramics after firing.
(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.
実施例1〜6
セラミックス粉体は、S!3N+粉末を使用し、短繊維
としては、S ! 3 N4ウイスカーおよび芳香族ポ
リアミド繊維を使用した。Si3N+ウイスカーは、長
さ5〜20μmのものであり、芳香族ポリアミド繊維は
5〜10μmのものである。上記粉体に焼結助剤、バイ
ンダー、分散剤および水を加え、樹脂性ポットミルで1
5時間混合し、脱泡処理をしてそれぞれセラミックスス
ラリーを形成した。第1表にそれぞれのセラミックスス
ラリーの組成を示す。Examples 1 to 6 Ceramic powder was S! 3N+ powder is used, and the short fiber is S! 3 N4 whiskers and aromatic polyamide fibers were used. The Si3N+ whiskers have a length of 5-20 μm, and the aromatic polyamide fibers have a length of 5-10 μm. Add a sintering aid, binder, dispersant and water to the above powder, and use a resin pot mill to
They were mixed for 5 hours and defoamed to form ceramic slurries. Table 1 shows the composition of each ceramic slurry.
上記で得たセラミックススラリーを用いて、図面に示す
形状の試験片モデル(R大型50mm)をスリップキャ
スティング法により成形し、成形体の外観検査後乾燥、
脱脂工程を経て、1750℃で焼成した。成形体および
焼成体の外観検査としては、クラックの有無および大小
の検査を行なった。その結果を第1表に示す。なお表中
の比較例1は、短繊維を配合していないセラミックスス
ラリーを使用し、実施例と同様にしてセラミックス成形
体および焼成体を作成したものであって本発明との比較
のために掲げたものである。Using the ceramic slurry obtained above, a test piece model of the shape shown in the drawing (R large size 50 mm) was molded by slip casting method, and after the appearance inspection of the molded body, it was dried.
After a degreasing process, it was fired at 1750°C. The appearance of the molded body and fired body was inspected for the presence or absence of cracks and their size. The results are shown in Table 1. Comparative Example 1 in the table is an example in which ceramic molded bodies and fired bodies were created in the same manner as in the examples using a ceramic slurry that does not contain short fibers, and is listed for comparison with the present invention. It is something that
(以下余白)
第1表
(注)クラック検査二〇 無欠陥、Δ 微小クラック有
、X クラック有第1表に示すように、短繊維を配合し
た実施例の成形体にはクラックの発生は認められず、ま
た焼成体にも変形やクラックは認められなかった。(Leaving space below) Table 1 (Note) Crack inspection 20 No defects, Δ Small cracks present, No deformation or cracks were observed in the fired product.
実施例7〜18
焼結助剤として所定量のY2 Ch 、Aβ203を含
むS!3N+調合粉に対して、S ! 3 N4ウイス
カーA(直径0.2〜0.5μm、長さ50〜300μ
m1アスペクト比100〜1500.平均アスペクト比
300 )およびS ! 3 N4ウイスカーB(直径
0.1〜0.4μm、長さ5〜20μm1アスペクト比
10〜200.平均アスペクト比70)を、第2表およ
び第3表に示すようにそれぞれ添加量をかえて添加し、
スリップキャスティング法によりテストピース(50x
20x 7mm)を成形した。得られた成形体の強度お
よび常圧焼結(1750℃)後の密度および抗折強度を
測定した。その結果を第2表および第3表に示す。なお
、表中の比較例2・3は、S ! 3 N4ウイスカー
を添加していないものである。Examples 7 to 18 S! containing predetermined amounts of Y2Ch and Aβ203 as sintering aids! S for 3N+ mixed powder! 3 N4 whisker A (diameter 0.2 to 0.5 μm, length 50 to 300 μm
m1 aspect ratio 100-1500. Average aspect ratio 300) and S! 3 N4 whiskers B (diameter 0.1 to 0.4 μm, length 5 to 20 μm, aspect ratio 10 to 200, average aspect ratio 70) were added in different amounts as shown in Tables 2 and 3. death,
A test piece (50x
20x7mm) was molded. The strength of the obtained molded body, the density after pressureless sintering (1750°C), and the bending strength were measured. The results are shown in Tables 2 and 3. In addition, Comparative Examples 2 and 3 in the table are S! 3 No N4 whiskers were added.
