[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6352645B2 - - Google Patents

Info

Publication number
JPS6352645B2
JPS6352645B2 JP12507279A JP12507279A JPS6352645B2 JP S6352645 B2 JPS6352645 B2 JP S6352645B2 JP 12507279 A JP12507279 A JP 12507279A JP 12507279 A JP12507279 A JP 12507279A JP S6352645 B2 JPS6352645 B2 JP S6352645B2
Authority
JP
Japan
Prior art keywords
reaction
mol
polymerization
minutes
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12507279A
Other languages
Japanese (ja)
Other versions
JPS5649707A (en
Inventor
Teruhiro Sato
Kyotaka Ogawa
Tsutomu Takahashi
Toshihiro Uei
Kenji Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP12507279A priority Critical patent/JPS5649707A/en
Publication of JPS5649707A publication Critical patent/JPS5649707A/en
Publication of JPS6352645B2 publication Critical patent/JPS6352645B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、α―オレフイン重合体の製造方法に
関し、更に詳しくは、改良された熱安定性を有す
る高活性な触媒によつて、高結晶性であり、パウ
ダー形状の改良されたα―オレフイン重合体の製
造方法に関する。 α―オレフインは周期律表の〜族の遷移金
属化合物と〜族の金属の有機金属化合物とか
らなるいわゆるチーグラー・ナツタ触媒によつて
重合することはよく知られている。中でもプロピ
レン、ブテン―1等の高結晶性重合体を得るため
には遷移金属化合物成分として、三塩化チタンが
最も広く使用されている。その三塩化チタンはそ
の製法により次の3種類のものに分けられる。 四塩化チタンを水素で還元した後ボールミル
で粉砕して活性化したもの(三塩チタン
(HA)と呼ばれるもの)。 四塩化チタンを金属アルミニウムで還元した
後、ボールミル粉砕によつて活性化された一般
式Ticl3・1/3AIcl3で表わされる化合物(いわ ゆる三塩化チタン(AA)と称されるもの)。 四塩化チタンを有機アルミニウム化合物で還
元後で熱処理したもの。 しかしながらこれらの三塩化チタンはいずれ
も、触媒活性、得られる重合体の立体規則性のい
ずれの点に於ても十分に満足できるものではな
い。 これらの欠点を改良するため、触媒活性を上げ
ると共に、無定形重合体の生成を全くなくすか、
あつても極めてわずかにすることを目的として、
種々の方法が考えられ、又試みられている。その
一つの方法として、四塩化チタンを有機アルミニ
ウム化合物で還元して得られた三塩化チタンを、
電子供与体及び四塩化チタンで処理することによ
り触媒活性を上げ、かつ無定形重合体の生成を少
なくする方法が既に提案されている(例えば特開
昭47−34478)。しかし、これ等の方法によるもの
は触媒の熱安定性に欠ける欠点がある。例えば、
比較的高温(例えば70℃以上)で重合すると、重
合体粒子は微粒子化し、重合反応に用いた溶媒に
よつて膨潤したり、又処理された還元固体触媒を
比較的高温で長時間放置すると重合活性が大巾に
低下する。このことは重合装置の生産性を高める
ために高温で重合反応を行なわせることが出来な
かつたり、触媒の保存のために特別な注意を要し
たりするので、工業的に実施する上では不利とな
る。 また、Ticl4と有機アルミニウム化合物を夫々
別に一定量の錯生成剤(電子供与体もその一種で
ある)とあらかじめ混合して反応させた二つの反
応液を混合、反応させて固体触媒成分を調製する
方法も提案されている(特開昭53−9296など)。
この方法でも、特開昭47−34478と同じ様に触媒
の熱安定性に欠ける欠点がある。 また、Ticl4は錯生成剤とあらかじめ混合しな
いで、これと、有機アルミニウム化合物と錯生成
剤とを混合反応させたものとを、反応させること
も公知である(特公昭46−8768号)。しかし、こ
の方法による場合には、還元反応を20℃〜200℃
で行つた後に、150℃〜200℃の高温にする上、触
媒活性も、十分なものではなかつた。 更に、Ticl4に有機アルミニウム化合物及びエ
ーテルからなる均一な液状物を添加するか、又は
この添加順序を逆に行い、三塩化チタンを含有す
る液状物を製造する方法(特開昭52−115797号)
及び、その液状物を150℃以下に加熱して、微粒
状三塩化チタンを析出させる方法(特開昭52−
47594号など)も提案されている。これらの方法
でも、触媒活性が十分でなく、又、触媒の熱安定
性に欠ける欠点がある上、触媒の製法に於て、少
くとも3つの反応段階、つまり、有機アルミニウ
ム化合物とエーテルとの反応による液状物の製
造、液状物とTicl4との反応による液状化三塩化
チタンの製造、加熱による微粒状三塩化チタンの
析出があり、簡単化されてはいない。 新規な簡単化された方法として、Ticl4に有機
アルミニウム化合物と錯生成剤と混合反応させた
ものを反応させ、直接、粒子状Ticl3を形成させ
る方法も提案されている(特開昭53−9296号)。
しかしながらこの場合には、褐色のTicl3が生成
し、又、重合活性も著るしく低く、得られたプロ
ピレン重合物の結晶性も低い事が知られている
(特開昭53−9296号、比較例E)。 本発明者等は、液状化した三塩化チタンを作る
事なしに、直接、高活性で、高結晶性ポリマーを
製造出来る固体生成物を得る研究をした結果、
Ticl4は、あらかじめ錯生成剤と混合することな
く、有機アルミニウム化合物に対して一定量の電
子供与体を反応させて得られる反応生成物に
Ticl4を芳香族化合物の存在下に反応せしめ、そ
の後、さらに一定量の電子供与体を加えて反応さ
せて得られる固体生成物と有機アルミニウムとを
組み合せたものは非常に高活性で、かつ熱安定性
の改良された触媒であり、これを用いて高結晶性
でパウダー形状の改良されたα―オレフイン重合
