JPS635401A - Proportional control method for program temperature regulator - Google Patents
Proportional control method for program temperature regulatorInfo
- Publication number
- JPS635401A JPS635401A JP14994486A JP14994486A JPS635401A JP S635401 A JPS635401 A JP S635401A JP 14994486 A JP14994486 A JP 14994486A JP 14994486 A JP14994486 A JP 14994486A JP S635401 A JPS635401 A JP S635401A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- proportional
- target temperature
- amount
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000012937 correction Methods 0.000 claims abstract description 9
- 238000013459 approach Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の分野)
本発明は、例えば、電気炉において、比例制御によって
炉内温度が予めプログラムした目標温度になるように電
気ヒータへの通電量を制御するといったように、予めプ
ログラムされた目標温度と温度センサによって検出され
た被制御物の現在温度との偏差eと、
予め設定する比例帯Pb[単位グC]と、 ・前記偏差
eが0の場合の操作mMφ[単位二%]とに基づき、制
御回路により比例操作量Mp[単位:%]を、
M p= (100/ P b) x e+ Mφとし
て演算して出力し、
前記比例操作量Mpに応じて制御対象物の動作を操作器
により制御するプログラム温度調節器の比例制御方法に
関する。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to, for example, an electric furnace in which the amount of electricity applied to an electric heater is controlled by proportional control so that the temperature inside the furnace reaches a pre-programmed target temperature. , the deviation e between the preprogrammed target temperature and the current temperature of the controlled object detected by the temperature sensor, the preset proportional band Pb [unit: C], and the operation mMφ when the deviation e is 0. [Unit: 2%], the control circuit calculates and outputs the proportional operation amount Mp [unit: %] as M p = (100/Pb) x e + Mφ, and according to the proportional operation amount Mp. The present invention relates to a proportional control method for a program temperature controller in which the operation of a controlled object is controlled by an operating device.
(従来技術とその問題点)
従来のこの種の比例制御方法では、現在温度が目標温度
から変化したときに、目標温度に迅速に復帰できるよう
にするため、第4図に示すように、目標温度近くでのゲ
イン、即ち、単位温度に対する操作量が大きくなるよう
に比例帯Pbを狭くしていた。(Prior art and its problems) In this type of conventional proportional control method, when the current temperature changes from the target temperature, in order to quickly return to the target temperature, the target temperature is changed as shown in Figure 4. The proportional band Pb is narrowed so that the gain near the temperature, that is, the manipulated variable relative to the unit temperature becomes large.
しかしながら、このような従来方法の場合では、比例定
数が一定の状態で操作量が変化するように制御するもの
であるため、比例帯Pbの上下限近くでのゲインも大き
く、目標温度から大きく外れて偏差が大きいときに、操
作量が大きく変化しながら目標温度に近付くことになり
、不測にオーバーシュートを生じてしまう欠点があった
。However, in the case of such conventional methods, since the manipulated variable is controlled to change while the proportionality constant is constant, the gain near the upper and lower limits of the proportional band Pb is large, and the temperature deviates significantly from the target temperature. When the deviation is large, the manipulated variable approaches the target temperature while changing greatly, resulting in an unexpected overshoot.
このようなオーバーシュートを回避するためには、第5
図に示すように、比例帯Pbの上下限でのゲインを小さ
くできるように比例帯pbを大きくすることが好ましい
が、この場合、前述の場合とは逆に、目標温度近くでの
ゲインが小さくなるために、制御の応答速度が低下して
目標温度への復帰が遅くなり、目標温度に安定維持する
までに時間がかかってしまう欠点があった。In order to avoid such overshoot, the fifth
As shown in the figure, it is preferable to increase the proportional band pb so that the gain at the upper and lower limits of the proportional band Pb can be reduced, but in this case, contrary to the above case, the gain near the target temperature is small. As a result, the response speed of the control decreases, the return to the target temperature becomes slow, and it takes a long time to stably maintain the target temperature.
