[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6357775A - Cvd thin film forming device - Google Patents

Cvd thin film forming device

Info

Publication number
JPS6357775A
JPS6357775A JP20113786A JP20113786A JPS6357775A JP S6357775 A JPS6357775 A JP S6357775A JP 20113786 A JP20113786 A JP 20113786A JP 20113786 A JP20113786 A JP 20113786A JP S6357775 A JPS6357775 A JP S6357775A
Authority
JP
Japan
Prior art keywords
nozzle
gas
thin film
nozzles
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20113786A
Other languages
Japanese (ja)
Inventor
Katsumi Ooyama
勝美 大山
Hitoshi Hikima
引間 仁
Katsumi Takami
高見 勝己
Kazuo Taniguchi
谷口 和雄
Satoru Kishimoto
哲 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP20113786A priority Critical patent/JPS6357775A/en
Publication of JPS6357775A publication Critical patent/JPS6357775A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the formation and sticking of flakes of fine foreign matter particles to nozzle ends and inside wall surface by providing many pieces of reactive gas feed nozzles into coaxial multiple-layer structure to the central top of a bell-jar and providing plural pieces of the respective gas supply ports thereof symmetrically with the central axis of the nozzles. CONSTITUTION:Three piece of the reactive gas feed nozzles 20, 30, 40 are arranged in the coaxial multi-layer structure to the central top of the bell-jar 3 and four pieces of the gas supply ports 24, 34, 44 are respectively provided symmetrically with the central axis of the nozzles on the outer peripheral face of disk-shaped gas reservoirs 22, 32, 42 of the respective nozzles 20, 30, 40. Gaseous O2 is fed from a 1st nozzle 20 and the 3rd nozzle 40 respectively and the reactive gas such as SiH4 and/or PH3 except O2 is fed from the 2nd nozzle 30 to form the thin film on a wafer in the above-mentioned constitution. The formation and sticking of the flakes of fine oxide particles of SiO2, SiO,etc., on the nozzle ends and the inside wall surface are thereby effectively prevented and the flow velocity of the reactive gas fed into the furnace is kept constant. The thin film having a uniform film thickness is thus formed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はCVD薄膜形成装置に関する。更に詳細には、
本発明は反応炉の反応ガス送入ノズルの壁面および先端
にSiOあるいは5i02などの異物微粒子のフレーク
が生成・付着することを防雨したC V I)薄膜形成
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CVD thin film forming apparatus. More specifically,
The present invention relates to a CVI) thin film forming apparatus that prevents the formation and adhesion of foreign particle flakes such as SiO or 5i02 on the wall surface and tip of a reaction gas feed nozzle of a reactor.

[従来の技術] 薄膜の形成方法として゛l−導体工業において一般に広
く用いられているものの一つに化学的気相成長法(CV
I):Chemical  Vapourl)el)o
sition)がある。CV Dとは、ガス状物質を化
学反応で固体物質にし、基板Fに堆積することをいう。
[Prior Art] One of the methods widely used in the l-conductor industry as a method for forming thin films is chemical vapor deposition (CV).
I):Chemical Vaporl)el)o
There is a location). CVD refers to turning a gaseous substance into a solid substance through a chemical reaction, and depositing the solid substance on the substrate F.

CVDの特徴は、成長しようとする薄膜の融点よりかな
り低い堆積温度で種々の薄膜が得られること、および、
成長した薄膜の純度が高り、SiやS i hの熱酸化
膜上に成長した場合も電気的特性が安定であることで、
広く半導体表面のパッシベーション膜として利用されて
いる。
Characteristics of CVD are that various thin films can be obtained at deposition temperatures considerably lower than the melting point of the thin film to be grown;
The purity of the grown thin film is high, and the electrical properties are stable even when grown on a thermal oxide film of Si or Sih.
It is widely used as a passivation film on semiconductor surfaces.