体が得られる事を見出し、本発明に到達した。 本発明の目的は、新規な調製法によつて得られ
る高い熱安定性と高い重合活性を持つ触媒を用い
て、重合体収量が大きく形状良好なα―オレフイ
ン重合体を製造する方法を提供するにある。 本発明は、有機アルミニウム化合物1モルに対
して電子供与体(以下において最初の電子供与体
と言うことがある)1〜2モルを反応させて得ら
れる反応生成物(以下において(A)または反応生成
物(A)と略記することがある)に、四塩化チタンを
芳香族化合物の存在下に反応させた後に、さらに
電子供与体(以下において2番目の電子供与体と
言うことがある)1〜7モルを反応させて得られ
る固体生成物()を、有機アルミニウム化合物
と組み合わせて得られる触媒の存在下に、α―オ
レフインを重合することを特徴とするα―オレフ
イン重合体を製造する方法である。 有機アルミニウム化合物(1モル)と最初の電
子供与体(1〜2モル)との反応は、触媒中で―
20℃〜200℃、好ましくは―10℃〜100℃で、30秒
間〜5時間行う。有機アルミニウム化合物に電子
供与体を加えてもよく、その逆であつてもよい。
溶媒の使用量は有機アルミニウム1モルに対して
0.5〜5が適当である。反応終了後の反応液
(反応生成液(A)と言うことがある)は通常その
まゝ反応生成物(A)として次の反応に用いるが、触
媒を除いて用いることもできる。上記反応におい
て電子供与体の使用量が1モルより少ないと、そ
の後2番目の電子供与体を反応させても効果が充
分でない恐れがあり、また最初の電子供与体の使
用量が2モルよりも多い場合は、2番目の電子供
与体を反応させると却つて触媒の熱安定性が劣
り、また重合活性も低下する欠点がある。 上記反応に用いる有機アルミニウム化合物は、
一般式AlRnR′n′X3-(o+o)(式中R,R′はアルキル
基、アリール基、アルカリール基、シクロアルキ
ル基等の炭化水素基又はアルコキシ基を示し、X
はフツ素、塩素、臭素及びヨウ素のハロゲンを表
わし、又n、n′はO<n+n′3の任意の数を表
わす)で表わされるもので、その具体例としては
トリメチルアルミニウム、トリエチルアルミニウ
ム、トリn―プロピルアルミニウム、トリn―ブ
チルアルミニウム、トリi―ブチルアルミニウ
ム、トリn―ヘキシルアルミニウム、トリi―ヘ
キシルアルミニウム、トリ2―メチルペンチルア
ルミニウム、トリn―オクチルアルミニウム、ト
リn―デシルアルミニウム等のトリアルキルアル
ミニウム類、ジエチルアルミニウムモノクロライ
ド、ジn―プロピルアルミニウムモノクロライ
ド、ジi―ブチルアルミニウムモノクロライド、
ジエチルアルミニウムモノフルオライド、ジエチ
ルアルミニウムモノブロマイド、ジエチルアルミ
ニウムモノアイオダイド等のジエチルアルミニウ
ムモノハライド類、ジエチルアルミニウムハイド
ライド等のアルキルアルミニウムハイドライド
類、メチルアルミニウムセスキクロライド、エチ
ルアルミニウムセスキクロライド、エチルアルミ
ニウムジクロライド、i―ブチルアルミニウムジ
クロライド等のアルキルアルミニウムハライド類
などのあげられ、他にモノエトキシジエチルアル
ミニウム、ジエトキシモノエチルアルミニウム等
のアルコキシアルキルアルミニウム類を用いる事
も出来る。 電子供与体としては、酸素、窒素、硫黄、燐の
いずれかの原子を有する有機化合物、即ちアルコ
ール類、エーテル類、エステル類、アルデヒド
類、脂肪酸類、ケトン類、ニトリル類、アミン
類、イソシアネート類、アゾ化合物、ホスフイン
類、ホスフアイト類、ホスフイナイト類、チオエ
ーテル類、チオアルコール類などが示される。具
体例としてはメタノール、エタノール、プロパノ
ール、ブタノール、ペンタノール、ヘキサノー
ル、オクタノール、フエノール、クレゾール、キ
シレノール、エチルフエノール、ナフトール等の
アルコール類、ジエチルエーテル、ジn―プロピ
ルエーテル、ジn―ブチルエーテル、ジi―アル
ミルエーテル、ジn―ペンチルエーテル、ジn―
ヘキシルエーテル、ジn―オクチルエーテル、ジ
i―オクチルエーテル、エチレングリコールモノ
メチルエーテル、ジフエニルエーテル、テトラヒ
ドロフランなどのエーテル類、酢酸エチル、ギ酸
ブチル、酢酸アミル、酪酸ビニル、酢酸ビニル、
安息香酸エチル、安息香酸プロピル、安息香酸ブ
チル、安息香酸オクチル、安息香酸2―エチルヘ
キシル、トルイル酸メチル、トルイル酸エチル、
トルイル酸2―エチルヘキシル、アニス酸メチ
ル、アニス酸エチル、アニス酸プロピル、ケイ皮
酸エチル、ナフトエ酸メチル、ナフトエ酸エチ
ル、ナフトエ酸プロピル、ナフトエ酸ブチル、ナ
フトエ酸2―エチルヘキシル、フエニル酢酸エチ
ル等のエステル類、アセトアルデヒド、ベンズア
ルデヒドなどのアルデヒド類、ギ酸酢酸、プロピ
ルオン酸、酪酸、修酸、こはく酸、アクリル酸、
マレイン酸、安息香酸などの脂肪酸類、メチルエ
チルケトン、メチルイソブチルケトン、ベンゾフ
エノン等のケトン類、アセトニトリルなどのニト
リル類、メチルアミン、ジエチルアミン、トリブ
チルアミン、トリエタノールアミン、ピリジン、
アニリンなどのアミン類、フエニルイソシアネー
ト、トルイルイソシアネートなどのイソシアネー
ト類、アゾベンゼンなどのアゾ化合物、エチルホ
スフイン、トリエチルホスフイン、トリn―ブチ
ルホスフイン、トリn―オクチルホスフイン、ト
リフエニルホスフインなどのホスフイン類、ジメ
チルホスフアイト、ジn―オクチルホスフアイ
ト、トリn―ブチルホスフアイト、トリフエニル
ホスフアイトなどのホスフアイト類、エチルジエ
チルホスフイナイト、エチルジブチルホスフイナ
イト、フエニルジフエニルホスフイナイトなどの
ホスフイナイト類、ジエチルチオエーテル、ジフ
エニルチオエーテル、メチルフエニルチオエーテ
ル、エチレンサルフアイド、プロピレンサルフア
イドなどのチオエーテル類、エチルチオアルコー
ル、n―プロピルチオアルコール、チオフエノー
ルなどのチオアルコール類をあげることが出来
る。又これ等電子供与体は混合して使用すること
も出来る。これらの中では、上述のエーテル類す
なわち、エーテル含有成分が好ましく使用でき
る。 溶媒としてはn―ペンタン、n―ヘキサン、n
―ヘプタン、n―オクタン、i―オクタン等の脂
肪族炭化水素、ベンゼン、トルエン、キシレン等
の芳香族炭化水素、四塩化炭素、クロロホルム、
ジクロルエタン、トリクロルエチレン、テトラク
ロルエチレン等のハロゲン化水素などの不活性溶
媒が用いられる。 芳香族化合物の存在下で反応生成物(A)と四塩化
チタン(以下(B)と略記することがある)とを反応
させる場合の添加順に制限はなく、(A)に(B)を徐々
に加えても、(B)に(A)を徐々に加えても、(A)と(B)と
を一時に混合しても良い。また芳香族化合物は、