第2表および第3表から明らかなように、ウィスカー添
加量の増加に伴ない成形体強度は著しく増加する。この
効果は、ウィスカー添加量が0.5重量%程度の少量で
も大きい。また、ウィスカーはアスペクト比の大きいも
ののほうが成形体強度向上の効果は大きい。As is clear from Tables 2 and 3, the strength of the molded product increases significantly as the amount of whisker added increases. This effect is large even when the amount of whiskers added is as small as 0.5% by weight. Furthermore, whiskers with a larger aspect ratio have a greater effect on improving the strength of the molded product.
実施例19〜22
焼結助剤として所定量のY203 、Aβ203を含む
S!3N+調合粉に対して、ナイロン短繊維(直径10
〜40μm1長ざ200〜600μm1アスペクト比5
〜60.平均アスペクト比30)を、第4表に示すよう
に添加量を変えて添加し、スリップキャスティング法に
より成形した後、テストピースにより成形体強度、常圧
焼結後の密度、抗折強度を測定し、第4表に示すような
結果を得た。なお、表中の比較例4は、短繊維を添加し
ていないものである。Examples 19-22 S! containing a predetermined amount of Y203 and Aβ203 as sintering aids! Nylon short fiber (diameter 10
~40μm 1 length 200-600μm 1 aspect ratio 5
~60. The average aspect ratio 30) was added in varying amounts as shown in Table 4, and after molding by the slip casting method, the strength of the molded body, the density after pressureless sintering, and the bending strength were measured using test pieces. The results shown in Table 4 were obtained. Note that Comparative Example 4 in the table does not contain short fibers.
(以下余白)
第4表により明らかなように、有機繊維の添加による成
形体の強度向上効果は大きい。(The following is a blank space) As is clear from Table 4, the strength improvement effect of the molded article by the addition of organic fibers is significant.
[発明の効果]
以上説明したように、本発明によれば焼成後のセラミッ
クスの特性を損わずに、成形体の強度を上げることがで
き、割れ、破損等の欠点のないセラミックス成形体が得
られ、特に大型の製品や複雑形状の製品に適している。[Effects of the Invention] As explained above, according to the present invention, the strength of the molded body can be increased without impairing the properties of the ceramic after firing, and the ceramic molded body is free from defects such as cracks and breakage. It is especially suitable for large products and products with complex shapes.
図面は本発明の方法により成形した試験月モデルを示す
斜視図である。The drawing is a perspective view showing a test moon model molded by the method of the present invention.
Claims (3)
ラミックス成形体を製造する方法において、前記セラミ
ックススラリー中に短繊維を配合することを特徴とする
セラミックス成形体の製造方法。(1) A method of producing a ceramic molded body by pouring a ceramic slurry into a mold and dehydrating it, the method comprising blending short fibers into the ceramic slurry.
ーまたは有機繊維である特許請求の範囲第1項記載のセ
ラミックス成形体の製造方法。(2) The method for producing a ceramic molded body according to claim 1, wherein the short fibers are whiskers or organic fibers having the same composition as the ceramic molded body.
求の範囲第1項または第2項記載のセラミックス成形体
の製造方法。(3) The method for producing a ceramic molded body according to claim 1 or 2, wherein the short fibers have an average aspect ratio of 5 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61203131A JPS6359527A (en) | 1986-08-29 | 1986-08-29 | Manufacture of ceramics molded form |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61203131A JPS6359527A (en) | 1986-08-29 | 1986-08-29 | Manufacture of ceramics molded form |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6359527A true JPS6359527A (en) | 1988-03-15 |
JPH0545555B2 JPH0545555B2 (en) | 1993-07-09 |
Family
ID=16468924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61203131A Granted JPS6359527A (en) | 1986-08-29 | 1986-08-29 | Manufacture of ceramics molded form |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6359527A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029777A (en) * | 1988-03-02 | 1990-01-12 | Honda Motor Co Ltd | Fiber reinforced ceramic molded body and production thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4980112A (en) * | 1972-12-02 | 1974-08-02 | ||
JPS5233906A (en) * | 1975-09-12 | 1977-03-15 | Fuoseko Japan Rimitetsudo Yuug | Manufacture of nonnburned magnesia refractory heattinsulating moldings |
JPS5247803A (en) * | 1975-10-15 | 1977-04-16 | Sumitomo Chemical Co | High strength ceramic sintering body |
JPS55123411A (en) * | 1979-03-16 | 1980-09-22 | Tokoname Nanahonmatsu Seitoush | Casting molding technique of ceramic product and magma for casting |