(発明の目的)
本発明は、このような事情に鑑みてなされたものであっ
て、偏差が大きい場合におけるオーバーシュートを回避
できながら、偏差が小さい場合には目標温度に迅速に復
帰して、温度制御を安定状態で良好に行なえるようにす
ることを目的とする。(Object of the Invention) The present invention has been made in view of the above circumstances, and is capable of avoiding overshoot when the deviation is large, while quickly returning to the target temperature when the deviation is small. The purpose is to enable temperature control to be performed well in a stable state.
(発明の構成と効果)
本発明は、このような目的を達成するために、冒頭に記
載したプログラム温度調節器の比例制御方法における制
御回路において、
現在温度と目標温度との相対関係を判別し、前記現在温
度が前記目標温度に近い程そのゲインが大きくなりかつ
比例帯の上下限に近付く程そのゲインが小さくなる比例
定数f(k)を演算するとともに、比例操作量Mりを連
続的に変化する補正量f(c)[単位−%〕を演算し、
前記比例操作量Mりを、
Mり= (100/ P b)x ex f(k)+
Mφ十f(c)として演算して出力することを特徴とす
る。(Structure and Effects of the Invention) In order to achieve such an object, the present invention determines the relative relationship between the current temperature and the target temperature in the control circuit in the proportional control method for a programmable temperature controller described at the beginning. , calculates a proportionality constant f(k) whose gain increases as the current temperature approaches the target temperature, and decreases as it approaches the upper and lower limits of the proportional band, and continuously adjusts the proportional operation amount M. Calculate the changing correction amount f(c) [unit - %], and calculate the proportional operation amount M as follows: M = (100/P b) x ex f(k) +
It is characterized in that it is calculated and output as Mφ10f(c).
この構成によれば、偏差が大きくて現在温度が比例帯の
上下限に近付けば近付く程比例定数が小さくなり、単位
温度に対する操作量の変化、即ち、ゲインを小さくでき
、そして、偏差が小さくて現在温度が目標温度に近い状
態では、比例定数が大きくなってゲインを大きくできる
。According to this configuration, the larger the deviation is and the closer the current temperature is to the upper and lower limits of the proportional band, the smaller the proportional constant becomes. When the current temperature is close to the target temperature, the proportionality constant becomes large and the gain can be increased.
したがって、偏差が大きくて現在温度が比例帯の上下限
に近いときには、ゲインが小さいから、目標温度に急激
に復帰動作することを抑制できて不θすのオーバーシュ
ートの発生を防止できるようになった。Therefore, when the deviation is large and the current temperature is close to the upper and lower limits of the proportional band, the gain is small, so it is possible to suppress the sudden return operation to the target temperature and prevent the occurrence of an overshoot due to the θ error. Ta.
しかも、偏差が小さくて現在温度が目標温度に近い状態
では、ゲインが大きいから、制御の応答速度が大になっ
て目標温度に迅速に復帰でき、全体として、オーバーシ
ュートを発生することなく、温度制御を安定状態で良好
に行なえるようになった。Moreover, when the deviation is small and the current temperature is close to the target temperature, the gain is large, so the response speed of the control is high and the target temperature can be returned quickly. Control can now be performed in a stable state.
(実施例の説明)
以下、本発明を図面に示す実施例に基づいて詳細に説明
する。第1図は、本発明の実施例に係るプログラム温度
調節器の比例制御方法を示すブロック図である。この図
において、1は、被制御物としての電気炉の内部の温度
を検出する温度センサ、2は設定操作部(キーボード)
であり、この設定操作部2に対する入力操作により、目
標温度を予めプログラムしたり、また、比例帯Pb[単
位9℃]や偏差eが0の場合の操作量Mφ[単位−%]
、更には、比例定数f (k)としてのに、、に、、に
3(但し、k、< k、< kl、但し、いずれも負の
数値である)、ならびに、後述する領域A + 、 A
t 、 A a 、A −、A sどうしの境界で比
例操作量Mpを連続的に変化するための補正量f(c)
[単位二%]としてのC+、Ct、C3それぞれを予め
入力して内部メモリ(図示せず)に旧柄しておくもので
ある。(Description of Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings. FIG. 1 is a block diagram illustrating a proportional control method for a program temperature controller according to an embodiment of the present invention. In this figure, 1 is a temperature sensor that detects the temperature inside the electric furnace as a controlled object, and 2 is a setting operation unit (keyboard).