CVDによる薄膜形成は、例えば500°C程度に加熱
したウェハに反応ガス(例えば、5iHq+02.また
はS i Ha +PH,l +02 )を供給して行
われる。lユ記の反応ガスは反応炉内のウェハに吹きつ
けられ、該ウェハの表面に5i02あるいはフォスフオ
シリケードガラス(PSG)の薄膜を形成する。また、
SiO2とPSGとの2層成膜が行われることもある。
Thin film formation by CVD is performed, for example, by supplying a reactive gas (for example, 5iHq+02. or S i Ha +PH,l +02 ) to a wafer heated to about 500°C. The reaction gas described in Section 1 is blown onto the wafer in the reactor to form a thin film of 5i02 or phosphosilicate glass (PSG) on the surface of the wafer. Also,
Two-layer film formation of SiO2 and PSG is sometimes performed.

史に、モリブデン。Historically, molybdenum.

タングステンあるいはタングステンシリサイド等の金属
薄膜の形成にも使用できる。
It can also be used to form metal thin films such as tungsten or tungsten silicide.

このようなCV I)による薄膜形成操作を行うために
従来から用いられている装置の一例を第3図に部分断面
図として示す。
FIG. 3 shows a partial cross-sectional view of an example of an apparatus conventionally used for performing such a thin film forming operation using CV I).

第3図において、反応炉1は、円誰状のバッファ2をベ
ルジャ3で覆い、上記バッファ2の周囲にリング状のウ
ェハ載置台4を駆動機構5で回転駆動r1丁能、または
自公転可能に設置する。ベルジャ3はOリング11を介
して反応炉中間リング12と閉市される。中間リング1
2の下部には反応炉本体13が0リング14を介して配
設されている。
In FIG. 3, the reactor 1 includes a circular buffer 2 covered with a bell jar 3, and a ring-shaped wafer mounting table 4 around the buffer 2, which is rotatably driven by a drive mechanism 5 or can rotate around its axis. to be installed. The bell jar 3 is connected to the reactor intermediate ring 12 via an O-ring 11. intermediate ring 1
A reactor main body 13 is disposed at the bottom of the reactor 2 via an O-ring 14.

ベルジャの内側には反応ガスの流れを成膜反応に適する
ように規制するためのインナーベルジャ15が固設され
ている。
An inner bell jar 15 is fixedly installed inside the bell jar to regulate the flow of reaction gas to suit the film forming reaction.

前記ベルジャ3の「1点付近に反応ガス送入ノズル8お
よび9が接続されている。ガス送入ノズルから送入され
たガスはバッファにより振分られてウェハ載置台4に向
かう。使用する反応ガスのSiH4および02はそれぞ
れ別のガス送入ノズルにより反応炉に送入しなければな
らない。例えば、5iHqを送入ノズル8で送入、そし
て、02を送入ノズル9で送入する。また、PHJを使
用する場合、S I H4とともに送入できる。
Reaction gas feed nozzles 8 and 9 are connected to the vicinity of one point of the bell jar 3.The gas fed from the gas feed nozzles is distributed by a buffer and directed to the wafer mounting table 4. The gases SiH4 and 02 must be fed into the reactor through separate gas feed nozzles. For example, 5iHq is fed through feed nozzle 8, and 02 is fed through feed nozzle 9. , PHJ can be sent together with S I H4.

前記のウェハ載置台4の直下には僅かなギヤノブを介し
て加熱手段10が設けられていてウェハ6を所定の温度
(例えば、約500°C)に加熱する。反応ガス送入ノ
ズル8および9から送入された反応ガス(例えば、Si
H4+02または5iHq +PH,3+02 ’)は
点線矢印のごとく炉内を流下し、ウェハ6の表面に触れ
て流動し、化学反応によって生成される物質(Si02
またはPSG)の薄膜をウェハ6の表面に生成せしめる
A heating means 10 is provided directly below the wafer mounting table 4 via a small gear knob, and heats the wafer 6 to a predetermined temperature (for example, about 500° C.). The reaction gas (for example, Si
H4+02 or 5iHq +PH,3+02') flows down in the furnace as shown by the dotted arrow, touches the surface of the wafer 6 and flows, and the substance produced by the chemical reaction (Si02
or PSG) is formed on the surface of the wafer 6.