四塩化チタンと反応生成物(A)との反応の際に存在
していれば良く、予め四塩化チタンまたは反応生
成物(A)の何れか一方と混合して、または両方の
夫々と別に混合して反応に用いて良い。芳香族化
合物の使用量は四塩化チタン1モルに対し、300
ml〜3000mlが好ましい。(A)に(B)を加えて反応を行
うに当つて、(A)がその反応生成物に溶媒として芳
香族化合物を使用して反応させたものそのまゝで
ある場合は、新たに芳香族化合物を用いる必要は
ない。反応生成物(A)と四塩化チタンとの割合は、
(A)中のAl原子数と四塩化チタン中のTi原子数の
比(原子比)(Al/Ti)で0.1〜1.0である(A)と(B)
の混合、反応は―10℃〜65℃、好ましくは10℃〜
65℃の温度で行ない、30分間以内で添加、混合し
てから、5分〜5時間反応を続ける事が望まし
い。 上記反応に使用する芳香族化合物としては、ベ
ンゼン、ナフタリン等の芳香族炭化水素、及びそ
の誘導体であるトルエン、キシレン、メシチレ
ン、デユレン、エチルベンゼン、イソプロピルベ
ンゼン、2―エチルナフタリン、1―フエニルナ
フタリン等のアルキル置換体、モノクロルベンゼ
ン、オルトジクロルベンゼン等のハロゲン化物等
が示される。これらの芳香族化合物は単独でも、
2以上を混合して使用してもよく、また、n―ペ
ンタン、n―ヘキサン、i―ヘキサン、n―ヘプ
タン、n―オクタン、n―デカン等の脂肪族炭化
水素と混合しても用いられる。溶媒を混合する場
合は、芳香族化合物が10%(容量)以上含まれる
事が望ましい。 四塩化チタンと反応生成物(A)との反応終了後、
更に、2番目の電子供与体を1〜7モル加えて
(即ち先に使用した有機アルミニウムに対する最
初の電子供与体のモル比は1〜2であり、2番目
の電子供与体のモル比は1〜7である)反応させ
る。2番目の電子供与体の使用量が1モルよりも
少ないと、効果が充分でなく、7モルより多く用
いても効果の増大はなく、必要でない。2番目の
電子供与体は、最初の電子供与体と同じものであ
る必要はない。電子供与体は、溶媒で稀釈して加
えても良い。溶媒で稀釈する場合は、2番目の電
子供与体1モルに対し、200ml以下である事が望
ましい上記の反応に用いる2番目の電子供与体と
溶媒については、前記した最初の電子供与体と有
機アルミニウムの反応についてした説明と同じで
ある。 2番目の電子供与体を加える条件は、―10℃〜
65℃の温度で、30分間以内に行うことが好まし
く、電子供与体を加え終つた後、65℃〜250℃、
好ましくは65℃〜200℃で、5分〜5時間反応さ
せる事が好ましい。かくして固体生成物()が
得られる。反応終了後は、別又はデカンテーシ
ヨンにより液状部分を分離後、更にn―ヘキサン
等の溶媒で洗浄を繰り返した後、固体生成物
()を懸濁状態のまゝ、次の重合工程で使用し
ても良く、更に乾燥して固形物として取り出して
使用しても、いずれでも良い。 固体生成物()は次に有機アルミニウム化合
物と組み合わされてα―オレフイン重合用の触媒
として供される。 この際用いられる有機アルミニウム化合物は既
に説明したものと同じであるが電子供与体との反
応に用いたものと同一物質である必要はない。固
体生成物との量比は固体生成物()100gに対
し、有機アルミニウム化合物50〜5000gの範囲
で、不活性ガス中で、両者を混するだけで直ちに
α―オレフインの重合触媒としての活性を有する
様になり、従来のチーグラー、ナツタ型触媒と同
じ様にして使用することが出来る。 重合反応はn―ヘキサン、n―ヘプタン、n―
オクタン、ベンゼン、トルエン等の炭化水素溶媒
中で実施される以外に、溶媒を用いず、液化プロ
ピレン、液化ブテン―1など液化α―オレフイン
モノマー中で実施することもできる。重合温度は
室温(約20℃)〜200℃、重合圧力は常圧(0
Kg/cm2G)〜50Kg/cm2Gで通常5分〜10時間程度
実施される。重合の際、分子量制御のため適当の
水素を添加するなどは従来の重合方法と同じであ
る。 本発明の方法に於て使用に供せられるα―オレ
フインはエチレン、プロピレン、ブテン―1、ヘ
キセン―1、オクテン―1、デセン―1などの直
鎖モノオレフイン類、4―メチル―ペンテン―
1、2―メチル―ペンテン―1、3―メチル―ブ
テン―1などの枝鎖モノオレフイン類、ブタジエ
ン、イソプレン、クロロプレンなどのジオレフイ
ン類、スチレンなどであり、本発明の方法ではこ
れ等の各々の単独重合のみならず、相互に他のα
―オレフインと組み合わせて、例えばプロピレン
とエチレン、ブテン―1とエチレン、プロピレン
とブテン―1の如く組み合わせて共重合を行なわ
せることも出来る。 本発明の第一の効果は、触媒の熱安定性が改良
された事である。例えば、固体生成物()を30
℃程度の高温で2ケ月間放置しても、重合活性の
低下が比較的少なく、また、70℃以上の比較的高
温に於けるα―オレフイン重合体の製造に於いて
も、得られる重合体は微粒子化したり、重合反応
に用いた溶媒で膨潤する事もなく、また、固体生
成物()と有機アルミニウム化合物とを組み合
わせてから、重合開始迄1週間程度放置しても、
重合活性の低下は比較的少ない。 本発明の第二の効果は、固体生成物()1g
当りのα―オレフイン重合体の収量が、7000〜
10000g(重合体)にも達する事である。従つて
重合に使用する触媒を減らす事が出来、α―オレ
フイン重合体の製造後の触媒のキルや重合物の精
製に使用するアルコールなどの量を減らしても、
ポリマーの着色がなく又、ポリマーの物性を損つ
たり、ポリマーの成型時に金型が錆びたりする悪
影響がなくなる等の効果がある。 本発明の第三の効果は、高結晶性のα―オレフ
イン重合体が得られる事であり、例えば、プロピ
レン重合体の製造において、n―ヘキサン不溶物
としてのアイソタクチツクポリプロピレンは、ア
イソタクチツクインデツクスで98.5〜99.5に達す
る事であり実質上、アタクチツクポリプロピレン
を除去しないでも、物性を損う事はない。 本発明の第四の効果は、得られるポリマーのパ
ウダー形状が改良された事である。例えば、プロ
ピレン重合体の製造に於いて、パウダー形状が球
形に近く、ポリマーの粒度も揃い、32メツシユ〜
60メツシユの間に80〜90%のものが入り、嵩比重
も0.4〜0.50の高い値を示す。 実施例 1 (1) 触媒の調製 窒素置換された反応器に、n―ヘキサン145ml、
ジエチルアルミニウムモノクロリド0.076モル、
ジn―ブチルエーテル0.076モル(最初の電子供
与体と有機アルミニウムとのモル比(以下最初の
モル比と言う)は1)を25℃で、1分間で混合
し、5分間同温で放置し反応させて反応生成液(A)
を得た。トルエン300mlと四塩化チタン0.300モル
から成る溶液を35℃に加熱し、上記反応生成液(A)
を3分間で添加した後、5分間反応させ、更に、