By inputting to this setting operation section 2, the target temperature can be programmed in advance, and the manipulated variable Mφ [unit -%] when the proportional band Pb [unit: 9°C] and the deviation e is 0.
, Furthermore, the proportionality constant f (k) is , , , , 3 (k, < k, < kl, however, all are negative values), and the area A + , which will be described later, A
Correction amount f(c) for continuously changing the proportional operation amount Mp at the boundary between t, Aa, A-, and As
Each of C+, Ct, and C3 as [unit 2%] is input in advance and stored in an internal memory (not shown) as an old pattern.
3は制御回路であり、前記温度センサlから入力される
現在温度と、前記設定操作部2から入力された各種設定
値とに基づき、比例操作量1vIpを演算して操作器4
に出力し、その比例操作量Mpに応じて操作器4を制御
操作し、電気炉内に備えられるヒータ5の加熱量を制御
するように構成されている。前記操作器4は、例えば、
電磁開閉器で構成され、その単位時間当たりの通電時間
を調節することによりヒータ5の加熱量を制御するよう
に構成されるものである。3 is a control circuit which calculates a proportional operation amount 1vIp based on the current temperature input from the temperature sensor l and various setting values input from the setting operation section 2, and controls the operation device 4.
The controller 4 is configured to output a signal to the controller 4 and control the operating device 4 according to the proportional operation amount Mp to control the heating amount of the heater 5 provided in the electric furnace. The operating device 4 is, for example,
It is composed of an electromagnetic switch, and is configured to control the heating amount of the heater 5 by adjusting the energization time per unit time.
以下、本発明方法につき、第2図のフローチャートを用
いて説明する。The method of the present invention will be explained below using the flowchart shown in FIG.
先ず、温度センサ1によって検出された電気炉内の現在
温度を入力しくSl)、その現在温度と予めプログラム
された目標温度との偏差eを算出する(S2)。First, the current temperature inside the electric furnace detected by the temperature sensor 1 is input (S1), and the deviation e between the current temperature and a preprogrammed target temperature is calculated (S2).
次いで、現在温度が目標温度に近い領域A3(第3図参
照)にあるかどうかを判断しくS3)、その領域A3に
あれば、ステップS4に移行し、比例定数として最もゲ
インが大きいに1を、そして、補正量としてclをそれ
ぞれ内部メモリから読み出す。Next, it is determined whether the current temperature is in the region A3 (see Figure 3) close to the target temperature (S3). If it is in the region A3, the process moves to step S4, and the proportional constant with the largest gain is set to 1. , cl are each read out from the internal memory as the correction amount.
現在温度が上述の近い領域A3に無ければ、ステップS
3からステップs5に移行して、偏差がやや大きい領域
A2またはA4にあるかどうかを判断し、この領域A、
またはA4にあれば、ステップS6に移行し、比例定数
として前記に、よりもゲインが小さいに、を、そして補
正量としてC1をそれぞれ内部メモリから読み出す。If the current temperature is not in the above-mentioned close area A3, step S
3 to step s5, it is determined whether the deviation is in a slightly larger area A2 or A4, and this area A,
Or, if it is A4, the process moves to step S6, and the proportionality constant, which has a smaller gain than the above, and C1, which are the correction amount, are read out from the internal memory.
