[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6355407A - Method and device for measuring accuracy of cured surface - Google Patents

Method and device for measuring accuracy of cured surface

Info

Publication number
JPS6355407A
JPS6355407A JP19969086A JP19969086A JPS6355407A JP S6355407 A JPS6355407 A JP S6355407A JP 19969086 A JP19969086 A JP 19969086A JP 19969086 A JP19969086 A JP 19969086A JP S6355407 A JPS6355407 A JP S6355407A
Authority
JP
Japan
Prior art keywords
measured
reflected
curved surface
light
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19969086A
Other languages
Japanese (ja)
Inventor
Koetsu Hibino
光悦 日比野
Hideaki Ueno
秀章 植野
Shigeki Hamaguchi
浜口 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19969086A priority Critical patent/JPS6355407A/en
Publication of JPS6355407A publication Critical patent/JPS6355407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To efficiently measure the accuracy of a curved surface of an object to be measured, with accuracy being endurable for practical use, by constituting the titled device so that the respective reflected rays from the object to be measured and a reference reflecting surface can be projected onto the same screen. CONSTITUTION:This device is constituted of a slide projector which has incorporated with a light source and a concentric circle-shaped pattern, a collimator lens 5 which is under said projector and converts a light beam from the projector 1 to parallel rays, a collimator lens 6 for converging the parallel rays emitted from the lens 5 to a focus of a prototype 2, the prototype 2 which is provided on an optical path of a light beam and has a reference reflecting surface 201 of a prescribed curvature, and a screen 3 to which two reflected light images from the reflecting surface 201 of an object to be measured 4 which has been placed on the reflecting surface 201. In this state, for instance, when the accuracy of the curved surface of the object to be measured 4 is bad, a first reflected light image by a reflection on the surface of the object to be measured 4, and a second reflected light image by a reflection on the reference surface of the prototype 2 are shifted and projected, respectively. By measuring this shift distance, the accuracy of the curved surface of the object to be measured 4 can be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、平滑な曲面を有する材料の反り量など、該材
料の曲面の精度を測定する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring the accuracy of a curved surface of a material, such as the amount of warpage of a material having a smooth curved surface.

本発明の方法及び装置は、液晶セル、あるいは反射板な
どの曲面の精度を測定するのに有用である。
The method and apparatus of the present invention are useful for measuring the precision of curved surfaces such as liquid crystal cells or reflectors.

[従来技術〕 従来、レンズや球面鏡などの、透明もしくは半透明な部
材の曲率あるいは曲面の精度などは、例えば、所定の曲
率のニュートン原器上に被測定物である該部材を載置し
、これにコヒーレント光を照射し、両者からの反射光の
光路差による干渉縞にュートンリング)を利用して測定
しているにニュートン原器法)。
[Prior Art] Conventionally, the curvature or precision of the curved surface of a transparent or semi-transparent member such as a lens or a spherical mirror has been measured by placing the member to be measured on a Newtonian prototype having a predetermined curvature, and The beam is irradiated with coherent light, and measurements are made using Newton's prototype method, which creates interference fringes due to the difference in the optical paths of the reflected light from both.

あるいは、また、いわゆる三次元測定装置を用いて、曲
率などの曲面精度を測定する(リンゲスフェロメータ法
)ことも可能である。
Alternatively, it is also possible to measure the accuracy of a curved surface such as curvature using a so-called three-dimensional measuring device (Linges ferometer method).

また、焦点距離の測定による方法も行なわれている。A method based on focal length measurement is also used.

[発明が解決しようとする問題点] 近年、車載のワイドミラー、アウターミラー、ムーンル
ーフ等について、曲面形状をなす液晶セルが適用される
傾向にある。それにつれセル基板の反り等、曲面の不具
合を無視できなくな□っており、その精度を簡便に測定
し得る方法及び装置が望まれている。
[Problems to be Solved by the Invention] In recent years, liquid crystal cells having a curved shape have tended to be applied to wide mirrors, outer mirrors, moon roofs, etc. mounted on vehicles. As a result, it has become impossible to ignore defects in curved surfaces such as warping of cell substrates, and a method and apparatus that can easily measure the accuracy thereof is desired.