ジn―ブチルエーテル0.228モル(2番目の電子
供与体と有機アルミニウムのモル比(以下2番目
のモル比と言う)は3である)を、35℃で1分間
で添加した後、80℃に昇温し、30分間反応させ
た。反応終了後、室温(約20℃)迄冷却し、上澄
液をデカンテーシヨンにより除いた後、300mlの
n―ヘキサンを加えて上澄液を除く操作を3回繰
り返した後、減圧下で乾燥させ、反応生成物
()を得た。 (2) プロピレン重合体の製造 n―ヘキサン100ml、ジエチルアルミニウムモ
ノクロリド7.0g、固体生成物()350mgを入
れ、28℃で24時間撹拌下で放置後、ステンレス製
反応器に、n―ヘキサン1、上記触媒を含むス
ラリー6.3ml(固体生成物()20mgを含む)を
入れ、水素150mlを加えた後、プロピレン分圧10
Kg/cm2G、重合温度70℃で4時間重合反応を行つ
た。反応終了後、50mlのメタノールを反応器に入
れ、重合反応を停止させ、内容物をブフナーロー
トに注ぎ、500mlずつのn―ヘキサンで3回ゆす
ぎ、n―ヘキサン(20℃)不溶物としてのポリマ
ー(アイソタクチツクポリプロピレン)とn―ヘ
キサン(20℃)可溶物のポリマー(アタクチツク
ポリプロピレン)とに分け、それぞれ乾燥して、
アイソタクチツクポリプロピレン192g、アタク
チツクポリプロピレン1.0gを得た。固体生成物
()1g当りのアイソタクチツクポリプロピレ
ン重合体収量(以下、単に重合体収量という)は
9600g(重合体)であり、アイソタクチツクイン
デツクス(生成ポリマー全量に対するアイソタク
チツクポリマーの百分率)は99.5であつた。アイ
ソタクチツクポリプロピレンの嵩比重は0.47で、
球形に近く、82.5%は、32メツシユ〜60メツシユ
の間に入つていた。 実施例 2 n―ヘプタン200ml、トリエチルアルミニウム
0.08モル、ジn―ブチルエーテル0.16モルを15℃
で5分間で混合して10分間同温で放置し反応させ
た反応液を、トルエン160ml、四塩化チタン0.40
モルから成る溶液に60℃で5分間で加え、20分間
反応させた後、更にジイソアミルエーテル0.12モ
ルを60℃のまゝで5分間で加え、90℃に昇温し、
15分間反応させた。室温迄冷却後、実施例1と同
様にして固体生成物()を得て、プロピレンの
重合を行つた。 実施例 3 トルエン210ml、トリイソブチルアルミニウム
0.07モル、ジn―ドデシルエーテル0.105モル
(最初のモル比1.5)を30℃で30秒間で加え、1時
間温で放置して反応させた反応液を、キシレン
300mlと四塩化チタン0.20モルからなる溶液に15
℃で1分間で加え、60分間反応させた後、更にジ
n―ブチルエーテル0.315モルとn―ヘプタン200
mlとから成る溶液を15℃で30分間で加え、68℃に
昇温し120分間反応させた。室温迄冷却後、実施
例1と同様にして固体生成物()を得てプロピ
レンの重合を行つた。 実施例 4 エチルベンゼン100ml、トリn―オクチルアル
ミニウム0.13モル、ジn―ブチルエーテル0.16モ
ルを50℃で1分間で加え、30分間放置し反応させ
た反応液に、モノクロルベンゼン800mlと四塩化
チタン0.77モルとからなる溶液を50℃で30分間で
添加し、30分間反応させた後、ジn―オクチルエ
ーテル0.49モルを50℃で2分間で加え、100℃に
昇温し、10分間反応させた。室温迄冷却後、実施
例1と同様にして固体生成物()を得てプロピ
レンの重合を行つた。 実施例 5 n―デカン200ml、ジn―プロピルアルミニウ
ムモノクロリド0.10モル、ジn―オクチルエーテ
ル0.11モルを20℃で3分間で混合し、25分間同温
で反応させた反応液と、四塩化チタン0.83モルと
トルエン600mlとからなる溶液を20℃で30分間か
けて混合し、2時間同温に放置して反応後、ジn
―ドデシルエーテル0.54モルを20℃で5分間で加
え、75℃に昇温し、20分間反応させた。室温迄冷
却後、実施例1と同様にして固体生成物()を
得てプロピレンの重合を行つた。 実施例 6 n―ヘプタン200ml、ジエチルアルミニウムモ
ノクロリド0.12モル、ジイソプロピルエーテル
0.12モル、オクタノール0.04モルを10℃で2分間
で混合し、30分間同温で放置して反応させた反応
液と、トルエン200mlと四塩化チタン0.25モルと
からなる溶液を55℃で10分間かけて混合し、10分
間同温で反応後、ジn―ブチルエーテル0.50モル
を55℃で30秒間で加え、85℃に昇温し、25分間反
応させた。反応終了後、上澄液をデカンテーシヨ
ンにより除き、300mlのn―ヘキサンを加えて上
澄液を除く操作を3回くりかえし、n―ヘキサン
に懸濁している固体生成物()を用いて、実施
例1と同様にしてプロピレンの重合を行つた。 実施例 7 実施例1で得た固体生成物()を30℃で2ケ
月間保存した後、実施例1と同様にしてプロピレ
ンの重合を行つた。 実施例 8 固体生成物()の使用量を18mg、ジエチルア
ルミニウムクロリドの使用量を370mg、重合温度
を80℃とした以外は、実施例1と同様にして触媒
成分の組み合せ、撹拌、放置及びプロピレンの重
合を行つた。重合体の嵩比重は0.45であり、重合
体粒子の微粒子化もなく、重合反応に用いた溶媒
による膨濡の問題も見られなかつた。 実施例 9 実施例2と同様にして得られた固体生成物16
mg、ジエチルアルミニウムモノクロリド420mgと
n―ヘキサン1を反応器に仕込み、H260mlを
入れ、重合温度60℃で、途中、エチレン10gずつ
30分間隔で計8回供給しながら、プロピレン分圧
10Kg/cm2Gで4時間重合反応を行つた。反応後、
実施例1と同様な操作によりプロピレン―エチレ
ン共重合体を得た。 実施例 10 エチレンの代りにブテン―1を合計20g(1回
の供給2.5g×8回)使用した以外は実施例9と
同様にしてプロピレン―ブテン―1の共重合体を
得た。 実施例 11 実施例3の固体生成物()25mgをトリイソブ
チルアルミニウム480mgと組み合わせ、水素分圧
5Kg/cm2Gエチレン分圧5Kg/cm2Gで、85℃で4
時間重合反応を行い、実施例1と同様の操作によ
りエチレン重合体を得た。 実施例 12 実施例1の固体生成物()32mgとトリエチル
アルミニウム290mgとを組み合わせ、実施例1と
同じ重合器にn―ヘキサン1を入れ、ブテン―
1 510gを入れた後、70℃で3時間重合反応を
行わせた。反応終了後、溶媒を溜去し乾燥する事
により、ポリブテンを得た。 実施例 13 実施例2で得られた固体生成物()16mg、ジ
エチルアルミニウムモノクニリド380mgを、水素
90mlと共に液化プロピレン500g中に添加し、重
合温度70℃で3時間重合反応を行わせた。反応終