[発明が解決しようとする問題点コ しかし、このような従来のCV l)薄膜形成装置の反
応ガス送入ノズルは第3図に示されるような構造を有し
ていた。内側のノズル先端から5iHqおよび/または
PH,?含有ガスが送入されると、外側のノズル先端か
ら送入された酸素ガスと反応し、内側および外側ノズル
の先端部ならびに外側ノズルの内壁面にSiOあるいは
5i02などの5IIi物微拉rのフレークが生成・旬
着する。
[Problems to be Solved by the Invention] However, the reaction gas feeding nozzle of such a conventional CV thin film forming apparatus had a structure as shown in FIG. 5iHq and/or PH from the inner nozzle tip, ? When the contained gas is introduced, it reacts with the oxygen gas introduced from the outer nozzle tip, and flakes of SiO or 5IIi material such as 5i02 are formed at the tips of the inner and outer nozzles and on the inner wall surface of the outer nozzle. is generated and arrives in season.

このフレークは反応ガスの噴流により7り離されたり、
吹き飛ばされたりして炉内を17遊する。そして、次第
に沈降し、ウェハの表面に落下Φ付着することとなる。
These flakes are separated by a jet of reactant gas,
It was blown away and traveled 17 times inside the furnace. Then, it gradually settles and falls and adheres to the surface of the wafer.

これらフレークがウェハの表面に付着するとウェハ1−
のCV D膜にピンホールを発生させ、製品歩留りを低
下させる大きな原因となる。
When these flakes adhere to the surface of the wafer, wafer 1-
This causes pinholes in the CVD film, which is a major cause of lower product yield.

また、従来のノズルは図示されているように、ノズルへ
のガス供給[■1が−・つであったために、ガスの流速
が均一にはならなかった。その結果、ウェハ[−に成膜
されるCVD膜の膜厚が不均一になる傾向があった。
Further, as shown in the figure, in the conventional nozzle, the gas supply [1] to the nozzle was -, so the gas flow rate was not uniform. As a result, the thickness of the CVD film formed on the wafer [-] tended to be non-uniform.

[発明の[−1的] 従って、本発明の目的は反応ガス送入ノズル付近にフレ
ーク雪の人物が発生することを防雨し、また、ガス流速
を均一・化することによりCV D膜の膜厚を均一化さ
せるC V l)薄膜形成装置を提供することである。
[Objective -1 of the invention] Therefore, the purpose of the present invention is to prevent the formation of flaky snow near the reactant gas feed nozzle, and to improve the CVD film by uniformizing the gas flow velocity. It is an object of the present invention to provide a C V l) thin film forming apparatus that makes the film thickness uniform.

[問題点を解決するための手段コ 前記の問題点を解決し、あわせて本発明の目的を達成す
るための手段として、この発明は、反応ガス送入ノズル
をベルジャの中央頂部に有するCVf)薄膜形成装置に
おいて、前記反応ガス送入ノズルは三本以1−のノズル
を同軸状に配列してなり、各ノズルへのガス供給口はノ
ズルの外周面+1にノズルの中心軸より対称に複数個配
設されていることを特徴とするC V I)薄膜形成装
置を提供する。
[Means for Solving the Problems] As a means for solving the above-mentioned problems and also achieving the object of the present invention, this invention provides a CVf having a reaction gas feeding nozzle at the center top of the bell jar) In the thin film forming apparatus, the reaction gas supply nozzle is formed by coaxially arranging three or more nozzles, and a plurality of gas supply ports to each nozzle are arranged on the outer peripheral surface +1 of the nozzle symmetrically with respect to the central axis of the nozzle. C VI I) Provides a thin film forming apparatus characterized in that the thin film forming apparatus is individually arranged.

[作用] 前記のように、本発明のCV I)薄膜形成装置におけ
るノズルは同軸多重構造を有する。
[Operation] As described above, the nozzle in the CV I) thin film forming apparatus of the present invention has a coaxial multiple structure.

本発明者らが長年に屍り広範な試作と研究を続けた結果
、SiH4+やPH3’V”のような02以外の反応ガ
スがノズルの先端および内壁面に接触すると、その部分
に酸化物の異物を生成・付着させることを発見した。
As a result of extensive prototyping and research conducted by the inventors over many years, we found that when a reactive gas other than 02, such as SiH4+ or PH3'V'', comes into contact with the nozzle tip and inner wall surface, oxides form on that part. It was discovered that foreign substances are generated and attached.