現在温度が前記領域A2およびA4のいずれにも無けれ
ば、偏差が最も大きい領域A1またはA5にあると判断
し、しかる後にステップs7に移行し、比例定数として
前記に、よりもゲインが小さいに3を、そして、補正量
としてC3をそれぞれ読み出す。If the current temperature is not in either of the areas A2 and A4, it is determined that the deviation is in the area A1 or A5 with the largest deviation, and the process then proceeds to step s7, where the proportionality constant is set to 3, which has a smaller gain than the area A1 or A5. and C3 are read out as the correction amount.
上述のようにして現在温度と目標温度との相対関係を判
別し、所定の比例定数f(k)(k、、に、、に3のう
ちのいずれか)と補正量f(c)(c+、cz、C3の
うちのいずれか)とを読み出した後、ステップs8に移
行し、ステップS2で算出された現在温度と目標温度と
の偏差eと、予め設定されている比例帯Pb[単位:℃
]と、上記比例定数f(k)および補正ff1f(c)
と、偏差eが0の場合の桑作1tMφ[単位:%]とに
基づき、比例操作量Mりを、
M p= (100/ P b)x ex f(k)+
Mφ+f(c)として演算して操作器4に出力し、そ
の後にステップS1に戻し、前述同様の処理を繰り返す
。The relative relationship between the current temperature and the target temperature is determined as described above, and the predetermined proportionality constant f(k) (one of 3 for k, , , , ) and the correction amount f(c) (c+ , cz, C3), the process moves to step s8, and the deviation e between the current temperature and the target temperature calculated in step S2 and the preset proportional band Pb [unit: ℃
], the above proportionality constant f(k) and correction ff1f(c)
Based on the mulberry production 1tMφ [unit: %] when the deviation e is 0, the proportional operation amount M is calculated as follows: M p= (100/P b) x ex f(k)+
It calculates as Mφ+f(c) and outputs it to the controller 4, and then returns to step S1 and repeats the same process as described above.
以上の処理を行なう結果、第3図に示すように、偏差e
が大きくて現在温度が比例帯の上下限近く(領域A、、
A5)にあれば比例操作量Mpのゲインを小さく、かつ
、それよりも目標温度に現在温度が近くなれば(領域A
2.A4)、比例操作量Mpのゲインを大きくし、そし
て、現在温度が目標温度の近くになれば(領域A3)、
比例操作量Mpのゲインが最大になるようにできる。As a result of the above processing, as shown in Figure 3, the deviation e
is large and the current temperature is close to the upper and lower limits of the proportional band (area A,...
A5), the gain of the proportional manipulated variable Mp is made small, and if the current temperature is closer to the target temperature than that (area A
2. A4), when the gain of the proportional operation amount Mp is increased and the current temperature becomes close to the target temperature (area A3),
The gain of the proportional operation amount Mp can be maximized.
上記実施例では、電気炉の場合について説明したが、本
発明としては、例えば、プラスチック成形機における樹
脂溶融のためのバンドヒータの温度制御とか、更には、
冷却装置における温度制御など各種の用途に適用できる
。In the above embodiment, the case of an electric furnace has been explained, but the present invention can also be applied to, for example, temperature control of a band heater for melting resin in a plastic molding machine, and furthermore,
It can be applied to various applications such as temperature control in cooling equipment.
上記実施例では、比例帯の領域を5分割しているが、本
発明としては、6分割以上に細分割するようにしても良
い。In the above embodiment, the area of the proportional band is divided into five parts, but the present invention may be subdivided into six parts or more.
第1図は、本発明の実施例に係るプログラム温度調節器
の比例制御方法を示すブロック図、第2図は、本発明方
法を説明するフローチャート、第3図は、比例操作量と
比例帯との関係を示すグラフ、第4図は、従来例の比例
操作量と比例帯との関係を示すグラフ、第5図は、比較
例の比例操作量と比例帯との関係を示すグラフである。
l・・・温度センサ、
3・・・制御回路、
4・・操作器。FIG. 1 is a block diagram showing a proportional control method for a programmable temperature controller according to an embodiment of the present invention, FIG. 2 is a flowchart explaining the method of the present invention, and FIG. 3 is a diagram showing a proportional operation amount and a proportional band. FIG. 4 is a graph showing the relationship between the proportional operation amount and the proportional band in the conventional example, and FIG. 5 is a graph showing the relationship between the proportional operation amount and the proportional band in the comparative example. l...Temperature sensor, 3...Control circuit, 4...Operator.
