[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6355780B2 - - Google Patents

Info

Publication number
JPS6355780B2
JPS6355780B2 JP14077381A JP14077381A JPS6355780B2 JP S6355780 B2 JPS6355780 B2 JP S6355780B2 JP 14077381 A JP14077381 A JP 14077381A JP 14077381 A JP14077381 A JP 14077381A JP S6355780 B2 JPS6355780 B2 JP S6355780B2
Authority
JP
Japan
Prior art keywords
film
insulating film
oxidation
groove
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14077381A
Other languages
Japanese (ja)
Other versions
JPS5842251A (en
Inventor
Hiroshi Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14077381A priority Critical patent/JPS5842251A/en
Publication of JPS5842251A publication Critical patent/JPS5842251A/en
Publication of JPS6355780B2 publication Critical patent/JPS6355780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法に係り、特に
MOSLSI(Metal Oxide Semiconductor Large
Scale Integrated Circuit)の素子間分離技術の
改良に関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
MOSLSI (Metal Oxide Semiconductor Large)
This paper relates to improvements in isolation technology between elements of Scale Integrated Circuits.

従来、MOSLSIの素子分離法として所謂選択
酸化法が一般に用いられてきたが、集積度が高く
なるにつれて種々の欠点が生じてきた。
Conventionally, a so-called selective oxidation method has been generally used as an element isolation method for MOSLSI, but as the degree of integration increases, various drawbacks have arisen.

以下、この欠点について第1図を参照して説明
する。同図は、シリコン基板(例えばP型、結晶
方位:(100))1に酸化膜2を成長させ、窒化膜
3を堆積し、パターニングしてフイールド部に不
純物を添加し反転防止領域4を形成した後、フイ
ールド酸化を行いフイールド酸化膜5を形成した
直後の状態を示している。
This drawback will be explained below with reference to FIG. In the figure, an oxide film 2 is grown on a silicon substrate (for example, P type, crystal orientation: (100)) 1, a nitride film 3 is deposited, and an impurity is added to the field portion by patterning to form an inversion prevention region 4. This shows the state immediately after field oxidation is performed to form a field oxide film 5.

選択酸化法の高集積化に対する欠点としては、
まず第1にフイールド酸化時にフイールド酸化膜
5が窒化膜3下に食い込んで成長する所謂バード
ビーク効果がある。すなわち第1図に示すように
バードビークの長さをB(例えば1μm)とすれ
ば、窒化膜3の最小スペーシング(写真蝕刻法の
技術限界で決定される)をA(例えば1μm)とし
てもフイールド最小幅CはC=2A+B(例えば3μ
m)となつてしまい、フイールドの幅をこれ以下
にすることは不可能である。最近、窒化膜を厚く
し、窒化膜の下の酸化膜2を薄くしたり、フイー
ルド酸化膜5を薄くしたりしてバードビークを抑
制する方法が試みられている。しかしながら、前
者にはフイールド端部でのストレスが大きくなり
欠陥が生じやすくなる問題点、後者にはフイール
ド反転電圧低下などの問題点があり、選択酸化法
を用いて素子の集積化は次第に困難になつてい
る。第2の問題として、チヤンネルストツパー用
にイオン注入したボロンがフイールド酸化中に横
方向にも拡散し素子形成領域(第1図でDの部
分)がP+領域となることにより、実効的な素子
領域が狭くなつてしまうことがある。この結果、
トランジスタ電流が減少したり、しきい値電圧が
上つてしまうなどのナロウチヤンネル効果が生じ
る。これらは素子の微細化とともに次第に問題と
なりつつある。さらに、P+領域が横方向に広が
ることにより素子領域のn+層と基板間の浮遊キ
ヤパシタンスも素子が小さくなるに従い無視でき
なくなつている。
The disadvantages of the selective oxidation method in terms of high integration are:
First of all, there is a so-called bird's beak effect in which the field oxide film 5 digs into and grows under the nitride film 3 during field oxidation. That is, as shown in Figure 1, if the length of the bird's beak is B (for example, 1 μm), even if the minimum spacing of the nitride film 3 (determined by the technical limit of photolithography) is A (for example, 1 μm), the field is The minimum width C is C=2A+B (for example, 3μ
m), and it is impossible to make the field width smaller than this. Recently, attempts have been made to suppress bird's beak by thickening the nitride film and thinning the oxide film 2 under the nitride film, or by thinning the field oxide film 5. However, the former has the problem of increasing stress at the edge of the field, making it more likely to cause defects, and the latter has problems such as a drop in field inversion voltage, making it increasingly difficult to integrate devices using selective oxidation. It's summery. The second problem is that the boron ion-implanted for the channel stopper diffuses laterally during field oxidation, and the element formation region (portion D in Figure 1) becomes a P + region, which causes the effective The element area may become narrower. As a result,
Narrow channel effects such as a decrease in transistor current and an increase in threshold voltage occur. These problems are gradually becoming a problem with the miniaturization of elements. Furthermore, as the P + region expands in the lateral direction, the stray capacitance between the n + layer in the element region and the substrate can no longer be ignored as the element becomes smaller.

このような従来の欠点を解消するために、本出
願人は第2図a〜fに示すような新規なフイール
ド領域形成手段による半導体装置の製造方法を同
日付で提出した。以下、この方法について説明す
る。
In order to eliminate such conventional drawbacks, the applicant of the present invention proposed on the same date a method of manufacturing a semiconductor device using a novel field region forming means as shown in FIGS. 2a to 2f. This method will be explained below.

(i) まず、シリコン基板(P型、結晶方位:
(100))上に酸化膜などマスキング材料膜12
を堆積する(第2図a図示)。
(i) First, silicon substrate (P type, crystal orientation:
(100)) Masking material film 12 such as oxide film on top
(as shown in Figure 2a).

(ii) 次にマスキング材料膜12を、写真蝕刻法な
どでパターニングしてマスク材12′を形成す
る(第2図b図示)。
(ii) Next, the masking material film 12 is patterned by photolithography or the like to form a masking material 12' (as shown in FIG. 2b).

(iii) 次にマスク材12′を用いてたとえばKOHな
どを用いて基板11をエツチングし傾斜角θの
側面を有する溝部13を形成する。この溝部の
開口部の巾はa(たとえば1μm)とする(第2
図c図示)。
(iii) Next, the substrate 11 is etched using, for example, KOH using the mask material 12' to form a groove 13 having side surfaces having an inclined angle θ. The width of the opening of this groove is a (for example, 1 μm) (second
Figure c).