なお、上記したニュートン原器法は、精度が高すぎ、レ
ンズ等の測定には良いが、液晶の反り等のように、あま
り精度を必要としない部材の測定には適していない。数
えるべき干渉縞の本数が多くなりすぎるからである。ま
た、三次元測定装置を用いる場合は、1回の測定では二
次元的にしか情報を得ることができない。
Note that the Newtonian prototype method described above has too high accuracy and is good for measuring lenses and the like, but is not suitable for measuring members that do not require high precision, such as warping of liquid crystals. This is because the number of interference fringes to be counted becomes too large. Furthermore, when using a three-dimensional measuring device, information can only be obtained two-dimensionally in one measurement.

本発明はこのような問題点に鑑みてなされたものであり
、上記要請を満たす方法及び装置を提供するものである
The present invention has been made in view of these problems, and it is an object of the present invention to provide a method and apparatus that meet the above requirements.

[問題点を解決するための手段] 本発明の第1の発明である曲面精度測定方法は所定の曲
率の基準反射面を有する原器の光入射側に、前記所定の
曲率に略合致する曲率の曲□面を有する被測定物を重ね
合せるようにして配置し、基準パターンで遮光された光
線を、前記基準反射面に照射し、前記被測定物の表面で
の反射による第1反射光像、及び前記原器の基準反射面
での反射による第2反射光像を、同一のスクリーンに投
影させ、前記第1反射光像と前記第2反射光像とのズレ
より、前記被測定物の曲面精度を求めることを特徴とす
る。
[Means for Solving the Problems] The method for measuring curved surface accuracy, which is the first aspect of the present invention, is based on a method for measuring curved surface accuracy which is a first aspect of the present invention. Objects to be measured having curved □ surfaces are arranged so as to overlap each other, and a light beam blocked by a reference pattern is irradiated onto the reference reflective surface to form a first reflected light image by reflection on the surface of the object to be measured. , and a second reflected light image resulting from reflection on the reference reflective surface of the prototype are projected onto the same screen, and due to the difference between the first reflected light image and the second reflected light image, the object to be measured is It is characterized by determining the accuracy of the curved surface.

また、本発明の第2の発明である曲面精度測定装置は、
所定の曲率の基準反射面を有し、該所定の曲率に略合致
する曲率の曲面を有する被測定物を光入射側に重ね合せ
′るようにして配置し得る原器と、前記原器の基準反射
面を照射する光源と、該光源と前記基準反射面との間に
位置し、前記光源からの照射光を所定の基準パターンで
遮光する遮光部と、前記光源と前記基準反射面との光路
に、所定角度傾斜さ□せ、かつ、反射面側を前記原器側
に向けて配置された半透鏡と、前記半透鏡の反射面で反
射された反射光像を投影するスクリーンとを有し、該ス
クリーンに投影された、前記被測定物の表面での反射に
よる第1反射光像と、前記基準反射面での反射による第
2反射光像とのズレより前記被測定物の曲面精度を求め
るようにしたことを特徴とする。
Moreover, the curved surface accuracy measuring device which is the second invention of the present invention is as follows:
A prototype having a reference reflecting surface with a predetermined curvature, and an object to be measured having a curved surface with a curvature that substantially matches the predetermined curvature can be placed so as to be superimposed on the light incident side; a light source that illuminates the reference reflective surface; a light shielding section that is located between the light source and the reference reflective surface and blocks the irradiated light from the light source with a predetermined reference pattern; The optical path includes a semi-transparent mirror that is inclined at a predetermined angle and placed with its reflective surface facing the prototype side, and a screen that projects a reflected light image reflected by the reflective surface of the semi-transparent mirror. The accuracy of the curved surface of the object to be measured is determined by the difference between the first reflected light image projected on the screen, which is caused by reflection on the surface of the object to be measured, and the second reflected light image, which is reflected by the reference reflective surface. It is characterized by the fact that it asks for.

換言すれば本発明は、被測定物及び基準反射面からのそ
れぞれの反射光線を同一スクリーン上に投影し、そのズ
レより、曲面精度に関する情報を得るものである。
In other words, the present invention projects the respective reflected light beams from the object to be measured and the reference reflecting surface onto the same screen, and obtains information regarding the curved surface accuracy from the deviation thereof.

ここで所定の曲率の基準反射面とは、平滑な表面を有し
、かつ曲率半径が所定である反射面をいう。また、所定
の曲率半径とは、曲面精度を求めるべき部材の、理想状
態での曲率半径である。なお、反射率は、被測定物表面
の反射率との相対的関係で決定される。要は、観測者が
第1反射光像と第2反射光像とを明確に識別できれば足
りる。
Here, the reference reflective surface with a predetermined curvature refers to a reflective surface that has a smooth surface and a predetermined radius of curvature. Further, the predetermined radius of curvature is the radius of curvature of the member whose curved surface accuracy is to be determined in an ideal state. Note that the reflectance is determined in relation to the reflectance of the surface of the object to be measured. In short, it is sufficient that the observer can clearly distinguish between the first reflected light image and the second reflected light image.