この発見に基づき、ノズルを多重構造にすることにより
、酸素以外の反応ガスを酸素ガスで包囲・隔離するよう
にして炉内に供給し、酸素以外の反応ガスがノズルの先
端および内壁面に接触することを駆出することに成功し
た。
Based on this discovery, by creating a nozzle with a multilayer structure, reactive gases other than oxygen are surrounded and isolated by oxygen gas and supplied into the furnace, and reactive gases other than oxygen come into contact with the tip of the nozzle and the inner wall surface. I succeeded in evoking something to do.

あくまでも仮説ではあるが、ノズルの先端および内壁面
付近に存在するOH−基が浮遊するSiOと化学反応し
てSiO2粒子をノズルの先端および内壁面に生成する
。また、浮遊5i02粒子がOH−基と反応して先端お
よび内壁面に付着する。この現象が変電なって、次第に
ノズルの先端および内壁面上にフレークを形成する。こ
れに対して、02分子がノズルの先端および内壁而に存
在すれば、02とOH−基が反応して、H2Oとなり、
化学的活性の強いOH−基が消滅することになる。この
ため、隔離ガスとして酸素を使用することにより、ノズ
ル先端および内壁面にSiO2粒子の付着する度合が減
り、フレークが出来にくくなる。
Although this is just a hypothesis, the OH- groups present near the tip and inner wall surface of the nozzle chemically react with floating SiO to generate SiO2 particles at the tip and inner wall surface of the nozzle. In addition, floating 5i02 particles react with the OH- groups and adhere to the tip and inner wall surface. This phenomenon results in electrical transformation, which gradually forms flakes on the tip and inner wall surface of the nozzle. On the other hand, if 02 molecules are present at the tip and inner wall of the nozzle, 02 and OH- groups will react to form H2O,
The OH- group, which has strong chemical activity, disappears. Therefore, by using oxygen as the isolation gas, the degree of adhesion of SiO2 particles to the nozzle tip and inner wall surface is reduced, making it difficult to form flakes.

その結果、ノズルの先端部および内壁面上にSiOある
いは5i02などの酸化物微粒子のフレ一りが生成会付
着することは効果的に防止される。
As a result, it is effectively prevented that any flakes of oxide fine particles such as SiO or 5i02 are formed and adhered to the tip and inner wall surface of the nozzle.

また、これにより、フレークがウェハ表面に落下してウ
ェハのCVD膜にピンホールを発生させるような不都合
な1EflJも効果的に防止される。
This also effectively prevents the disadvantageous 1EflJ in which flakes fall onto the wafer surface and cause pinholes in the CVD film of the wafer.

史に、各ノズルへガスを供給するガス供給口が、ノズル
の外周面」−に等間隔に複数個(例えば、4個)配設さ
れている。このため、炉内に送入される反応ガスの流速
が一定となり、ウェハの表面りに成膜されるCVD膜の
膜厚の均一性を向ヒさせることができる。
Historically, a plurality (for example, four) of gas supply ports for supplying gas to each nozzle are arranged at equal intervals on the outer peripheral surface of the nozzle. Therefore, the flow rate of the reaction gas fed into the furnace becomes constant, and the uniformity of the thickness of the CVD film formed on the surface of the wafer can be improved.

かくして、ウェハの製造歩留りを高めることができるば
かりか、半導゛体素子の製造工程全体のスループットを
向上させることもできる。
In this way, not only can the wafer manufacturing yield be increased, but also the throughput of the entire semiconductor device manufacturing process can be improved.

[実施例] 以ド、図面をl(Lながら本発明の一実施例について更
に詳細に説明する。
[Embodiment] Hereinafter, an embodiment of the present invention will be described in more detail while referring to the drawings.

第1図は本発明のCVD薄膜形成装置におけるノズルの
断面図であり、第2図はその・11−面図である。
FIG. 1 is a sectional view of a nozzle in the CVD thin film forming apparatus of the present invention, and FIG. 2 is a 11-plane view thereof.