(iv) 次に、マスク材12′を用いて基板11と同
導電型の不純物であるボロンを、例えば加速電
圧50KeV、ドーズ量5×1012/cm2の条件でイオ
ン注入した後、熱処理を施して溝部13の底部
にチヤンネルストツパ領域としてのP+領域1
4を形成する(第2図d図示)。
(iv) Next, using the mask material 12', boron, which is an impurity of the same conductivity type as the substrate 11, is ion-implanted under conditions such as an acceleration voltage of 50 KeV and a dose of 5×10 12 /cm 2 , and then heat treatment is performed. P + area 1 is applied as a channel stopper area at the bottom of the groove 13.
4 (as shown in Figure 2d).

(v) 次に、マスク材12′を除去した後、SiO2
15をCVD(Chemical Vapour Deposition)
法により溝部13の開口部の幅をaとしたとき
(a cot(θ/2))/2以上の厚さで堆積す
る。(第2図e図示)。このとき、CVD−SiO2
膜15は基板11及び溝部13内壁面に徐々に
堆積され、溝部13の開口部まで十分埋め込ま
れる。なお、この堆積時においては選択酸化法
の如く高温、長時間の熱酸化処理が解消される
ことにより、P+領域14の再拡散は殆んど起
きない。
(v) Next, after removing the mask material 12', the SiO 2 film 15 is deposited by CVD (Chemical Vapor Deposition).
When the width of the opening of the groove portion 13 is a, the thickness is deposited by the method to a thickness of (a cot (θ/2))/2 or more. (Illustrated in Figure 2e). At this time, CVD−SiO 2
The film 15 is gradually deposited on the substrate 11 and the inner wall surface of the trench 13, and is sufficiently filled up to the opening of the trench 13. Note that during this deposition, re-diffusion of the P + region 14 hardly occurs because the high-temperature, long-time thermal oxidation treatment such as in the selective oxidation method is eliminated.

(vi) 次に、CVD−SiO2膜15を沸化アンモンで
溝部13以外のシリコン基板11部分が露出す
るまで全面エツチングする。このとき、基板1
1上のCVD−SiO2膜15部分の膜厚分だけ除
去され溝部13内にのみCVD−SiO2が残留し、
これによつて基板11内に埋め込まれたフイー
ルド領域16が形成される(第2図f図示)。
(vi) Next, the entire surface of the CVD-SiO 2 film 15 is etched with ammonium fluoride until the portion of the silicon substrate 11 other than the groove portion 13 is exposed. At this time, substrate 1
The thickness of the CVD-SiO 2 film 15 on top of the groove 13 is removed, and the CVD-SiO 2 remains only in the groove 13.
As a result, a field region 16 buried within the substrate 11 is formed (as shown in FIG. 2f).

(vii) その後、通常の工程によりフイールド領域1
6で分離された島状の素子形成領域にゲート酸
化膜17を介して多結晶シリコンからなるゲー
ト電極18を形成し、砒素拡散を行なつてソー
ス、ドレインのn+領域19を形成し、層間絶
縁膜20を堆積し、さらにコンタクトホール2
1を開け、Al配線22を設けことによりLSIの
主要な工程を終える(第2図g図示)。
(vii) After that, the field area 1 is
A gate electrode 18 made of polycrystalline silicon is formed in the island-shaped element formation region separated by 6, with a gate oxide film 17 interposed therebetween, and arsenic is diffused to form source and drain n + regions 19. An insulating film 20 is deposited, and a contact hole 2 is formed.
The main steps of the LSI are completed by opening 1 and providing Al wiring 22 (as shown in Fig. 2g).

以上のような工程をとることによつて選択酸化
法の欠点は取り除くことができる。
By performing the steps described above, the drawbacks of the selective oxidation method can be eliminated.

(1) フイールドの最小幅Sは溝部13の最小幅a
によつて決まり、選択酸化法のときのような所
謂バードビークは発生することがないので、溝
部13の幅を小さくすることができる限り、い
くらでも集積化が可能である。
(1) The minimum width S of the field is the minimum width a of the groove 13
Since the so-called bird's beak unlike in the selective oxidation method does not occur, as long as the width of the groove 13 can be made small, any number of integrations are possible.

(2) フイールド幅を短かくすると、従来の選択酸
化法では寄生MOSトランジスタのチヤンネル
長が短くなり、シヨートチヤンネル効果により
フイールドの反転電圧が下り、フイールド間の
リーク電流が流れやすくなる傾向にあつたが、
この方法を用いれば寄生MOSトランジスタの
チヤンネル長は溝部13の深さ方向の成分が大
きく寄与する為長くなり、フイールドのシヨー
トチヤンネル効果を容易に防ぐことができる。
(2) When the field width is shortened, in the conventional selective oxidation method, the channel length of the parasitic MOS transistor is shortened, and the short channel effect tends to lower the inversion voltage of the field, making it easier for leakage current to flow between the fields. However,
If this method is used, the channel length of the parasitic MOS transistor becomes longer because the component in the depth direction of the trench 13 greatly contributes, and the short channel effect of the field can be easily prevented.

(3) フイールド反転防止のためp+領域14は溝
部13の下部にありまたフイールド酸化の熱工
程がない為素子形成領域まで拡散しにくく、前
述のナロウチヤンネル効果などによる素子特性
の劣化、及びn+層とp+領域との接合によるn+
層と基板間の浮遊容量の増大がなくなる。
(3) To prevent field inversion, the p + region 14 is located below the trench 13, and since there is no thermal process for field oxidation, it is difficult to diffuse into the device formation region, which may cause deterioration of device characteristics due to the aforementioned narrow channel effect, etc. n + by joining the + layer and the p + region
There is no increase in stray capacitance between the layer and the substrate.

(4) 選択酸化法のようなフイールド酸化がないの
で、フイールド酸化膜が窒化膜の下に食い込む
ときに生ずるストレスによつて発生するシリコ
ン基板11の欠陥がない。
(4) Since there is no field oxidation as in the selective oxidation method, there are no defects in the silicon substrate 11 caused by stress caused when the field oxide film digs under the nitride film.

(5) 選択酸化法ではフイールド領域と素子領域の
間に段差が生ずるが、この方法ではフイールド
領域間を全く平坦にすることが可能であり、マ
イクロリソグラフイーに極めて適した構造とな
つている。
(5) In the selective oxidation method, a step is created between the field region and the element region, but with this method, it is possible to make the field region completely flat, resulting in a structure that is extremely suitable for microlithography.