Claims (1)
って検出された被制御物の現在温度との偏差eと、 予め設定する比例帯Pb[単位:℃]と、 前記偏差eが0の場合の操作量Mφ[単位:%]とに基
づき、制御回路により比例操作量Mp[単位:%]を、 Mp=(100/Pb)×e+Mφ として演算して出力し、 前記比例操作量Mpに応じて制御対象物の動作を操作器
により制御するプログラム温度調節器の比例制御方法で
あって、 前記制御回路において、前記現在温度と前記目標温度と
の相対関係を判別し、前記現在温度が前記目標温度に近
い程そのゲインが大きくなりかつ前記比例帯の上下限に
近付く程そのゲインが小さくなる比例定数f(k)を演
算するとともに、前記比例操作量Mpを連続的に変化す
る補正量f(c)[単位:%]を演算し、 前記比例操作量Mpを、 Mp=(100/Pb)×e×f(k)+Mφ+f(c
)として演算して出力することを特徴とするプログラム
温度調節器の比例制御方法。(1) The deviation e between the pre-programmed target temperature and the current temperature of the controlled object detected by the temperature sensor, the preset proportional band Pb [unit: °C], and the operation when the deviation e is 0. Based on the amount Mφ [unit: %], the control circuit calculates and outputs the proportional operation amount Mp [unit: %] as Mp=(100/Pb)×e+Mφ, and controls according to the proportional operation amount Mp. A proportional control method for a program temperature controller in which the operation of a target object is controlled by an operation device, the control circuit determining a relative relationship between the current temperature and the target temperature, and determining whether the current temperature is equal to the target temperature. Calculate a proportionality constant f(k) in which the gain becomes larger as it approaches the upper and lower limits of the proportional band, and becomes smaller as it approaches the upper and lower limits of the proportional band, and a correction amount f(c) that continuously changes the proportional operation amount Mp. [Unit: %] is calculated, and the proportional operation amount Mp is calculated as follows: Mp=(100/Pb)×e×f(k)+Mφ+f(c
) A proportional control method for a program temperature controller, characterized by calculating and outputting as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14994486A JPS635401A (en) | 1986-06-26 | 1986-06-26 | Proportional control method for program temperature regulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14994486A JPS635401A (en) | 1986-06-26 | 1986-06-26 | Proportional control method for program temperature regulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS635401A true JPS635401A (en) | 1988-01-11 |
Family
ID=15485985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14994486A Pending JPS635401A (en) | 1986-06-26 | 1986-06-26 | Proportional control method for program temperature regulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS635401A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06206928A (en) * | 1992-11-03 | 1994-07-26 | Repsol Quimica Sa | Hydrogenation of double bond of conjugated diene polymer in solution and produced hydrogenated block polymer |
US6548598B2 (en) | 2000-04-21 | 2003-04-15 | Jsr Corporation | Thermoplastic resin composition |
US6838538B2 (en) | 2001-03-26 | 2005-01-04 | Jsr Corporation | Hydrogenated modified polymer, process for producing the same and composition containing the same |
WO2007066584A1 (en) | 2005-12-05 | 2007-06-14 | Jsr Corporation | Thermoplastic elastomer composition, foam product, and process for production of the composition or foam product |
WO2008117868A1 (en) | 2007-03-28 | 2008-10-02 | Jsr Corporation | Modified hydrogenated diene polymer composition |
US7794807B2 (en) | 2004-09-07 | 2010-09-14 | Denki Kagaku Kogyo Kabushiki Kaisha | Conductive composite sheeting |
WO2011078340A1 (en) | 2009-12-25 | 2011-06-30 | Jsr株式会社 | Composition for heat-storage material, and heat-storage material |
WO2012073678A1 (en) | 2010-11-29 | 2012-06-07 | Jsr株式会社 | Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries |
WO2014126184A1 (en) | 2013-02-14 | 2014-08-21 | Jsr株式会社 | Method for producing hydrogenated conjugated diene polymer |
EP3173441A1 (en) | 2006-02-02 | 2017-05-31 | JSR Corporation | Hydrogenated diene polymer composition and molded rubber article |
EP3208107A1 (en) | 2016-02-18 | 2017-08-23 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP3208108A1 (en) | 2016-02-18 | 2017-08-23 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire and method for producing pneumatic tire |
EP3326838A1 (en) | 2016-11-22 | 2018-05-30 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP3424750A1 (en) | 2017-07-05 | 2019-01-09 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
FR3079835A1 (en) | 2018-04-04 | 2019-10-11 | Asahi Kasei Kabushiki Kaisha | WATERPROOF SHEET ADDITIVE CONTAINING ASPHALT, PROCESS FOR PRODUCING ASPHALT-CONTAINING WATERPROOF SHEET, ASPHALT COMPOSITION, AND ASPHALT-CONTAINING WATERPROOF SHEET |
EP3552840A1 (en) | 2018-04-09 | 2019-10-16 | Sumitomo Rubber Industries, Ltd. | Tire rubber composition and tire |
WO2020031904A1 (en) | 2018-08-06 | 2020-02-13 | 住友ゴム工業株式会社 | Pneumatic tire |
US10570259B2 (en) | 2015-09-02 | 2020-02-25 | Jsr Corporation | Composition and formed article |
WO2020100494A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020100492A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020100493A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020100495A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020162304A1 (en) | 2019-02-05 | 2020-08-13 | 住友ゴム工業株式会社 | Rubber composition and tire |
WO2020261618A1 (en) | 2019-06-26 | 2020-12-30 | 住友ゴム工業株式会社 | Pneumatic tire |
EP3878904A1 (en) | 2020-02-05 | 2021-09-15 | JSR Corporation | Polymer composition, crosslinked polymer, and tire |
EP4371783A1 (en) | 2022-11-18 | 2024-05-22 | Sumitomo Rubber Industries, Ltd. | Tire |
-
1986
- 1986-06-26 JP JP14994486A patent/JPS635401A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06206928A (en) * | 1992-11-03 | 1994-07-26 | Repsol Quimica Sa | Hydrogenation of double bond of conjugated diene polymer in solution and produced hydrogenated block polymer |
US6548598B2 (en) | 2000-04-21 | 2003-04-15 | Jsr Corporation | Thermoplastic resin composition |
US6838538B2 (en) | 2001-03-26 | 2005-01-04 | Jsr Corporation | Hydrogenated modified polymer, process for producing the same and composition containing the same |
US7794807B2 (en) | 2004-09-07 | 2010-09-14 | Denki Kagaku Kogyo Kabushiki Kaisha | Conductive composite sheeting |
WO2007066584A1 (en) | 2005-12-05 | 2007-06-14 | Jsr Corporation | Thermoplastic elastomer composition, foam product, and process for production of the composition or foam product |
EP3173441A1 (en) | 2006-02-02 | 2017-05-31 | JSR Corporation | Hydrogenated diene polymer composition and molded rubber article |
WO2008117868A1 (en) | 2007-03-28 | 2008-10-02 | Jsr Corporation | Modified hydrogenated diene polymer composition |
WO2011078340A1 (en) | 2009-12-25 | 2011-06-30 | Jsr株式会社 | Composition for heat-storage material, and heat-storage material |
US8618205B2 (en) | 2009-12-25 | 2013-12-31 | Jsr Corporation | Thermal storage medium composition and thermal storage medium |
US9172092B2 (en) | 2010-11-29 | 2015-10-27 | Jsr Corporation | Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrode, and all-solid-state battery |
WO2012073678A1 (en) | 2010-11-29 | 2012-06-07 | Jsr株式会社 | Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries |
WO2014126184A1 (en) | 2013-02-14 | 2014-08-21 | Jsr株式会社 | Method for producing hydrogenated conjugated diene polymer |