第1図に示されるように、本発明のCV I)薄膜形成
装置のノズルは第1ノズル20.第2ノズル30および
第3ノズル40の三本のノズルが同軸状に配設されてい
る。
As shown in FIG. 1, the nozzle of the CV I) thin film forming apparatus of the present invention is a first nozzle 20. Three nozzles, the second nozzle 30 and the third nozzle 40, are arranged coaxially.

第1ノズル20からは02ガスを送入し、第2ノズル3
0からはSiH4および/またはPHa等の02以外の
反応ガスを送入し、第3ノズル40からは02ガスを送
入する。かくして、5iHqおよび/またはPHJは0
2ガスによりサンドイッチ状に挟み込まれた状態で炉内
に送入される。
02 gas is fed from the first nozzle 20, and the second nozzle 3
From the third nozzle 40, a reaction gas other than 02 such as SiH4 and/or PHa is fed, and from the third nozzle 40, 02 gas is fed. Thus, 5iHq and/or PHJ is 0
The gas is sandwiched between the two gases and sent into the furnace.

その結果、5iHqおよび/またはPHa等の反応ガス
はノズルの先端部および内壁而に接触できないので、こ
れらの部分にフレークのような異物が生成し、付着する
ことは殆どなくなる。
As a result, the reactive gas such as 5iHq and/or PHa cannot come into contact with the tip and inner wall of the nozzle, so foreign substances such as flakes are hardly generated or attached to these parts.

各ノズルから送入されるガスの流速は特に限定されない
が、第1ノズルおよび第3ノズルから送入される02ガ
スの流速を第2ノズルから送入されるSiH4および/
またはPHJの流速よりも高くすると、反応ガスの隔離
効果が高まる。
Although the flow rate of the gas sent from each nozzle is not particularly limited, the flow rate of the 02 gas sent from the first nozzle and the third nozzle is the same as that of the SiH4 gas sent from the second nozzle and/or
Alternatively, if the flow rate is higher than that of PHJ, the effect of isolating the reaction gas increases.

各ノズルの「1部には円盤状のガス溜め22,32およ
び42が配設されている。このガス溜めの外周面にガス
供給1’−124,34および44を配設する。
Disc-shaped gas reservoirs 22, 32 and 42 are disposed in one part of each nozzle. Gas supplies 1'-124, 34 and 44 are disposed on the outer peripheral surface of this gas reservoir.

ガス供給口は第2図に示されるように、円盤状ガス溜め
の外周面に等間隔に複数個配設する。例えば、第1ノズ
ル20のガス溜め22の外周面に4木のガス供給lTl
24,24.24および24を90°配置で対称的に固
設する。第2ノズル30のガス溜め32および第3ノズ
ル40のガス溜め42にも同様に各々4木づつガス供給
口が90゜配置で対称的に固設されている。
As shown in FIG. 2, a plurality of gas supply ports are arranged at equal intervals on the outer peripheral surface of the disc-shaped gas reservoir. For example, four gases are supplied to the outer peripheral surface of the gas reservoir 22 of the first nozzle 20.
24, 24. 24 and 24 are symmetrically fixed in a 90° arrangement. Similarly, the gas reservoir 32 of the second nozzle 30 and the gas reservoir 42 of the third nozzle 40 each have four gas supply ports symmetrically fixed at a 90° arrangement.

ガス供給口の配設個数は多いほどガスの送入流速を−・
走化させることができるので好ましい。ノズルに応じて
ガス供給「1の配設個数を変化させることもできる。例
えば、02を送入する第1ノズルおよび第3ノズルには
ガス供給[1を各4本配設し、SiH4およびPHaを
送入する第2ノズルにはガス供給11を3木配設するこ
ともできる。
The larger the number of gas supply ports installed, the faster the gas supply flow rate will be.
This is preferable because it allows for chemotaxis. The number of gas supplies [1] can be changed depending on the nozzle.For example, the first and third nozzles that feed 02 are each provided with four gas supplies [1], and SiH4 and PHa It is also possible to arrange three gas supplies 11 in the second nozzle for feeding the gas.