JPS55136164A (en) * | 1979-04-04 | 1980-10-23 | Showa Denko Kk | Manufacture of fiber reinforced cement product |
JPS5692180A (en) * | 1979-12-27 | 1981-07-25 | Sumitomo Electric Industries | Manufacture of silicon nitride whisker reinforced silicon nitride sintered body |
JPS60149403A (en) * | 1984-01-13 | 1985-08-06 | イビデン株式会社 | Manufacture of ceramic fiber molded part |
JPS60200863A (en) * | 1984-03-21 | 1985-10-11 | 三菱マテリアル株式会社 | Silicon nitride base ceramics |
JPS62202872A (en) * | 1986-02-28 | 1987-09-07 | 住友電気工業株式会社 | Ceramic formed body and manufacture |
JPS6342807A (en) * | 1986-08-11 | 1988-02-24 | トヨタ自動車株式会社 | Manufacture of fiber reinforced ceramics part |
-
1986
- 1986-08-29 JP JP61203131A patent/JPS6359527A/en active Granted
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4980112A (en) * | 1972-12-02 | 1974-08-02 | ||
JPS5233906A (en) * | 1975-09-12 | 1977-03-15 | Fuoseko Japan Rimitetsudo Yuug | Manufacture of nonnburned magnesia refractory heattinsulating moldings |
JPS5247803A (en) * | 1975-10-15 | 1977-04-16 | Sumitomo Chemical Co | High strength ceramic sintering body |
JPS55123411A (en) * | 1979-03-16 | 1980-09-22 | Tokoname Nanahonmatsu Seitoush | Casting molding technique of ceramic product and magma for casting |
JPS55136164A (en) * | 1979-04-04 | 1980-10-23 | Showa Denko Kk | Manufacture of fiber reinforced cement product |
JPS5692180A (en) * | 1979-12-27 | 1981-07-25 | Sumitomo Electric Industries | Manufacture of silicon nitride whisker reinforced silicon nitride sintered body |
JPS60149403A (en) * | 1984-01-13 | 1985-08-06 | イビデン株式会社 | Manufacture of ceramic fiber molded part |
JPS60200863A (en) * | 1984-03-21 | 1985-10-11 | 三菱マテリアル株式会社 | Silicon nitride base ceramics |
JPS62202872A (en) * | 1986-02-28 | 1987-09-07 | 住友電気工業株式会社 | Ceramic formed body and manufacture |
JPS6342807A (en) * | 1986-08-11 | 1988-02-24 | トヨタ自動車株式会社 | Manufacture of fiber reinforced ceramics part |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029777A (en) * | 1988-03-02 | 1990-01-12 | Honda Motor Co Ltd | Fiber reinforced ceramic molded body and production thereof |
JPH0545556B2 (en) * | 1988-03-02 | 1993-07-09 | Honda Motor Co Ltd |
Also Published As
Publication number | Publication date |
---|---|
JPH0545555B2 (en) | 1993-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4376579B2 (en) | Silicon nitride bonded SiC refractory and method for producing the same | |
JPS5823345B2 (en) | Method for manufacturing ceramic sintered bodies | |
US4376742A (en) | Fugitive liquid phase densification of silicon nitride | |
JPS6359527A (en) | Manufacture of ceramics molded form | |
JPS6410469B2 (en) | ||
JPS6050749B2 (en) | Silicon carbide sintered body | |
KR101265943B1 (en) | Composite of blue body for ceramic ware and manufacturing method of the blue body for ceramic ware | |
JPS5815461B2 (en) | Cordierite dense low expansion sintered body | |
JPS6343344B2 (en) | ||
EP0305759A1 (en) | Si3N4 Process using polysilane or polysilazane as a binder | |
JPH05294733A (en) | Silicon nitride-carbon fiber composite and its production | |
Suzdal'tsev et al. | Intensified sintering of lithium aluminosilicate ceramics | |
US2347225A (en) | Zirconium oxide refractory and method of making the same | |
JP3026011B2 (en) | Alumina porcelain composition and method for producing the same | |
JPH0550470B2 (en) | ||
JPS5926972A (en) | Manufacture of nitride carbide ceramic | |
JPS60246267A (en) | Silicon carbide base sintered body | |
JPS58223677A (en) | Refractories manufacture | |
JPH05330936A (en) | Functionally gradient material | |
JP2002257477A (en) | Dense container for baking ceramics | |
KR20040072124A (en) | Manufacturing method of alumina ceramics | |
JPS63282163A (en) | Production of high-toughness silicon nitride ceramics | |
JPS63100074A (en) | Method of burning ceramic injection formed article | |
JPH05279116A (en) | Ceramics material having low thermal expansion and its production | |
JPH0551250A (en) | Low thermal expansion ceramic material and its production |