以上のようにこの方法には多くの利点がある。
しかしながら、すべて幅の狭いフイールド領域で
LSIを形成する場合はよいが、幅の広いフイール
ド領域を形成する場合は多少の困難がある。すな
わち、フイールド領域の幅Sは溝部13の幅Sに
よつて決まつてしまい、溝部13に絶縁膜を残す
ためには絶縁膜を膜厚T>a cot(θ/2)/2
としなければならず、フイールド領域の幅が広い
ときには絶縁膜も堆積しなければならない。例え
ば20μm幅のフイールドを形成するには絶縁膜の
膜厚を10μm程度以上としなければならず、堆積
時間、膜厚精度、クラツクの発生しない条件など
困難な問題が多い。さらに、200μm幅のフイー
ルド(例えば、Alボンデイングパツドの下部な
ど)などはこの方法で形成することが非常に困難
となる。このため、幅の広いフイールドを必要と
する場合は、第3図に示すように、まず前述の方
法に従つて幅の狭いフイールド領域16を埋め込
んだ後、例えばSiO2の絶縁膜23を堆積し、写
真蝕刻法によりこの絶縁膜23を部分的に残し、
幅の広いフイールド領域24を形成するような方
法をとつていた。
As mentioned above, this method has many advantages.
However, all in narrow field areas.
This is good when forming an LSI, but there are some difficulties when forming a wide field region. That is, the width S of the field region is determined by the width S of the groove 13, and in order to leave the insulating film in the groove 13, the thickness of the insulating film is T>a cot(θ/2)/2.
When the width of the field region is wide, an insulating film must also be deposited. For example, in order to form a field with a width of 20 μm, the thickness of the insulating film must be approximately 10 μm or more, and there are many difficult problems such as deposition time, film thickness accuracy, and crack-free conditions. Furthermore, it is very difficult to form a field with a width of 200 μm (for example, the bottom of an Al bonding pad) using this method. Therefore, if a wide field is required, as shown in FIG. 3, first bury a narrow field region 16 according to the method described above, and then deposit an insulating film 23 of SiO 2 , for example. , this insulating film 23 is left partially by photolithography,
A method was used to form a wide field region 24.

この方法では幅の広いフイールド酸化膜の形成
が可能で、なおかつ選択酸化法の欠陥の大部分を
克服できるが、場合によつては1つ大きな欠点が
発生する。すなわち、第3図の幅の広いフイール
ド領域24の端部で段差が生じ、平坦性が失われ
ることである。選択酸化法の場合は、フイールド
膜の半分はシリコン基板に埋まるが、この方法で
はフイールド膜厚がそのまま段差となるので、選
択酸化法の場合以上の段差が生じる。このため、
幅の広いフイールド膜近傍でマイクロリソグラフ
イーを必要とする場合には大きな障害となつてい
た。
Although this method allows the formation of a wide field oxide film and overcomes most of the deficiencies of the selective oxidation method, one major drawback may occur in some cases. That is, a step is generated at the end of the wide field region 24 shown in FIG. 3, and flatness is lost. In the case of the selective oxidation method, half of the field film is buried in the silicon substrate, but in this method, the field film thickness becomes a step as it is, so a step difference occurs that is larger than that in the case of the selective oxidation method. For this reason,
This has been a major obstacle when microlithography is required near wide field membranes.

この発明は上記実情に鑑みてなされたもので、
その目的は、従来の素子分離技術の問題点を解消
し、LSIの高集積化及び高性能化を可能とする半
導体装置の製造方法を提供することにある。
This invention was made in view of the above circumstances.
The purpose is to provide a method for manufacturing a semiconductor device that solves the problems of conventional element isolation techniques and enables higher integration and higher performance of LSIs.

以下、図面を参照してこの発明の一実施例をn
チヤンネルMOSLSIの製造工程に適用した場合
について説明する。
An embodiment of the present invention will be described below with reference to the drawings.
A case where the present invention is applied to the manufacturing process of channel MOSLSI will be explained.

(i) まず、シリコン基板(P型、結晶方位:
(100))31にSiO2膜などのマスキング材料膜
を堆積し、これを写真蝕刻法などを用いてパタ
ーニングしてマスク材32を形成する(第4図
a図示)。
(i) First, silicon substrate (P type, crystal orientation:
(100)) A masking material film such as a SiO 2 film is deposited on 31 and patterned using photolithography or the like to form a masking material 32 (as shown in FIG. 4a).

(ii) 次に、マスク材32をマスクとして、エツチ
ングを行い、傾斜角θを有する側面をもつた幅
(a)の狭い第1の溝部33を形成する。このエツ
チングの方法は、KOHによるエツチングやリ
アクテイブイオンエツチングであつてもよい
(第4図b図示)。
(ii) Next, using the mask material 32 as a mask, etching is performed to form a width with side surfaces having an inclination angle θ.
The narrow first groove portion 33 shown in (a) is formed. This etching method may be KOH etching or reactive ion etching (as shown in FIG. 4b).

(iii) 次に、マスク材32をマスクとして例えばボ
ロンを加速電圧50KeV、ドーズ量5×1012/cm2
の条件でイオン注入し、第1の溝部33の底部
にp+領域(チヤンネルストツパー領域34を
形成する(第4図c図示)。
(iii) Next, using the mask material 32 as a mask, for example, boron is accelerated at a voltage of 50 KeV and at a dose of 5×10 12 /cm 2
Ions are implanted under the following conditions to form a p + region (channel stopper region 34) at the bottom of the first trench 33 (as shown in FIG. 4c).

(iv) 次に、マスク材32を除去した後、第1の溝
部33の幅をaとすると(a cot(θ/
2))/2以上の膜厚の絶縁膜(例えば
CVDSIO2膜又はSi3N4膜)35を堆積し第1の
溝部33を埋める(第4図d図示)。
(iv) Next, after removing the mask material 32, if the width of the first groove 33 is a (a cot(θ/
2))/Insulating film with a thickness of 2 or more (e.g.
A CVDSIO 2 film or a Si 3 N 4 film 35 is deposited to fill the first trench 33 (as shown in FIG. 4d).

(v) 次に、絶縁膜35をシリコン基板31が露出
するまでエツチングする。これにより第1の溝
部33にのみ埋込みフイールド絶縁膜361
362,363が残る(第4図e図示)。
(v) Next, the insulating film 35 is etched until the silicon substrate 31 is exposed. As a result, the buried field insulating film 36 1 ,
36 2 and 36 3 remain (as shown in Figure 4e).