また原器の基準反射面はガラスでもよいが、必要に応じ
てアルミ等の反射膜を形成してもよい。
Further, the reference reflective surface of the prototype may be made of glass, but a reflective film of aluminum or the like may be formed as necessary.

被測定物としては、たとえば、簿膜作成に用い−7一 基板、これらの基板により製造された液晶セル、あるい
は鏡などの反射板等であって、曲面を有する部材を想定
している。なお厚さは3mm以下であれば、表面及び裏
面での反射によるズレは無視できる。また、被測定物が
透明でない場合は、被測定物端面での原器からの投影パ
ターンとのズレ量を把握する。
The object to be measured is, for example, a -71 substrate used for film production, a liquid crystal cell manufactured using these substrates, a reflecting plate such as a mirror, and a member having a curved surface. Note that as long as the thickness is 3 mm or less, deviations due to reflection on the front and back surfaces can be ignored. In addition, if the object to be measured is not transparent, the amount of deviation from the projected pattern from the standard at the end face of the object to be measured is determined.

光源と基準反射面との間には半透鏡を配置し、反射光像
を半透鏡で反射させた後、スクリーンに投影させること
とすれば、装置設計の自由度が増す。
If a semi-transparent mirror is disposed between the light source and the reference reflecting surface, and the reflected light image is reflected by the semi-transparent mirror and then projected onto a screen, the degree of freedom in device design increases.

また、コリメータ等の光学機器を用い、前記半透鏡を透
過する光線及び該半透鏡で反射される光線を平行光線と
すると、測定の精度が向上する。
Further, by using an optical device such as a collimator and making the light beam passing through the semi-transparent mirror and the light beam reflected by the semi-transparent mirror into parallel light beams, the accuracy of measurement is improved.

基準パターンは、反射光像を与えるものである。The reference pattern provides a reflected light image.

たとえば、基準パターンとして同心円状のパターンを用
いると、ズレの観測が容易となる。
For example, if a concentric pattern is used as the reference pattern, it becomes easier to observe deviations.

スクリーンとしては、例えば、すりガラス、拡散板、乳
白色の樹脂板、薄い紙等を用いると、裏面側から前記第
1反射光像及び前記第2反射光像を観測することができ
る。さらに、スクリーン上にそれぞれの反射像のズレ距
離を測定するための目盛りを設けても良い。
For example, if frosted glass, a diffuser plate, a milky white resin plate, thin paper, or the like is used as the screen, the first reflected light image and the second reflected light image can be observed from the back side. Furthermore, a scale may be provided on the screen for measuring the shift distance of each reflected image.

〔作用j 被測定物の曲率が基準反射面の曲率と合致し、かつ平滑
であれば第1反射光像と第2反射光像とは重なり合い、
スクリーンに結像された反射像は鮮明に見える。
[Effect j: If the curvature of the object to be measured matches the curvature of the reference reflective surface and is smooth, the first reflected light image and the second reflected light image overlap,
The reflected image formed on the screen appears clear.

一方、被測定物の曲面の精度が悪く、曲率が基準反射面
と部分的に異なる場合は、被測定物表面と、基準反射面
とが該曲率の異なる部分で平行でないため、第1反射光
像と第2反射光像とはそれぞれズして投影される。
On the other hand, if the precision of the curved surface of the object to be measured is poor and the curvature is partially different from that of the reference reflecting surface, the surface of the object to be measured and the reference reflecting surface are not parallel in the portions where the curvature differs, so the first reflected light The image and the second reflected light image are projected with a difference between each other.

該ズレ距離δを測定することにより被測定物の曲面精度
に関する情報を得る。
By measuring the deviation distance δ, information regarding the accuracy of the curved surface of the object to be measured is obtained.

[実施例] 以下、本発明を具体的実施例に基づいて説明する。[Example] The present invention will be explained below based on specific examples.

まず測定原理を第2図に即して説明する。なお、以下の
説明は平面について行ったが、本発明の曲面においても
、光線が照射される各微小部分については平面としての
議論が成り立つ。
First, the measurement principle will be explained with reference to FIG. Although the following explanation has been made regarding a flat surface, the discussion can also be made that each minute portion irradiated with a light beam is a flat surface even in the case of a curved surface according to the present invention.