了後、未反応プロピレンをパージし、プロピレン
重合体を得た。 比較例 1 実施例1に於いて、ジn―ブチルエーテルとジ
エチルアルミニウムモノクロリドの反応液を用い
る代りに、ジエチルアルミニウムモノクロリドの
みを用い、2番目の電子供与体としてジn―ブチ
ルエーテル0.228モルの代りに、0.304モル(使用
しなかつた最初の電子供与体を加えた量)を用い
る以外は、実施例1と同様にして、固体生成物を
得て、プロピレンの重合を行つた結果は、著るし
く低かつた。 比較例 2 実施例1において、反応生成液(A)(最初のモル
比1)の代りに、ジn―ブチルエーテル0.053モ
ルとジエチルアルミニウムモノクロリド0.076モ
ルを実施例1と同様に溶媒中で反応させた反応液
(最初のモル比0.7)を用い、2番目の電子供与体
としてジn―ブチルエーテルを0.228モルの代り
に0.251モル用いる以外は実施例1と同様にして
固体生成物を得て、プロピレンの重合を行つた。 比較例 3 実施例1において、反応生成液(A)の代りにジエ
チルアルミニウムモノクロリド0.076モルのみを
用い、四塩化チタン0.300モルの代りに四塩化チ
タン0.300モルとジn―ブチルエーテル0.304モル
との反応液(トルエン300ml中、35℃で4分間反
応)を用いる以外は実施例1と同様にして固体生
成物を得て、プロピレンの重合を行つた。 比較例 4 実施例1において、トルエン300mlを用いる代
りに、n―ヘプタン300mlを用いる以外は、実施
例1と同様にして固体生成物を得て、プロピレン
の重合を行つた。重合活性が著るしく低く、芳香
族化合物は、固体生成物()を製造する際の必
須の成分である。 比較例 5 ヘキサン600ml、Ticl4150mlの溶液を1℃にし、
ヘキサン450mlとAlEt2 cl173mlを4時間内に添加
し、65℃に昇温し得られた固体を洗浄し、還元固
体285gを得た。 還元固体285gをヘキサン1720mlに懸濁し、ジ
イソアミルエーテル256mlを添加し、35℃で1時
間撹拌し、分離、洗浄する。かくして得られた処
理固体をヘキサン中のTicl4の40容量%溶液850ml
に懸濁させ65℃で2時間撹拌した後、ヘキサンで
洗浄し、固体生成物を得て、実施例7と同様に保
存とプロピレンの重合を行つた。 比較例 6 精製ヘプタン150ml、Ticl410ml、ジn―オクチ
ルエーテル52.4mlとを添加し、Ticl4とエーテル
のヘプタン均一溶液を得、25℃〜30℃でジエチル
アルミニウムモノクロリド9.9mlを少しづゝ滴下
し、褐色の三塩化チタン均一溶液を得た。25℃で
30分間還元反応を完結させた後、50℃に昇温し、
60分間撹拌を続け、更に、90℃に昇温し、60分間
撹拌して得られた固体を洗浄、乾燥し、実施例7
と同様に保存とプロピレンの重合を行つた。 比較例 7 実施例1において、最初の電子供与体(ジn―
ブチルエーテル)と有機アルミニウムとのモル比
が3となる様にして反応生成液(A)を得た以外は、
実施例1と同様にして固体生成物を得てプロピレ
ンの重合を行つた。 以上の実施例、比較例の結果をまとめて次表に
示す。
The present invention relates to a method for producing an α-olefin polymer, and more particularly, the present invention relates to a method for producing an α-olefin polymer, which is highly crystalline and has an improved powder shape, using a highly active catalyst with improved thermal stability. This invention relates to a method for manufacturing a combination. It is well known that α-olefins are polymerized by a so-called Ziegler-Natsuta catalyst consisting of a transition metal compound of group ~ of the periodic table and an organometallic compound of a metal of group ~. Among them, titanium trichloride is most widely used as a transition metal compound component to obtain highly crystalline polymers such as propylene and butene-1. Titanium trichloride can be divided into the following three types depending on its manufacturing method. Titanium tetrachloride is activated by reducing it with hydrogen and then pulverizing it in a ball mill (referred to as titanium trichloride (HA)). A compound represented by the general formula Ticl 3 1/3 AIcl 3 (so-called titanium trichloride (AA)), which is activated by reducing titanium tetrachloride with metallic aluminum and pulverizing it in a ball mill. Titanium tetrachloride is reduced with an organic aluminum compound and then heat treated. However, none of these titanium trichlorides is fully satisfactory in terms of either catalytic activity or stereoregularity of the resulting polymer. In order to improve these drawbacks, it is necessary to increase the catalytic activity and completely eliminate the formation of amorphous polymers.