(vi) 次に、シリコン基板31上に薄い絶縁膜(例
えば500Åの熱酸化膜)37を形成し、この絶
縁膜37上に耐酸化性膜(例えば3000Åの
Si3N4膜)38を堆積する(第4図f図示)。
(vi) Next, a thin insulating film (for example, a 500 Å thermal oxide film) 37 is formed on the silicon substrate 31, and an oxidation-resistant film (for example, a 3000 Å thick thermal oxide film) 37 is formed on this insulating film 37.
A Si 3 N 4 film 38 is deposited (as shown in FIG. 4 f).

(vii) 次に、写真蝕刻法を用いて埋込みフイールド
絶縁膜361,362,363上に境界の全部又
は一部がくるようにレジスト膜39をパターニ
ングする。そして、このレジスト膜39をマス
クにして耐酸化性膜38をエツチングし、薄い
絶縁膜37をエツチングし、さらにシリコン基
板31をエツチングし第2の溝部40を形成す
る。このシリコン基板31をエツチングすると
きには、埋込みフイールド絶縁膜361,36
,363が全くエツチングされないか、又は殆
んどエツチングされないようにする(第4図g
図示)。なお、薄い絶縁膜37又はシリコン基
板31をエツチングする前にレジスト膜39を
剥離してその後のエツチングは耐酸化性膜38
をマスクにして行つてもよい。また、シリコン
基板31のエツチング深さは後の酸化条件など
によつても変るが、ここでは例えば5000Åとす
る。
(vii) Next, the resist film 39 is patterned using photolithography so that all or part of the boundaries are on the buried field insulating films 36 1 , 36 2 , 36 3 . Then, using this resist film 39 as a mask, the oxidation-resistant film 38 is etched, the thin insulating film 37 is etched, and the silicon substrate 31 is further etched to form a second trench 40. When etching this silicon substrate 31, buried field insulating films 36 1 , 36
2 , 36 3 is not etched at all or hardly etched (Fig. 4g)
(Illustrated). Note that before etching the thin insulating film 37 or the silicon substrate 31, the resist film 39 is peeled off and the subsequent etching is performed using the oxidation-resistant film 38.
You may wear a mask. Further, although the etching depth of the silicon substrate 31 varies depending on the subsequent oxidation conditions, it is set to, for example, 5000 Å here.

(vii) 次に、レジスト膜39〔(vii)でレジスト膜39
を剥離した場合は耐酸化性膜38〕をマスクに
して例えばボロンを加速電圧50KeV、ドース
量1×1013/cm2でイオン注入し第2の溝部40
の底部にp+領域41を形成する(第4図h図
示)。
(vii) Next, the resist film 39 [in (vii), the resist film 39
If the oxidation-resistant film 38 is peeled off, ions of boron, for example, are implanted at an acceleration voltage of 50 KeV and a dose of 1×10 13 /cm 2 using the oxidation-resistant film 38 as a mask to form the second groove portion 40.
A p + region 41 is formed at the bottom of the substrate (as shown in FIG. 4h).

(ix) 次に、レジスト膜39を剥離した後、耐酸化
性膜38をマスクとしてフイールド酸化を行
い、埋込みフイールド絶縁膜361,363の間
にフイールド酸化膜42を例えば膜厚1μmで
形成し、幅の広いフイールド絶縁膜を形成す
る。ここで、シリコン基板31のエツチング深
さの2倍のフイールド酸化膜42を形成すれ
ば、素子形成領域と平坦な幅の広いフイールド
絶縁膜を形成することができる(第4図i図
示)。このとき、埋込みフイールド絶縁膜36
,363としてSi3N4膜などを用いれば、フイ
ールド酸化時におけるフイールド酸化膜42の
横方向への食い込み(バードビーク)は原理的
に全く生じないし、また埋込みフイールド絶縁
膜362,363としてSiO2膜を用いた場合もハ
ードビークは殆んど問題とならない。
(ix) Next, after peeling off the resist film 39, field oxidation is performed using the oxidation-resistant film 38 as a mask to form a field oxide film 42 with a film thickness of, for example, 1 μm between the buried field insulating films 36 1 and 36 3 . Then, a wide field insulating film is formed. If the field oxide film 42 is formed to have a depth twice the etching depth of the silicon substrate 31, a wide field insulating film that is flat and flat with the element formation region can be formed (as shown in FIG. 4i). At this time, the buried field insulating film 36
If a Si 3 N 4 film or the like is used as the buried field insulating films 36 2 , 36 3 , horizontal encroachment (bird's beak) of the field oxide film 42 during field oxidation will not occur at all in principle, and the buried field insulating films 36 2 , 36 3 Even when a SiO 2 film is used, hard beaks are hardly a problem.

(x) 次に、耐酸化性膜38及びその下の薄い絶縁
膜37をエツチング除去する(第4図j図示)。
(x) Next, the oxidation-resistant film 38 and the thin insulating film 37 thereunder are removed by etching (as shown in FIG. 4J).

() 最後に、ゲート酸化膜43、ゲート電極
(例えば多結晶シリコン)44を設け、例えば
砒素を拡散してソース、ドレインとなるn+
域45を形成し、層間絶縁膜(例えばCVD
SiO2膜)46を堆積し、コンタクトホール4
7を開け、例えばAlの配線48を施し、LSIの
主要な工程を終える(第4図k図示)。
() Finally, a gate oxide film 43 and a gate electrode (for example, polycrystalline silicon) 44 are provided, for example, arsenic is diffused to form n + regions 45 that will become sources and drains, and an interlayer insulating film (for example, CVD
Deposit SiO 2 film) 46 and fill contact hole 4.
7 is opened and a wiring 48 made of, for example, Al is applied to complete the main process of the LSI (as shown in FIG. 4k).

以上のような工程を用いることにより、前述の
選択酸化法を用いた場合の種々の欠点を克服する
ことができると共に、段差を有しない任意の軸の
フイールド絶縁領域を形成することが可能とな
る。従つて、LSIの高集積化及び高性能化に大い
に貢献することができる。
By using the above steps, it is possible to overcome the various drawbacks when using the selective oxidation method described above, and it is also possible to form a field insulation region of any axis without steps. . Therefore, it can greatly contribute to higher integration and higher performance of LSI.

次に、この発明の他の実施例について説明す
る。
Next, other embodiments of the invention will be described.