被測定物4の反射面の接線41と、基準反射面21とが
原点O(被測定物4の中心部:第1図参照)から又離れ
た部位において、θ[radlの角度を成すものとする
The tangent 41 of the reflective surface of the object to be measured 4 and the reference reflective surface 21 form an angle of θ[radl at a location further away from the origin O (the center of the object to be measured 4: see Figure 1). do.

この場合、該部位における反り量dは、d−又θ ・・
・(1) で与えられる。
In this case, the amount of warpage d at the part is d- or θ...
・It is given by (1).

いま光源から、基準反射面21(図示のように、該反射
面21に平行な面21−で考えるとよい)の法線210
に対して角度αを成す光線a1が入射すると、該光線a
、は面21′で反射されて、光線a2となる。
Now, from the light source, the normal line 210 of the reference reflecting surface 21 (as shown in the figure, it is better to think of it as a plane 21- parallel to the reflecting surface 21)
When a ray a1 is incident at an angle α to
, is reflected by the surface 21' and becomes a light ray a2.

同時に前記光線a1は面401によっても反射されて、
光線a3となる。
At the same time, the light ray a1 is also reflected by the surface 401,
It becomes light ray a3.

しかるに、前記面21の法線210と、面401に立て
た法線410とは角度θ[radlを成す。故に、前記
光線atとa3とは角度2θ[rad]を成すことにな
る。
However, the normal 210 of the surface 21 and the normal 410 erected to the surface 401 form an angle θ[radl. Therefore, the rays at and a3 form an angle 2θ [rad].

したがって、前記反射点からスクリーン3に至る距離を
Lとすると、スクリーン3上でのズレ距離δは、 δ=2Lθ ・・・ (2) として与えられる。
Therefore, if the distance from the reflection point to the screen 3 is L, the deviation distance δ on the screen 3 is given as δ=2Lθ (2).

(1)式及び(2)式より δ=2Ld/父  ・・・ (3) を得る。From equations (1) and (2), δ=2Ld/father...(3) get.

即ち、ズレ距離δを測定することにより、反りIdを求
めることができる。
That is, by measuring the deviation distance δ, the warpage Id can be determined.

本実施例で用いた装置は、第1図に示されるように、光
源と同心円状パターンとを内蔵するスライドプロジェク
タ1と、その下方であって、スライドプロジェクタ1か
らの光を平行光線に変換するコリメータレンズ5と、さ
らにコリメータレンズ5からでた平行光線を原器2の焦
点に収束させ測定物4の基準反射面401からの2つの
反射光像が半透鏡7を介して投影されるスクリーン3と
から構成されている。
As shown in FIG. 1, the device used in this example includes a slide projector 1 that includes a light source and a concentric pattern, and a device below the slide projector 1 that converts light from the slide projector 1 into parallel light beams. A collimator lens 5 and a screen 3 on which parallel light rays emitted from the collimator lens 5 are converged to the focal point of the prototype 2 and two reflected light images from a reference reflective surface 401 of the measurement object 4 are projected via a semi-transparent mirror 7. It is composed of.

原器には、曲率半径R1800mmの1方向曲率付ガラ
スを用いた。また、被測定物には理想状態での曲率半径
R1800mm、寸法φ100mm板厚1.1mmの曲
面ガラスを用いた。この被測定物を三次元測定機を用い
て測定したところ、反りIId=0.1mmであり、こ
のときスクリーン上には、3mm程度のズレが生じた。
A glass with a unidirectional curvature having a radius of curvature R of 1800 mm was used as the prototype. Further, a curved glass having a radius of curvature R of 1800 mm, dimensions φ100 mm, and plate thickness 1.1 mm in an ideal state was used as the object to be measured. When this object to be measured was measured using a three-dimensional measuring machine, the warp IId was 0.1 mm, and at this time, a deviation of about 3 mm occurred on the screen.

この被測定物の反り量dと投影時のズレ距離δとの関係
を示したグラフを作成してはね出し検査(ずれが3mm
を越えるものについてのはね出し検査)を行ったところ
、作業能率は従来よりさらに向上した。
A graph showing the relationship between the amount of warpage d of the object to be measured and the deviation distance δ during projection was created and a pop-up inspection was carried out (when the deviation was 3 mm).
When we conducted a splash test on items that exceeded 100%, the work efficiency was further improved than before.