With the aim of minimizing, if any,
Various methods have been considered and tried. As one method, titanium trichloride obtained by reducing titanium tetrachloride with an organoaluminum compound,
A method has already been proposed in which the catalytic activity is increased and the formation of amorphous polymer is reduced by treatment with an electron donor and titanium tetrachloride (for example, JP-A-47-34478). However, these methods have the disadvantage that the catalyst lacks thermal stability. for example,
When polymerizing at a relatively high temperature (for example, 70°C or higher), the polymer particles become fine particles and swell due to the solvent used in the polymerization reaction, and if the treated reduced solid catalyst is left at a relatively high temperature for a long time, polymerization may occur. Activity decreases drastically. This is disadvantageous in industrial implementation because it is not possible to carry out the polymerization reaction at a high temperature to increase the productivity of the polymerization equipment, and special care is required to preserve the catalyst. Become. In addition, a solid catalyst component is prepared by mixing and reacting two reaction solutions in which Ticl 4 and an organoaluminum compound are each mixed in advance with a certain amount of a complexing agent (an electron donor is also a type of complexing agent). A method to do this has also been proposed (e.g., Japanese Patent Laid-Open No. 53-9296).
This method also has the disadvantage of lacking thermal stability of the catalyst, as in JP-A-47-34478. It is also known that Ticl 4 can be reacted with a mixture of an organoaluminum compound and a complexing agent without being mixed with the complexing agent in advance (Japanese Patent Publication No. 8768/1987). However, when using this method, the reduction reaction is carried out at 20°C to 200°C.
After the reaction was carried out at a high temperature of 150°C to 200°C, the catalyst activity was not sufficient. Furthermore, a method for producing a liquid material containing titanium trichloride by adding a homogeneous liquid material consisting of an organoaluminum compound and ether to Ticl 4 , or by reversing the order of addition (Japanese Patent Application Laid-open No. 115797/1983) )
and a method of precipitating fine particulate titanium trichloride by heating the liquid material to 150°C or less (Japanese Patent Application Laid-Open No. 1989-1999).
47594, etc.) have also been proposed. These methods also have drawbacks such as insufficient catalytic activity and lack of thermal stability of the catalyst, and in addition, the catalyst production method requires at least three reaction steps, namely, the reaction of the organoaluminum compound and the ether. The production of liquefied titanium trichloride by the reaction of the liquid with Ticl 4 , and the precipitation of fine-grained titanium trichloride by heating have not been simplified. As a new and simplified method, a method has been proposed in which Ticl 4 is reacted with a mixture of an organoaluminum compound and a complexing agent to directly form particulate Ticl 3 (Japanese Unexamined Patent Publication No. 1989-1999). No. 9296).
However, in this case, it is known that brown Ticl 3 is produced, the polymerization activity is extremely low, and the crystallinity of the obtained propylene polymer is also low (Japanese Patent Application Laid-Open No. 53-9296, Comparative Example E). The present inventors conducted research to obtain a solid product that can directly produce a highly active and highly crystalline polymer without producing liquefied titanium trichloride.
Ticl 4 is a reaction product obtained by reacting a certain amount of electron donor with an organoaluminum compound without mixing it with a complexing agent in advance.
The combination of the solid product obtained by reacting Ticl 4 in the presence of an aromatic compound and then adding a certain amount of an electron donor with organoaluminum is very highly active and has a high thermal resistance. It was discovered that this is a catalyst with improved stability, and that an α-olefin polymer with high crystallinity and improved powder shape can be obtained using this catalyst, and the present invention was achieved. An object of the present invention is to provide a method for producing α-olefin polymers with high polymer yield and good shape using a catalyst with high thermal stability and high polymerization activity obtained by a novel preparation method. It is in. The present invention relates to a reaction product (hereinafter referred to as (A) or After reacting the product (sometimes abbreviated as (A)) with titanium tetrachloride in the presence of an aromatic compound, an electron donor (hereinafter sometimes referred to as the second electron donor) 1 A method for producing an α-olefin polymer, which comprises polymerizing α-olefin in the presence of a catalyst obtained by combining a solid product ( ) obtained by reacting ~7 mol with an organoaluminum compound. It is. The reaction of the organoaluminium compound (1 mol) with the first electron donor (1-2 mol) is carried out in a catalyst by -
It is carried out at 20°C to 200°C, preferably -10°C to 100°C, for 30 seconds to 5 hours. An electron donor may be added to the organoaluminum compound, or vice versa.
The amount of solvent used is per mole of organoaluminium.