ノズル、ガス溜めおよびガス供給1−1の材質は本発明
の必須要件ではないが、耐介性に優れたステンレスなと
でIM+戊することが好ましい。また、)ズル、ガス溜
めおよびガス供給1−1の直径ならびにサイズなどは取
り付けられる反応炉の容1旧こ応じて変化させることが
できる。従って、ノズル、ガス溜めおよびガス供給1−
1の直径ならびにサイズなどは当業者が容易に決定でき
る°1f項である。
Although the materials of the nozzle, gas reservoir, and gas supply 1-1 are not essential to the present invention, it is preferable to use stainless steel with excellent corrosion resistance. Furthermore, the diameter and size of the nozzle, gas reservoir, and gas supply 1-1 can be changed depending on the capacity of the reactor to which it is attached. Therefore, the nozzle, gas reservoir and gas supply 1-
The diameter, size, etc. of 1 are °1f terms that can be easily determined by those skilled in the art.

[発明の効果コ 以1・、説明したように、本発明のCVI)薄膜形成装
置におけるノズルは同軸多重構造を有する。
[Effects of the Invention (1) As explained above, the nozzle in the thin film forming apparatus (CVI) of the present invention has a coaxial multiple structure.

本発明者らが長年に屍り広範な試作と研究を続けた結果
、S t 84やPHJ等のような02以外の反応ガス
がノズルの先端および内壁面に接触すると、その部分に
酸化物の異物を生成−付着させることを発見した。
As a result of extensive prototyping and research conducted by the inventors over many years, we found that when a reactive gas other than 02, such as St 84 or PHJ, comes into contact with the nozzle tip and inner wall surface, oxides form in that area. It was discovered that foreign substances are generated and attached.

この発見に基づき、ノズルを多重構造にすることにより
、酸素以外の反応ガスを酸素ガスで包囲・隔離するよう
にして炉内に供給し、酸素以外の反応ガスがノズルの先
端および内壁面に接触することを阻屯することに成功し
た。
Based on this discovery, by creating a nozzle with a multilayer structure, reactive gases other than oxygen are surrounded and isolated by oxygen gas and supplied into the furnace, and reactive gases other than oxygen come into contact with the tip of the nozzle and the inner wall surface. succeeded in preventing him from doing so.

あくまでも仮説ではあるが、ノズルの先端および内壁面
付近に存在するOH−基が17遊するSi0と化学反応
して5i02拉rをノズルの先端および内壁面に生成す
る。また、77遊SiO2粒子がOH−基と反応して先
端および内壁面に付着する。この現象が変改なって、次
第にノズルの先端および内壁面1−にフレークを形成す
る。これに対して、02分子がノズルの先端および内壁
面に存在すれば、02とOH−基が反応して、H2Oと
なり、化学的活性の強いOH”基が消滅することになる
。このため、隔離ガスとして酸素を使用することにより
、ノズル先端および内壁面にSi02粒子の付着する度
合が減り、フレークが出来にくくなる。
Although this is just a hypothesis, the OH- groups present near the tip and inner wall surface of the nozzle chemically react with the free Si0 to generate 5i02r at the tip and inner wall surface of the nozzle. In addition, 77 free SiO2 particles react with the OH- groups and adhere to the tip and inner wall surface. This phenomenon changes and gradually forms flakes on the tip of the nozzle and on the inner wall surface 1-. On the other hand, if 02 molecules are present at the tip and inner wall surface of the nozzle, 02 and OH- groups will react to form H2O, and the highly chemically active OH'' groups will disappear.For this reason, By using oxygen as the isolation gas, the degree of adhesion of Si02 particles to the nozzle tip and inner wall surface is reduced, making it difficult to form flakes.

その結果、ノズルの先端部および内壁面1−にSiOあ
るいは5i02などの酸化物微粒rのフレークが生成・
付着することは効果的に防11−される。
As a result, flakes of fine oxide particles such as SiO or 5i02 are formed on the tip of the nozzle and on the inner wall surface 1-.
Adhesion is effectively prevented.