(1) シリコン基板31にp+領域34を形成する
場合、第4図a〜kに示した実施例ではSiO2
などのマスク材32をマスクにしてイオン注入
で設けたが第5図に示すようにマスキング材料
膜をパターニングするときのレジスト膜49を
残しておき、これをマスクにしてイオン注入を
行つてもよい。また第6図に示すように基板3
1をエツチングして第1の溝部33をつくると
きマスク材32を用いずに基板の上に直接レジ
スト膜49をのせ、これをマスクにしてエツチ
ングして溝部を設け、さらにこのレジストをマ
スクにしてイオン注入してもよい。
(1) When forming the p + region 34 on the silicon substrate 31, SiO 2 is used in the embodiment shown in FIGS.
The resist film 49 used for patterning the masking material film may be left as shown in FIG. 5, and the ion implantation may be performed using this as a mask. . In addition, as shown in FIG.
1 to form the first groove 33, a resist film 49 is placed directly on the substrate without using the mask material 32, and this is used as a mask for etching to form the groove, and then this resist is used as a mask to form the groove. Ion implantation may also be used.

(2) 第4図a〜kに示した実施例ではイオン注入
してp+領域(チヤンネルストツパ領域)34,
41を形成するようにしたが、シリコン基板3
1の濃度等の条件によつてはこのp+領域34,
41は必ずしも必要ではなくイオン注入を行わ
なくてもよい。またp+領域34,41のどち
らか片方だけを設けてもよい。イオン注入のマ
スクはレジスト膜32に限らず、絶縁膜などで
もよい。さらにp+領域はイオン注入だけでな
く拡散法で設けるようにしてもよい。
(2) In the embodiment shown in FIGS. 4a to 4k, ions are implanted into the p + region (channel stopper region) 34,
41, but the silicon substrate 3
Depending on conditions such as the concentration of 1, this p + region 34,
41 is not necessarily necessary and ion implantation may not be performed. Further, only one of the p + regions 34 and 41 may be provided. The mask for ion implantation is not limited to the resist film 32, but may be an insulating film or the like. Furthermore, the p + region may be provided not only by ion implantation but also by a diffusion method.

(3) 第1の溝部33に絶縁膜35を埋め込む前に
予め溝部33の内部に絶縁膜50を成長させて
おいてもよい(第7図図示)。この絶縁膜50
は例えばシリコン基板31を酸化して形成して
もよいし、CVD膜などを堆積してもよい。な
お、このとき第1の溝部33の開口部の幅は多
少狭くなつていることに注意。
(3) Before burying the insulating film 35 in the first trench 33, the insulating film 50 may be grown inside the trench 33 in advance (as shown in FIG. 7). This insulating film 50
may be formed by, for example, oxidizing the silicon substrate 31, or may be formed by depositing a CVD film or the like. Note that at this time, the width of the opening of the first groove 33 is somewhat narrower.

(4) 絶縁膜35をエツチングして第1の溝部33
にのみ埋め込みフイールド絶縁膜361,36
,363を残すとき、このフイールド絶縁膜3
1,362,363がシリコン基板31の表面
から落ち込むような構造をとつてもよい(第8
図図示)。
(4) Etching the insulating film 35 to form the first groove 33
Embedded field insulating film 36 1 , 36 only in
2 , 36 3 , this field insulating film 3
6 1 , 36 2 , 36 3 may be structured such that they fall from the surface of the silicon substrate 31 (eighth
(Illustrated)

(5) 埋込みフイールド絶縁膜361,362,36
の深さはそれぞれ異なつていてもよい。
(5) Embedded field insulating film 36 1 , 36 2 , 36
3 may have different depths.

(6) 第1の溝部33に絶縁膜35を堆積し、第1
の溝部33を完全に塞いだ後、この上に低温溶
融性絶縁膜(例えば、ボロン硅化ガラス
(BSG)、リン硅化ガラス(PSG)、砒素硅化ガ
ラス(AsSG)等)を堆積し、これを溶融させ
てから絶縁膜35をエツチングして第1の溝部
33に絶縁膜を埋め込んでもよい。
(6) Deposit the insulating film 35 in the first trench 33, and
After completely filling the groove 33, a low-temperature melting insulating film (for example, boron silicide glass (BSG), phosphorus silicide glass (PSG), arsenic silicide glass (AsSG), etc.) is deposited on top of the groove 33, and this is melted. After that, the insulating film 35 may be etched to fill the first trench 33 with the insulating film.

(7) 絶縁膜35の代りに上記低温溶融性絶縁膜を
用いてもよい。また、溶融する膜と溶融しない
膜の2層構造でもよい。
(7) Instead of the insulating film 35, the above-mentioned low-temperature melting insulating film may be used. Alternatively, a two-layer structure including a meltable film and a non-meltable film may be used.

(8) 第4図a〜kに示した実施例では、耐酸化性
膜38としてSi3N4膜を用いたが、シリコン基
板31の酸化を抑えることのできる膜なら何で
もよく、例えばAl2O3膜あるいは厚いSiO2膜で
もよい。
(8) In the embodiment shown in FIGS. 4a to 4k, a Si 3 N 4 film was used as the oxidation-resistant film 38, but any film that can suppress oxidation of the silicon substrate 31 may be used, for example, Al 2 An O 3 film or a thick SiO 2 film may be used.

(9) 第4図a〜kに示した実施例では、耐酸化性
膜38を堆積してから写真蝕刻法を用い耐酸化
性膜38及びシリコン基板31をエツチングし
たが、始めにシリコン基板31をエツチングし
て第2の溝部40を設け、後で耐酸化性膜38
を堆積し、写真蝕刻法を用いて第2の溝部40
の耐酸化性膜38をエツチングした後でフイー
ルド酸化を行つてもよい。
(9) In the embodiment shown in FIGS. 4a to 4k, the oxidation-resistant film 38 was deposited and then the oxidation-resistant film 38 and the silicon substrate 31 were etched using photolithography. A second trench 40 is provided by etching the oxidation-resistant film 38.
is deposited and the second groove portion 40 is formed using a photolithography method.
Field oxidation may be performed after etching the oxidation-resistant film 38.