0.5 to 5 is appropriate. The reaction solution after the completion of the reaction (sometimes referred to as reaction product solution (A)) is usually used as is in the next reaction as reaction product (A), but it can also be used without the catalyst. In the above reaction, if the amount of electron donor used is less than 1 mol, the effect may not be sufficient even if the second electron donor is reacted afterwards, and if the amount of the first electron donor used is less than 2 mol. If the amount is too large, reacting with the second electron donor has the drawback that the thermal stability of the catalyst is rather poor and the polymerization activity is also reduced. The organoaluminum compound used in the above reaction is
General formula AlRnR'n '
represents a halogen such as fluorine, chlorine, bromine, and iodine, and n and n' represent any number of O<n+n'3), and specific examples include trimethylaluminum, triethylaluminum, and triethylaluminum. Tri-aluminum such as n-propyl aluminum, tri-n-butyl aluminum, tri-i-butyl aluminum, tri-n-hexyl aluminum, tri-i-hexyl aluminum, tri-2-methylpentyl aluminum, tri-n-octyl aluminum, tri-n-decyl aluminum, etc. Alkylaluminums, diethylaluminum monochloride, di-n-propylaluminum monochloride, di-i-butylaluminum monochloride,
Diethylaluminum monohalides such as diethylaluminium monofluoride, diethylaluminium monobromide, diethylaluminum monoiodide, alkylaluminum hydrides such as diethylaluminum hydride, methylaluminum sesquichloride, ethylaluminum sesquichloride, ethylaluminum dichloride, i- Alkylaluminum halides such as butylaluminum dichloride are mentioned, and alkoxyalkylaluminiums such as monoethoxydiethylaluminum and diethoxymonoethylaluminum can also be used. As an electron donor, organic compounds having an atom of oxygen, nitrogen, sulfur, or phosphorus, such as alcohols, ethers, esters, aldehydes, fatty acids, ketones, nitriles, amines, and isocyanates. , azo compounds, phosphines, phosphites, phosphinites, thioethers, thioalcohols, and the like. Specific examples include alcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, phenol, cresol, xylenol, ethylphenol, naphthol, diethyl ether, di-n-propyl ether, di-n-butyl ether, di-i -alumyl ether, di-n-pentyl ether, di-n-
Ethers such as hexyl ether, di-n-octyl ether, di-i-octyl ether, ethylene glycol monomethyl ether, diphenyl ether, tetrahydrofuran, ethyl acetate, butyl formate, amyl acetate, vinyl butyrate, vinyl acetate,
Ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, 2-ethylhexyl benzoate, methyl toluate, ethyl toluate,
2-ethylhexyl toluate, methyl anisate, ethyl anisate, propyl anisate, ethyl cinnamate, methyl naphthoate, ethyl naphthoate, propyl naphthoate, butyl naphthoate, 2-ethylhexyl naphthoate, ethyl phenyl acetate, etc. Esters, aldehydes such as acetaldehyde and benzaldehyde, formic acid, acetic acid, propylonic acid, butyric acid, oxalic acid, succinic acid, acrylic acid,
Fatty acids such as maleic acid and benzoic acid, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and benzophenone, nitriles such as acetonitrile, methylamine, diethylamine, tributylamine, triethanolamine, pyridine,
Amines such as aniline, isocyanates such as phenyl isocyanate and tolyl isocyanate, azo compounds such as azobenzene, ethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-n-octylphosphine, triphenylphosphine, etc. Phosphites such as dimethyl phosphite, di-n-octyl phosphite, tri-n-butyl phosphite, triphenyl phosphite, ethyl diethyl phosphinite, ethyl dibutyl phosphinite, phenyl diphenyl phosphinite Examples include phosphinites such as diethylthioether, diphenylthioether, methylphenylthioether, ethylene sulfide, propylene sulfide and other thioethers, and thioalcohols such as ethylthioalcohol, n-propylthioalcohol and thiophenol. I can do it. Moreover, these electron donors can also be used in combination. Among these, the above-mentioned ethers, that is, ether-containing components, can be preferably used. Solvents include n-pentane, n-hexane, n-
- Aliphatic hydrocarbons such as heptane, n-octane, i-octane, aromatic hydrocarbons such as benzene, toluene, xylene, carbon tetrachloride, chloroform,
Inert solvents such as hydrogen halides such as dichloroethane, trichloroethylene, and tetrachloroethylene are used. When reacting the reaction product (A) with titanium tetrachloride (hereinafter sometimes abbreviated as (B)) in the presence of an aromatic compound, there is no restriction on the order of addition, and (B) is gradually added to (A). (A) may be added to (B), (A) may be gradually added to (B), or (A) and (B) may be mixed all at once. In addition, aromatic compounds are
It only needs to be present during the reaction between titanium tetrachloride and the reaction product (A), and may be mixed with either titanium tetrachloride or the reaction product (A) in advance, or mixed with both separately. It can be used for reaction. The amount of aromatic compounds used is 300% per mole of titanium tetrachloride.
ml to 3000ml is preferred. When carrying out a reaction by adding (B) to (A), if (A) is the same reaction product as the reaction product using an aromatic compound as a solvent, a new aromatic compound is added. There is no need to use family compounds. The ratio of the reaction product (A) and titanium tetrachloride is
The ratio (atomic ratio) of the number of Al atoms in (A) to the number of Ti atoms in titanium tetrachloride (Al/Ti) is 0.1 to 1.0 (A) and (B)
The mixing and reaction of -10℃ to 65℃, preferably 10℃ to
It is preferable to carry out the reaction at a temperature of 65°C, to add and mix within 30 minutes, and then to continue the reaction for 5 minutes to 5 hours. Aromatic compounds used in the above reaction include aromatic hydrocarbons such as benzene and naphthalene, and their derivatives such as toluene, xylene, mesitylene, duurene, ethylbenzene, isopropylbenzene, 2-ethylnaphthalene, and 1-phenylnaphthalene. Alkyl substituted products of, halides such as monochlorobenzene, orthodichlorobenzene, etc. are shown. These aromatic compounds can be used alone,
Two or more of them may be used in combination, or they may be used in combination with aliphatic hydrocarbons such as n-pentane, n-hexane, i-hexane, n-heptane, n-octane, and n-decane. . When mixing solvents, it is desirable that aromatic compounds be included at 10% (by volume) or more. After the reaction between titanium tetrachloride and reaction product (A) is completed,
Furthermore, 1 to 7 moles of a second electron donor is added (i.e., the molar ratio of the first electron donor to the previously used organoaluminum is 1 to 2, and the molar ratio of the second electron donor is 1 to 1). ~7) react. If the amount of the second electron donor used is less than 1 mol, the effect will not be sufficient, and if it is used in more than 7 mol, the effect will not increase and is not necessary. The second electron donor need not be the same as the first electron donor. The electron donor may be added after being diluted with a solvent. When diluting with a solvent, it is preferable that the amount is 200 ml or less per mole of the second electron donor.The second electron donor and solvent used in the above reaction should be diluted with the first electron donor and organic The explanation is the same as that given for the reaction of aluminum. The conditions for adding the second electron donor are -10℃~
It is preferably carried out within 30 minutes at a temperature of 65 °C, and after the addition of the electron donor is completed, the temperature is 65 °C to 250 °C,
Preferably, the reaction is carried out at 65°C to 200°C for 5 minutes to 5 hours. A solid product () is thus obtained. After the reaction is completed, the liquid part is separated by separation or decantation, and after repeated washing with a solvent such as n-hexane, the solid product () is used in the next polymerization step in a suspended state. It may be dried, or it may be further dried and taken out as a solid for use. The solid product () is then combined with an organoaluminum compound to serve as a catalyst for α-olefin polymerization. The organoaluminum compound used in this case is the same as that described above, but it does not need to be the same substance as that used in the reaction with the electron donor. The quantitative ratio of the organic aluminum compound to 100 g of the solid product is in the range of 50 to 5,000 g. Just by mixing the two in an inert gas, the activity as a polymerization catalyst for α-olefin can be immediately activated. It can be used in the same way as conventional Ziegler and Natsuta type catalysts. The polymerization reaction is n-hexane, n-heptane, n-
In addition to being carried out in a hydrocarbon solvent such as octane, benzene, or toluene, the process can also be carried out without using a solvent in a liquefied α-olefin monomer such as liquefied propylene or liquefied butene-1. The polymerization temperature is room temperature (approximately 20℃) to 200℃, and the polymerization pressure is normal pressure (0
Kg/cm 2 G) to 50 Kg/cm 2 G and is usually carried out for about 5 minutes to 10 hours. During polymerization, steps such as adding an appropriate amount of hydrogen to control the molecular weight are the same as in conventional polymerization methods. The α-olefins used in the method of the present invention include linear monoolefins such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, and 1-decene, and 4-methyl-pentene.