また、これにより、フレークがウェハ表面に落ドしてウ
ェハのCVI)膜にピンホールを発生させるような不都
合な°Jl’ 7fiも効果的に防11.される。
In addition, this effectively prevents inconvenient problems such as flakes falling onto the wafer surface and causing pinholes in the wafer's CVI) film. be done.

史に、各ノズルへガスを供給するガス供給[−1が、ノ
ズルの外周面−1−に等間隔に複数個(例えば、4個)
配設されている。このため、炉内に送入される反応ガス
の流速が一定となり、ウェハの表面1・。
In history, a gas supply [-1] that supplies gas to each nozzle is provided at multiple (for example, 4) locations at equal intervals on the outer circumferential surface of the nozzle -1-.
It is arranged. Therefore, the flow rate of the reaction gas fed into the furnace is constant, and the surface of the wafer 1.

に成膜されるC V I)膜の膜厚の均一性を向1−さ
せることができる。特に、PHaのような不純物を反応
ガス中に混和して使用する場合、−・般に、極少(11
シか41!和しないので、反応炉への送入流速が不均一
だと、不純物濃度も不均一になる傾向が強い。しかし、
本発明の装置によれば、極少量しか混和されない不純物
ガスも一定の濃度で成膜反応に付すことができる。
It is possible to improve the uniformity of the film thickness of the CVI) film formed on the substrate. In particular, when using an impurity such as PHa mixed in the reaction gas, generally a very small amount (11
Shika41! Therefore, if the flow rate into the reactor is uneven, there is a strong tendency for the impurity concentration to become uneven. but,
According to the apparatus of the present invention, even impurity gases that are mixed in only a very small amount can be subjected to a film forming reaction at a constant concentration.

かくして、ウェハの製造歩留りを高めることができるば
かりか、半導体素−rの製造−1′、程全体のスループ
アトを向1−させることもできる。
In this way, not only can the manufacturing yield of wafers be increased, but also the throughput of the entire semiconductor device manufacturing process can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のCV l)薄膜形成装置におけるノズ
ルの断面図、第2図はその・P面図、第3図は従来のC
V l)薄膜形成装置の概°堤図である。 1・・・JX 応炉T  2・・・バッファ、3・・・
ベルジャ。 4・・・ウェハ載置台、5・・・駆動機構、6・・・ウ
ェハ。 8および9・・・反応ガス送入ノズル、10・・・加熱
丁−段、11および14・・・Oリング、12・・・中
間リング、13・・・反応炉本体、15・・・インナー
ベルジャ。 20・・・第1ノズル、22・・・第1ノズル用ガス溜
め。 24・・・ガス供給口、30・・・第2ノズル。 32・・・第2ノズル用ガス溜め、34・・・ガス供給
1−1゜40・・・第3ノズル、42・・・第3ノズル
用ガス溜め。 44・・・ガス供給[]
Figure 1 is a cross-sectional view of the nozzle in the CV l) thin film forming apparatus of the present invention, Figure 2 is its P side view, and Figure 3 is the conventional CV l)
Vl) It is a schematic diagram of a thin film forming apparatus. 1...JX Okoro T 2...Buffer, 3...
Bellja. 4... Wafer mounting table, 5... Drive mechanism, 6... Wafer. 8 and 9... Reaction gas feed nozzle, 10... Heating stage, 11 and 14... O ring, 12... Intermediate ring, 13... Reactor main body, 15... Inner Bellja. 20... First nozzle, 22... Gas reservoir for the first nozzle. 24... Gas supply port, 30... Second nozzle. 32... Gas reservoir for second nozzle, 34... Gas supply 1-1° 40... Third nozzle, 42... Gas reservoir for third nozzle. 44...Gas supply []

Claims (2)