US10570259B2 (en) | 2015-09-02 | 2020-02-25 | Jsr Corporation | Composition and formed article |
EP3208107A1 (en) | 2016-02-18 | 2017-08-23 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP3208108A1 (en) | 2016-02-18 | 2017-08-23 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire and method for producing pneumatic tire |
EP3326838A1 (en) | 2016-11-22 | 2018-05-30 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP3424750A1 (en) | 2017-07-05 | 2019-01-09 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
FR3079835A1 (en) | 2018-04-04 | 2019-10-11 | Asahi Kasei Kabushiki Kaisha | WATERPROOF SHEET ADDITIVE CONTAINING ASPHALT, PROCESS FOR PRODUCING ASPHALT-CONTAINING WATERPROOF SHEET, ASPHALT COMPOSITION, AND ASPHALT-CONTAINING WATERPROOF SHEET |
DE102019107726B4 (en) | 2018-04-04 | 2024-09-26 | Asahi Kasei Kabushiki Kaisha | Additive for bituminous sealing membrane, process for producing a bituminous sealing membrane, bitumen composition and use of the bitumen composition |
EP3552840A1 (en) | 2018-04-09 | 2019-10-16 | Sumitomo Rubber Industries, Ltd. | Tire rubber composition and tire |
WO2020031904A1 (en) | 2018-08-06 | 2020-02-13 | 住友ゴム工業株式会社 | Pneumatic tire |
WO2020100493A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020100492A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020100495A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020100494A1 (en) | 2018-11-12 | 2020-05-22 | 住友ゴム工業株式会社 | Rubber composition and pneumatic tire |
WO2020162304A1 (en) | 2019-02-05 | 2020-08-13 | 住友ゴム工業株式会社 | Rubber composition and tire |
WO2020261618A1 (en) | 2019-06-26 | 2020-12-30 | 住友ゴム工業株式会社 | Pneumatic tire |
EP3878904A1 (en) | 2020-02-05 | 2021-09-15 | JSR Corporation | Polymer composition, crosslinked polymer, and tire |
EP4371783A1 (en) | 2022-11-18 | 2024-05-22 | Sumitomo Rubber Industries, Ltd. | Tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS635401A (en) | Proportional control method for program temperature regulator | |
US5173224A (en) | Fuzzy inference thermocontrol method for an injection molding machine with a pid control | |
US4669040A (en) | Self-tuning controller | |
KR100511670B1 (en) | Control Device, Temperature Controller, and Heat Treatment Device | |
US5149472A (en) | Fuzzy inference thermocontrol method for an injection molding machine | |
US5762839A (en) | Temperature control method for an injection molding machine | |
US6911628B1 (en) | Control system and control unit | |
EP0396749B1 (en) | System for controlling servo motor | |
JPS5951133A (en) | Electronic governor | |
JP3252114B2 (en) | Electric motor control device | |
JPH11305805A (en) | Process control method and electronic device manufacture using the same | |
JPS6270904A (en) | Temperature control method | |
JP2597920B2 (en) | Temperature control method for injection molding machine | |
JPH0720948A (en) | Controller for heater | |
JPH04294402A (en) | Pid control device | |
JPH02259806A (en) | Controller | |
JPS6121391B2 (en) | ||
JP2910136B2 (en) | Temperature control system for tundish molten steel plasma heating system | |
JP2652977B2 (en) | Numerical control unit | |
JPH071509A (en) | Method and device for regulating temperature of nozzle of injection device | |
JPH10124104A (en) | Control method for semiconductor manufacturing equipment | |
JPS5847567A (en) | Electric power source for welding | |
JPH05324011A (en) | Pid controller | |
JP2915220B2 (en) | Process control equipment | |
JPH01304512A (en) | Controller for air conditioner |