(10) 第4図a〜kに示した実施例では、耐酸化性
膜38をエツチングした後シリコン基板31を
エツチングして第2の溝部40を設けてからフ
イールド酸化を行つていたが、第9図a,bに
示す如く耐酸化性膜38をエツチングした後シ
リコン基板31をエツチングせずにフイールド
酸化を行つてもよい。この場合はフイールド領
域と素子領域の平坦性は多少犠牲となるが、チ
ヤンネルストツパ用p+領域34の素子領域へ
の拡散を抑制する効果は大きい。このとき、絶
縁膜37は必ずしも堆積しなくてもよい。ま
た、絶縁膜37はSiO2膜のように基板上に残
置されても下の基板(例えばシリコン基板3
1)がフイールド酸化時に酸化されるものであ
れば、第7図aに示す方法を行なわず、薄い絶
縁膜37をエツチングせずにフイールド酸化を
行つてもよい。
(10) In the embodiment shown in FIGS. 4a to 4k, after the oxidation-resistant film 38 was etched, the silicon substrate 31 was etched to form the second groove 40, and then field oxidation was performed. As shown in FIGS. 9a and 9b, field oxidation may be performed without etching the silicon substrate 31 after etching the oxidation-resistant film 38. In this case, although the flatness of the field region and the element region is somewhat sacrificed, the effect of suppressing the diffusion of the channel stopper p + region 34 into the element region is large. At this time, the insulating film 37 does not necessarily have to be deposited. In addition, even if the insulating film 37 is left on the substrate like a SiO 2 film, it can be removed from the underlying substrate (for example, a silicon substrate 3).
If 1) is oxidized during field oxidation, the method shown in FIG. 7a may be omitted and field oxidation may be performed without etching the thin insulating film 37.

(11) 前記(10)の実施例において、耐酸化性膜38を
マスクとしてフイールド酸化膜42をエツチン
グして平坦な構造としてもよい(第10図図
示)。
(11) In the embodiment (10) above, the field oxide film 42 may be etched using the oxidation-resistant film 38 as a mask to form a flat structure (as shown in FIG. 10).

(12) 前記(11)の実施例は、前記(10)の実施例のように
シリコン基板31をエツチングせずにフイール
ド酸化を行つたもののみならず、シリコン基板
31をエツチングしてフイールド酸化を行つた
ものについても適用される。これは、シリコン
基板31をエツチングしたにもかかわらず、フ
イールド酸化膜42が厚くつきシリコン基板3
1表面より上に出て平坦性が損われている場合
に有効である。
(12) The embodiment (11) above is not only one in which field oxidation is performed without etching the silicon substrate 31 as in the embodiment (10) above, but also one in which the silicon substrate 31 is etched and field oxidation is performed. It also applies to those who have done so. This is because the field oxide film 42 becomes thick even though the silicon substrate 31 is etched.
This is effective when the flatness is impaired by protruding above one surface.

(13) 上記実施例では溝部としてV字形のものを
用いたが、これに限らず、第11図に示す如く
底部が平坦な第1の溝部33′を基板31に形
成してもよい。この時、堆積すべき絶縁膜の厚
さは既述したのと同様(a cot・(θ/
2))/2以上にする。
(13) In the above embodiment, a V-shaped groove is used, but the present invention is not limited to this, and a first groove 33' having a flat bottom may be formed in the substrate 31 as shown in FIG. At this time, the thickness of the insulating film to be deposited is the same as described above (a cot・(θ/
2))/2 or more.

(14) 溝部の形状は側面がかならずしも平面でな
くともよく、第12図に示す如く傾斜した曲面
からなる側面を有する第1の溝部33″を基板
31に形成してもよい。この時、堆積すべき絶
縁膜の厚さは溝部33″の開口端での側面の傾
斜角をθとすれば既述と同様、(a cot(θ/
2)/2以上にする。
(14) Regarding the shape of the groove, the side surfaces do not necessarily have to be flat, and a first groove 33'' having side surfaces made of inclined curved surfaces as shown in FIG. 12 may be formed in the substrate 31. The thickness of the insulating film to be obtained is determined by (a cot(θ/
2) Set it to 2 or more.

(15) 第13図aに示す如く、基板31上に燐添
加ガラス膜(PSG膜)などのエツチングレー
トの速い被膜15を堆積し、マスク材、例えば
レジストパターン52を形成した後、これをマ
スクとして前記被膜51及び基板31を例えば
弗硝酸系のエツチング液、プラズマエツチング
液などでエツチングして傾斜した側面を有する
第1の溝部33′を形成してもよい(第13図
b図示)。
(15) As shown in FIG. 13a, a film 15 with a high etching rate such as a phosphorous-doped glass film (PSG film) is deposited on the substrate 31, a mask material such as a resist pattern 52 is formed, and then this is masked. Alternatively, the coating 51 and the substrate 31 may be etched using, for example, a hydrofluoric acid-based etching solution, a plasma etching solution, or the like to form a first groove portion 33' having an inclined side surface (as shown in FIG. 13B).

(16) 第14図aに示す如く基板31上に酸化膜
などの絶縁膜35を堆積し、これをプラズマ雰
囲気中に曝した後、マスク材、例えばレジスト
パターン52を形成し、これをマスクとして絶
縁膜35及び基板31をエツチングして第1の
溝部33′を形成してもよい(第14図b図
示)。
(16) As shown in FIG. 14a, after depositing an insulating film 35 such as an oxide film on a substrate 31 and exposing it to a plasma atmosphere, a mask material such as a resist pattern 52 is formed, and this is used as a mask. The first groove portion 33' may be formed by etching the insulating film 35 and the substrate 31 (as shown in FIG. 14B).

(17) 第15図aに示す如く、基板31に傾斜し
た側面を有する第1の溝部33を形成し、更に
絶縁膜35を堆積してこれをエツチングする
際、必ずしも基板31が露出するまでエツチン
グする必要はなく、第15図bに示す如くフイ
ールド領域36以外の基板31表面に絶縁膜3
5′を残存させるようにエツチングし、この残
存絶縁膜35′をゲート絶縁膜や層間絶縁膜等
に、或いはそれらの一部として使用してもよ
い。
(17) As shown in FIG. 15a, when forming a first groove 33 having an inclined side surface in a substrate 31 and then depositing an insulating film 35 and etching this, it is not necessary to etch until the substrate 31 is exposed. There is no need to do this, and as shown in FIG.
The remaining insulating film 35' may be etched so as to remain, and the remaining insulating film 35' may be used as a gate insulating film, an interlayer insulating film, etc., or as a part thereof.

(18) 第16図aに示す如く基板31上のSiO2
からなるマスク材32を用いて傾斜した側面を
有する第1の溝部33を設け、このマスク材3
2を残置した状態で絶縁膜35を堆積した後マ
スク材32が残るように絶縁膜35をエツチン
グしてフイールド領域36を形成してもよい
(第10図b図示)。
(18) As shown in FIG. 16a, a first groove portion 33 having an inclined side surface is provided using a mask material 32 made of SiO 2 or the like on a substrate 31, and this mask material 3
The field region 36 may be formed by depositing the insulating film 35 with the mask material 2 remaining and then etching the insulating film 35 so that the mask material 32 remains (as shown in FIG. 10B).