なお、スライドプロジェクタ1としては、キャビン工業
製(f=75mm、1 :2.5)のものを用いた。
As the slide projector 1, one manufactured by Cabin Kogyo (f=75 mm, 1:2.5) was used.

[発明の効果] 以上のように、本発明によると容易な構成の装置を用い
、簡便に比較的曲率の大きな被測定物の曲面精度を実用
に耐える精度で効率よく測定することが可能となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to easily and efficiently measure the accuracy of a curved surface of a workpiece having a relatively large curvature with an accuracy that can be used in practice using a device with a simple configuration. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に係る曲面精度測定装置の原
理図である。 第2図は、本発明の一定原理を示す図である。 1・・・スライドプロジェクタ 、2・・・原器 3・・・スクリーン 4・・・被測定物 5.6・・・コリメータ 7・・・半透鏡
FIG. 1 is a principle diagram of a curved surface accuracy measuring device according to an embodiment of the present invention. FIG. 2 is a diagram illustrating certain principles of the invention. 1...Slide projector, 2...Prototype 3...Screen 4...Object to be measured 5.6...Collimator 7...Semi-transparent mirror

Claims (7)

【特許請求の範囲】[Claims] (1)所定の曲率の基準反射面を有する原器の光入射側
に、前記所定の曲率に略合致する曲率の曲面を有する被
測定物を重ね合せるようにして配置し、 基準パターンで遮光された光線を、前記基準反射面に照
射し、 前記被測定物の表面での反射による第1反射光像、及び
前記原器の基準反射面での反射による第2反射光像を、
同一のスクリーンに投影させ、前記第1反射光像と前記
第2反射光像とのズレより、前記被測定物の曲面精度を
求めることを特徴とする曲面精度測定方法。
(1) Place an object to be measured having a curved surface with a curvature that approximately matches the predetermined curvature on the light incident side of a prototype having a reference reflective surface with a predetermined curvature so as to overlap the same, and shield the object from light with the reference pattern. irradiate the reference reflective surface with a light ray, and obtain a first reflected light image due to reflection on the surface of the object to be measured and a second reflected light image due to reflection on the reference reflective surface of the prototype;
A method for measuring curved surface accuracy, characterized in that the curved surface accuracy of the object to be measured is determined from the deviation between the first reflected light image and the second reflected light image by projecting them onto the same screen.
(2)前記光線を前記基準反射面及び被測定物に照射す
るに際し、該光線の光軸に対して所定角度傾斜させた半
透鏡を透過させて照射し、 前記2つの反射光線をスクリーンに投影させるに際し、
前記半透鏡にて反射させた後投影させる特許請求の範囲
第1項記載の曲面精度測定方法。
(2) When irradiating the reference reflective surface and the object to be measured with the light beam, the light beam is transmitted through a semi-transparent mirror tilted at a predetermined angle with respect to the optical axis, and the two reflected light beams are projected onto a screen. When making
The curved surface accuracy measuring method according to claim 1, wherein the curved surface accuracy is reflected by the semi-transparent mirror and then projected.
(3)所定の光学機器を用いて、前記半透鏡を透過する
光線、及び前記半透鏡で反射される光線を、平行光線と
するとともに、 凹面鏡を成す前記基準反射面への入射光線を該反射面の
焦点に収束する光線とする特許請求の範囲第2項記載の
曲面精度測定方法。
(3) Using a predetermined optical device, the light beam passing through the semi-transparent mirror and the light beam reflected by the semi-transparent mirror are made into parallel light beams, and the light beam incident on the reference reflecting surface forming the concave mirror is reflected. The curved surface accuracy measuring method according to claim 2, wherein the light beam is converged to the focal point of the surface.
(4)前記基準パターンは、同心円状パターンである特
許請求の範囲第1項記載の曲面精度測定方法。
(4) The curved surface accuracy measuring method according to claim 1, wherein the reference pattern is a concentric pattern.
(5)所定の曲率の基準反射面を有し、該所定の曲率に
略合致する曲率の曲面を有する被測定物を光入射側に重
ね合せるようにして配置し得る原器と、 前記原器の基準反射面を照射する光源と、 該光源と前記基準反射面との間に位置し、前記光源から
の照射光を所定の基準パターンで遮光する遮光部と、 前記光源と前記基準反射面との光路に、所定角度傾斜さ
せ、かつ、反射面側を前記原器側に向けて配置された半
透鏡と、 前記半透鏡の反射面で反射された反射光像を投影するス
クリーンとを有し、 該スクリーンに投影された、前記被測定物の表面での反
射による第1反射光像と、前記基準反射面での反射によ
る第2反射光像とのズレより前記被測定物の曲面精度を
求めるようにしたことを特徴とする曲面精度測定装置。
(5) a prototype having a reference reflecting surface with a predetermined curvature, and on which an object to be measured having a curved surface with a curvature that substantially matches the predetermined curvature can be placed overlappingly on the light incident side; and the prototype. a light source that illuminates the reference reflective surface; a light shielding section that is located between the light source and the reference reflective surface and blocks the irradiated light from the light source with a predetermined reference pattern; and the light source and the reference reflective surface. a semi-transparent mirror tilted at a predetermined angle and placed with its reflective surface facing the prototype side, and a screen for projecting a reflected light image reflected by the reflective surface of the semi-transparent mirror, in the optical path of the semi-transparent mirror; , the accuracy of the curved surface of the object to be measured is determined by the difference between the first reflected light image projected on the screen, which is caused by reflection on the surface of the object to be measured, and the second reflected light image, which is reflected by the reference reflective surface. A curved surface accuracy measuring device characterized by:
(6)前記光源と前記基準反射面との間には、前記半透
鏡を透過する光線、及び前記半透鏡で反射される光線を
平行光線とし、 凹面鏡を成す前記基準反射面に入射する光線を、該基準
反射面の焦点に収束させる光学機器が設置されている特
許請求の範囲第5項記載の曲面精度測定装置。
(6) Between the light source and the reference reflective surface, a light beam passing through the semi-transparent mirror and a light beam reflected by the semi-transparent mirror are parallel rays, and a light ray incident on the reference reflective surface forming a concave mirror is provided. The curved surface accuracy measuring device according to claim 5, further comprising an optical device for converging the reference reflection surface to the focal point of the reference reflecting surface.
(7)前記スクリーンは、裏面側から前記第1反射光像
及び前記第2反射光像を観測することができる乳白色の
薄板状を呈する特許請求の範囲第5項記載の曲面精度測
定装置。
(7) The curved surface accuracy measuring device according to claim 5, wherein the screen has a milky-white thin plate shape that allows the first reflected light image and the second reflected light image to be observed from the back side.
JP19969086A 1986-08-26 1986-08-26 Method and device for measuring accuracy of cured surface Pending JPS6355407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19969086A JPS6355407A (en) 1986-08-26 1986-08-26 Method and device for measuring accuracy of cured surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19969086A JPS6355407A (en) 1986-08-26 1986-08-26 Method and device for measuring accuracy of cured surface