【特許請求の範囲】[Claims] (1)反応ガス送入ノズルをベルジャの中央頂部に有す
るCVD薄膜形成装置において、前記反応ガス送入ノズ
ルは三本以上のノズルを同軸状に配列してなり、各ノズ
ルへのガス供給口はノズルの外周面上にノズルの中心軸
より対称に複数個配設されていることを特徴とするCV
D薄膜形成装置。
(1) In a CVD thin film forming apparatus having a reactant gas feed nozzle at the center top of a bell jar, the reactant gas feed nozzle is composed of three or more nozzles arranged coaxially, and the gas supply port to each nozzle is A CV characterized in that a plurality of CVs are arranged on the outer peripheral surface of the nozzle symmetrically with respect to the central axis of the nozzle.
D Thin film forming device.
(2)反応炉は自公転方式の常圧型CVD反応炉である
ことを特徴とする特許請求の範囲第1項に記載のCVD
薄膜形成装置。
(2) The CVD according to claim 1, wherein the reactor is a revolution-rotation type atmospheric pressure CVD reactor.
Thin film forming equipment.
JP20113786A 1986-08-27 1986-08-27 Cvd thin film forming device Pending JPS6357775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20113786A JPS6357775A (en) 1986-08-27 1986-08-27 Cvd thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20113786A JPS6357775A (en) 1986-08-27 1986-08-27 Cvd thin film forming device

Publications (1)

Publication Number Publication Date
JPS6357775A true JPS6357775A (en) 1988-03-12

Family

ID=16436016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20113786A Pending JPS6357775A (en) 1986-08-27 1986-08-27 Cvd thin film forming device

Country Status (1)

Country Link
JP (1) JPS6357775A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980204A (en) * 1987-11-27 1990-12-25 Fujitsu Limited Metal organic chemical vapor deposition method with controlled gas flow rate
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
KR20000038764A (en) * 1998-12-09 2000-07-05 신현준 Gas injection apparatus for thin layer evaporation of semiconductor wafer
KR20180126391A (en) * 2017-05-17 2018-11-27 어플라이드 머티어리얼스, 인코포레이티드 Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980204A (en) * 1987-11-27 1990-12-25 Fujitsu Limited Metal organic chemical vapor deposition method with controlled gas flow rate
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
KR20000038764A (en) * 1998-12-09 2000-07-05 신현준 Gas injection apparatus for thin layer evaporation of semiconductor wafer
KR20180126391A (en) * 2017-05-17 2018-11-27 어플라이드 머티어리얼스, 인코포레이티드 Semiconductor processing chamber for multiple precursor flow
JP2019009423A (en) * 2017-05-17 2019-01-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Semiconductor processing chamber for multiple precursor flows
US20190311883A1 (en) * 2017-05-17 2019-10-10 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276559B2 (en) * 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
JP2023029848A (en) * 2017-05-17 2023-03-07 アプライド マテリアルズ インコーポレイテッド Semiconductor processing chamber for multiple precursor streams
KR20230054344A (en) * 2017-05-17 2023-04-24 어플라이드 머티어리얼스, 인코포레이티드 Semiconductor processing chamber for multiple precursor flow
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports

Similar Documents

Publication Publication Date Title
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
JP3414018B2 (en) Substrate surface treatment equipment
JPS62152171A (en) Thin-film transistor
US3484311A (en) Silicon deposition process
US5888303A (en) Gas inlet apparatus and method for chemical vapor deposition reactors
JPS6357775A (en) Cvd thin film forming device
KR101922469B1 (en) Chemical vapor deposition low resistance silicon carbide bulk manufacturign apparatus
JPS6376879A (en) Cvd thin film forming device
JPS62158867A (en) Cvd thin film forming device
JPS63164222A (en) Gas head for cvd apparatus
JPS63216973A (en) System for feeding reactive gas to vapor phase reactor
JPS6168393A (en) Hot wall type epitaxial growth device
JPH0586476A (en) Chemical vapor growth device
JPS6376334A (en) Device for forming cvd thin-film
JPS62238365A (en) Device for forming cvd thin film
JPH0557354B2 (en)
JPH10247645A (en) Semiconductor manufacturing method and device
JPS6240720A (en) Vapor phase epitaxial growing device
JPS62238366A (en) Device for forming cvd thin film
JPS63157425A (en) Vapor phase reaction equipment
JPS62133070A (en) Device for forming cvd (chemical vapor deposited) thin film
JPS62243771A (en) Apparatus for forming thin film by cvd
JPS6299473A (en) Cvd thin film forming device
JPS6346734A (en) Cvd thin-film forming device
JPS62161962A (en) Cvd thin film forming device