(19) 第17図に示す如く基板31の傾斜した側
面を有する第1の溝部33内に基板表面より円
弧状に突出するように絶縁膜35″を残存させ
てフイールド領域36を形成してもよい。
(19) As shown in FIG. 17, the field region 36 may be formed by leaving the insulating film 35'' in the first groove 33 having the inclined side surface of the substrate 31 so as to protrude in an arc shape from the surface of the substrate. good.

(20) 以上の実施例はnチヤンネルMOSLSIの製
造工程について説明したが、pチヤンネル
MOSLSIの製造工程についても適用できるこ
とは勿論である。
(20) The above embodiments explained the manufacturing process of n-channel MOSLSI, but
Of course, it can also be applied to the manufacturing process of MOSLSI.

以上説明したようにこの発明によれば、従来の
選択酸化法を用いた場合の種々の欠点を克服する
ことができると共に、段差を有しない任意の幅の
フイールド絶縁領域を形成することができ、もつ
てLSIの高集積化及び高性能化を図ることのでき
る半導体装置の製造方法を提供できる。
As explained above, according to the present invention, it is possible to overcome various drawbacks when using the conventional selective oxidation method, and also to form a field insulating region having an arbitrary width without a step, Thus, it is possible to provide a method for manufacturing a semiconductor device that can achieve higher integration and higher performance of LSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の選択酸化法による問題点を説明
するための断面図、第2図a〜gは本出願人が同
日付で提出した方法によるnチヤンネル
MOSLSIの製造工程を示す断面図、第3図は第
2図a〜fの変形手段によりフイールド領域を形
成した状態を示す断面図、第4図a〜kはこの発
明の一実施例に係るnチヤンネルMOSLSIの製
造工程を示す断面図、第5図、第6図、第7図、
第8図、第9図a,b、第10図、第11図、第
12図、第13図a,b、第14図a,b、第1
5図a,b、第16図a,b、第17図はそれぞ
れこの発明の他の実施例を示す断面図である。 31……シリコン基板、32……マスク材、3
3,33′,33″……第1の溝部、34……p+
領域(チヤンネルストツパ領域)、35……絶縁
膜、36,361,362,363……埋込みフイ
ールド絶縁膜、37……薄い絶縁膜、38……耐
酸化性膜、39……レジスト膜、40……第2の
溝部、41……p+領域、42……フイールド酸
化膜、43……ゲート酸化膜、44……ゲート電
極、45……n+領域(ソース、ドレイン)、46
……層間絶縁膜、47……コンタクトホール、4
8……Al配線。
Figure 1 is a cross-sectional view for explaining the problems with the conventional selective oxidation method, and Figures 2 a to g are n-channels according to the method submitted by the applicant on the same date.
3 is a cross-sectional view showing a state in which a field region is formed by the deformation means shown in FIGS. 2 a to f, and FIGS. Cross-sectional views showing the manufacturing process of channel MOSLSI, Fig. 5, Fig. 6, Fig. 7,
Fig. 8, Fig. 9 a, b, Fig. 10, Fig. 11, Fig. 12, Fig. 13 a, b, Fig. 14 a, b, Fig. 1
5a and 5b, 16a and 16b, and 17 are sectional views showing other embodiments of the present invention. 31...Silicon substrate, 32...Mask material, 3
3, 33', 33''...first groove, 34...p +
Region (channel stopper region), 35... Insulating film, 36, 36 1 , 36 2 , 36 3 ... Buried field insulating film, 37... Thin insulating film, 38... Oxidation resistant film, 39... Resist Film, 40... Second trench, 41... P + region, 42... Field oxide film, 43... Gate oxide film, 44... Gate electrode, 45... N + region (source, drain), 46
...Interlayer insulating film, 47...Contact hole, 4
8...Al wiring.

Claims (1)