Publications (1)

Publication Number Publication Date
JPS6355407A true JPS6355407A (en) 1988-03-09

Family

ID=16411989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19969086A Pending JPS6355407A (en) 1986-08-26 1986-08-26 Method and device for measuring accuracy of cured surface

Country Status (1)

Country Link
JP (1) JPS6355407A (en)

Similar Documents

Publication Publication Date Title
JP4614136B2 (en) Aspherical mirror, projection-type image display device, and method of manufacturing projection-type image display device
US4072423A (en) Light interference device with low degree of spacial coherence
US4981360A (en) Apparatus and method for projection moire mapping
US5383025A (en) Optical surface flatness measurement apparatus
GB1566659A (en) Contour inspection apparatus
JPS6355407A (en) Method and device for measuring accuracy of cured surface
GB2135448A (en) Inspection apparatus and method
JPS6342413A (en) Method and instrument for measuring flatness
JP2756715B2 (en) Inspection method of Dach reflector molding mold
JP3041205B2 (en) Reference plate for interferometer
JPH08304048A (en) Device for inspecting irregularity defect
JP3354698B2 (en) Flatness measuring device
JP2000258144A (en) Flatness and thickness measurement device for wafer
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
JP3040131B2 (en) Spherical surface scratch inspection device
US3542473A (en) Fizeau plate for use in multiple beam interferometers
US3503674A (en) Scatterplate with antireflection coatings
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JP3214063B2 (en) Hologram interferometer
JP3298241B2 (en) Hologram cassette for hologram interferometer device
KR960015053B1 (en) Device for monitoring plane degree
JPH0344504A (en) Method and apparatus for measuring three-dimensional shape of surface
SU1728650A1 (en) Interferometer for controlling concave aspheric surfaces
JP2671479B2 (en) Surface shape measuring device
JPH08122238A (en) Vickers hardness testing machine