【特許請求の範囲】 1 半導体基板の所望部分に傾斜した側面を有し
その傾斜角θを0<θ<90゜の範囲をなす第1の
溝部を設ける工程と、前記第1の溝部を含む半導
体基板全面に絶縁膜を少なくとも第1の溝部の開
口部の最小の幅をaとしたとき(a cot(θ/
2))/2以上の厚さとなるように堆積する工程
と、この絶縁膜をエツチングして前記第1の溝部
内に絶縁膜を残置させる工程と、この絶縁膜の残
置した半導体基板主面に耐酸化性膜を堆積し、こ
の耐酸化性膜の第1の溝部間を選択的にエツチン
グして第2の溝部を形成した後、この耐酸化性膜
をマスクとしてフイールド酸化を行い第1の溝部
間を酸化膜で埋め、前記第1の溝部に残置した絶
縁膜と一体化させることにより広幅のフイールド
領域を形成する工程とを具備したことを特徴とす
る半導体装置の製造方法。 2 前記絶縁膜の残置した半導体基板主面に耐酸
化性膜を堆積した後、この耐酸化性膜及び半導体
基板の前記第1の溝部間を選択的にエツチングす
ることにより、前記第1の溝部に残置した絶縁膜
を少なくとも側面の一部に有する第2の溝部を設
け、しかる後耐酸化性膜をマスクとしてフイール
ド酸化を行うことを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。 3 前記半導体基板に第1の溝部を設けた後、半
導体基板全面又は少なくとも溝部の一部を酸化又
は窒化処理して第1の溝部が塞がれない程度の酸
化膜又は窒化膜を成長せしめることを特徴とする
特許請求の範囲第1項又は第2項記載の半導体装
置の製造方法。 4 前記半導体基板に第1の溝部を設けた後、又
は同基板に第2の溝部を設けた後に、半導体基板
と同一導電型の不純物を各溝部の下部又は側部の
半導体基板の一部に選択的にドーピングすること
を特徴とする特許請求の範囲第1項又は第2項記
載の半導体装置の製造方法。 5 前記第1の溝部を設けた半導体基板に絶縁膜
を堆積後、この絶縁膜の全体もしくは一部に低温
溶融性絶縁膜を堆積し、この低温溶融性絶縁膜を
溶融させた後、絶縁膜をエツチングすることを特
徴とする特許請求の範囲第1項又は第2項の記載
の半導体装置の製造方法。 6 前記絶縁膜の残置した半導体基板の第1の溝
部間を選択的にエツチングすることにより前記第
1の溝部に残置した絶縁膜を少なくとも側面の一
部に有する第2の溝部を設けた後、半導体基板全
面に耐酸化性膜を堆積し第2の溝部の耐酸化性膜
をエツチングし、しかる後この耐酸化性膜をマス
クとしてフイールド酸化を行うことを特徴とする
特許請求の範囲第1項記載の半導体装置の製造方
法。 7 前記フイールド酸化後に耐酸化性膜をマスク
としてフイールド酸化膜の一部をエツチングして
平坦な構造としたことを特徴とする特許請求の範
囲第1項あるいは第2項又は第6項記載の半導体
装置の製造方法。
[Scope of Claims] 1. A step of providing a first groove portion having an inclined side surface in a desired portion of a semiconductor substrate and having an inclination angle θ in a range of 0<θ<90°; When the minimum width of the opening of the first groove is a (a cot(θ/
2) a step of depositing the insulating film to a thickness of 2 or more; a step of etching this insulating film to leave the insulating film in the first trench; and etching the remaining insulating film on the main surface of the semiconductor substrate. After depositing an oxidation-resistant film and selectively etching the oxidation-resistant film between the first trenches to form a second trench, field oxidation is performed using the oxidation-resistant film as a mask to form the first trench. 1. A method of manufacturing a semiconductor device, comprising the step of filling a gap between trenches with an oxide film and integrating it with an insulating film left in the first trench to form a wide field region. 2. After depositing an oxidation-resistant film on the main surface of the semiconductor substrate where the insulating film remains, etching is selectively performed between the oxidation-resistant film and the first groove of the semiconductor substrate, thereby forming the first groove. A semiconductor device according to claim 1, characterized in that a second groove portion having the remaining insulating film on at least a part of the side surface is provided, and then field oxidation is performed using the oxidation-resistant film as a mask. Production method. 3. After providing the first groove in the semiconductor substrate, oxidizing or nitriding the entire surface of the semiconductor substrate or at least a part of the groove to grow an oxide film or a nitride film to an extent that the first groove is not blocked. A method for manufacturing a semiconductor device according to claim 1 or 2, characterized in that: 4. After providing the first groove in the semiconductor substrate or after providing the second groove in the same substrate, impurities having the same conductivity type as the semiconductor substrate are added to a portion of the semiconductor substrate below or on the side of each groove. A method for manufacturing a semiconductor device according to claim 1 or 2, characterized in that selective doping is performed. 5 After depositing an insulating film on the semiconductor substrate provided with the first groove portion, depositing a low-temperature melting insulating film on the whole or part of this insulating film, melting this low-temperature melting insulating film, and then forming an insulating film. A method of manufacturing a semiconductor device according to claim 1 or 2, characterized in that the method comprises etching. 6. After selectively etching the space between the first trenches of the semiconductor substrate where the insulating film remains, a second trench is provided having the insulating film left in the first trench on at least a part of the side surface; Claim 1, characterized in that an oxidation-resistant film is deposited on the entire surface of the semiconductor substrate, the oxidation-resistant film in the second trench is etched, and then field oxidation is performed using this oxidation-resistant film as a mask. A method of manufacturing the semiconductor device described above. 7. The semiconductor according to claim 1, 2, or 6, wherein after the field oxidation, a part of the field oxide film is etched using an oxidation-resistant film as a mask to obtain a flat structure. Method of manufacturing the device.
JP14077381A 1981-09-07 1981-09-07 Manufacture of semiconductor device Granted JPS5842251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14077381A JPS5842251A (en) 1981-09-07 1981-09-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14077381A JPS5842251A (en) 1981-09-07 1981-09-07 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5842251A JPS5842251A (en) 1983-03-11
JPS6355780B2 true JPS6355780B2 (en) 1988-11-04

Family

ID=15276411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14077381A Granted JPS5842251A (en) 1981-09-07 1981-09-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5842251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210090285A (en) * 2018-12-13 2021-07-19 웨이모 엘엘씨 Automated Performance Checks for Autonomous Vehicles
US11760380B2 (en) 2019-03-29 2023-09-19 Honda Motor Co., Ltd. Vehicle control system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434136Y2 (en) * 1987-07-14 1992-08-14
US5904539A (en) * 1996-03-21 1999-05-18 Advanced Micro Devices, Inc. Semiconductor trench isolation process resulting in a silicon mesa having enhanced mechanical and electrical properties
JP2000508474A (en) * 1996-04-10 2000-07-04 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Semiconductor trench isolation with improved planarization method
US5926713A (en) * 1996-04-17 1999-07-20 Advanced Micro Devices, Inc. Method for achieving global planarization by forming minimum mesas in large field areas
US5899727A (en) 1996-05-02 1999-05-04 Advanced Micro Devices, Inc. Method of making a semiconductor isolation region bounded by a trench and covered with an oxide to improve planarization
US6303413B1 (en) * 2000-05-03 2001-10-16 Maxim Integrated Products, Inc. Method of forming a shallow and deep trench isolation (SDTI) suitable for silicon on insulator (SOI) substrates
DE10041084A1 (en) * 2000-08-22 2002-03-14 Infineon Technologies Ag Method for forming a dielectric region in a semiconductor substrate
KR100672156B1 (en) * 2005-05-11 2007-01-19 주식회사 하이닉스반도체 A field oxide layer in semiconductor device and method for forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210090285A (en) * 2018-12-13 2021-07-19 웨이모 엘엘씨 Automated Performance Checks for Autonomous Vehicles
US11760380B2 (en) 2019-03-29 2023-09-19 Honda Motor Co., Ltd. Vehicle control system

Also Published As

Publication number Publication date
JPS5842251A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
US5516720A (en) Stress relaxation in dielectric before metallization
US4419813A (en) Method for fabricating semiconductor device
US4394196A (en) Method of etching, refilling and etching dielectric grooves for isolating micron size device regions
US4532696A (en) Method of manufacturing a semiconductor device for forming a deep field region in a semiconductor substrate
JPS622465B2 (en)
US5371036A (en) Locos technology with narrow silicon trench
JPS6355780B2 (en)
JPS58220445A (en) Manufacture of semiconductor integrated circuit
JPS6325947A (en) Manufacture of semiconductor device
JPS5898943A (en) Manufacture of semiconductor device
JPS6119111B2 (en)
JP2757358B2 (en) Method for manufacturing semiconductor device
JPS60244043A (en) Manufacture of complementary semiconductor device
US4879583A (en) Diffused field CMOS-bulk process and CMOS transistors
JPH0363220B2 (en)
JPS58190040A (en) Preparation of semiconductor device
JPH0338742B2 (en)
JPS62162343A (en) Manufacture of semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS5919349A (en) Semiconductor device and manufacture thereof
JPH0467648A (en) Manufacture of semiconductor device
JPS6025247A (en) Manufacture of semiconductor device
JPH0278247A (en) Manufacture of semiconductor device
JPH02161750A (en) Manufacture of semiconductor device