These include branched monoolefins such as 1,2-methyl-pentene-1,3-methyl-butene-1, diolefins such as butadiene, isoprene, and chloroprene, and styrene. Not only homopolymerization but also mutually other α
- Copolymerization can also be carried out in combination with olefin, such as propylene and ethylene, butene-1 and ethylene, propylene and butene-1. The first effect of the present invention is that the thermal stability of the catalyst is improved. For example, the solid product () is 30
Even when left at a high temperature of around 70°C for two months, there is relatively little decrease in polymerization activity, and even when α-olefin polymers are produced at relatively high temperatures of 70°C or higher, the obtained polymer does not turn into fine particles or swell in the solvent used in the polymerization reaction, and even if the solid product () and the organoaluminum compound are combined and left for about a week until polymerization starts,
The decrease in polymerization activity is relatively small. The second effect of the present invention is that 1 g of solid product ()
The yield of α-olefin polymer per unit is 7000~
It can reach up to 10,000g (polymer). Therefore, the amount of catalyst used for polymerization can be reduced, and even if the amount of alcohol used to kill the catalyst after producing the α-olefin polymer or to purify the polymer is reduced,
There is no coloring of the polymer, and there are also effects such as no adverse effects such as impairing the physical properties of the polymer or rusting of the mold during molding of the polymer. The third effect of the present invention is that a highly crystalline α-olefin polymer can be obtained. For example, in the production of propylene polymer, isotactic polypropylene as an n-hexane insoluble material is The index is to reach 98.5 to 99.5, so even if the atactic polypropylene is not removed, the physical properties will not be impaired. The fourth effect of the present invention is that the powder shape of the obtained polymer is improved. For example, in the production of propylene polymer, the powder shape is close to spherical, the particle size of the polymer is uniform, and 32 mesh ~
80 to 90% of it falls within 60 meshes, and the bulk specific gravity also shows a high value of 0.4 to 0.50. Example 1 (1) Preparation of catalyst In a reactor purged with nitrogen, 145 ml of n-hexane,
0.076 mol of diethylaluminium monochloride,
0.076 mol of di-n-butyl ether (initial molar ratio of electron donor to organic aluminum (hereinafter referred to as the initial molar ratio) is 1) was mixed at 25°C for 1 minute, and left at the same temperature for 5 minutes to react. Reaction product solution (A)
I got it. A solution consisting of 300 ml of toluene and 0.300 mol of titanium tetrachloride was heated to 35°C to form the reaction product solution (A).
was added for 3 minutes, reacted for 5 minutes, and
0.228 mol of di-n-butyl ether (the molar ratio of the second electron donor to the organoaluminum (hereinafter referred to as the second molar ratio) is 3) was added at 35°C for 1 minute, and then the temperature was raised to 80°C. It was warmed and allowed to react for 30 minutes. After the reaction, cool to room temperature (approximately 20°C), remove the supernatant liquid by decantation, add 300 ml of n-hexane, remove the supernatant liquid, repeat the operation three times, and then remove under reduced pressure. After drying, a reaction product (2) was obtained. (2) Production of propylene polymer Add 100 ml of n-hexane, 7.0 g of diethylaluminum monochloride, and 350 mg of solid product (), leave it under stirring at 28°C for 24 hours, and then add 1 ml of n-hexane to a stainless steel reactor. , put 6.3 ml of the slurry containing the above catalyst (containing 20 mg of solid product ()), add 150 ml of hydrogen, and then reduce the propylene partial pressure to 10
The polymerization reaction was carried out at Kg/cm 2 G and a polymerization temperature of 70° C. for 4 hours. After the reaction is complete, add 50 ml of methanol to the reactor to stop the polymerization reaction, pour the contents into a Buchner funnel, rinse with 500 ml of n-hexane three times, and remove the polymer as an insoluble matter in n-hexane (20°C). (isotactic polypropylene) and n-hexane (20°C) soluble polymer (atactic polypropylene), each of which is dried.
192 g of isotactic polypropylene and 1.0 g of atactic polypropylene were obtained. The isotactic polypropylene polymer yield (hereinafter simply referred to as polymer yield) per 1 g of solid product () is
The weight was 9,600 g (polymer), and the isotactic index (percentage of isotactic polymer to the total amount of produced polymer) was 99.5. The bulk specific gravity of isotactic polypropylene is 0.47,
It was close to a spherical shape, with 82.5% falling between 32 meshes and 60 meshes. Example 2 200ml n-heptane, triethylaluminum
0.08 mol, di-n-butyl ether 0.16 mol at 15℃
Mix for 5 minutes at
mol of diisoamyl ether over 5 minutes at 60°C, reacted for 20 minutes, then added 0.12 mol of diisoamyl ether over 5 minutes at 60°C, and raised the temperature to 90°C.
The reaction was allowed to proceed for 15 minutes. After cooling to room temperature, a solid product () was obtained in the same manner as in Example 1, and propylene was polymerized. Example 3 Toluene 210ml, triisobutylaluminum
0.07 mol of di-n-dodecyl ether and 0.105 mol of di-n-dodecyl ether (initial molar ratio 1.5) were added at 30°C for 30 seconds, and the reaction solution was left to react at room temperature for 1 hour.
15 in a solution consisting of 300 ml and 0.20 mol of titanium tetrachloride.
℃ for 1 minute, reacted for 60 minutes, and then added 0.315 mol of di-n-butyl ether and 200 mol of n-heptane.
ml was added over 30 minutes at 15°C, and the temperature was raised to 68°C and reacted for 120 minutes. After cooling to room temperature, a solid product () was obtained in the same manner as in Example 1, and propylene was polymerized. Example 4 100 ml of ethylbenzene, 0.13 mol of tri-n-octylaluminium, and 0.16 mol of di-n-butyl ether were added at 50°C for 1 minute, and left to react for 30 minutes. To the reaction solution, 800 ml of monochlorobenzene, 0.77 mol of titanium tetrachloride, A solution consisting of was added at 50°C for 30 minutes and reacted for 30 minutes, then 0.49 mol of di-n-octyl ether was added at 50°C over 2 minutes, the temperature was raised to 100°C, and reaction was carried out for 10 minutes. After cooling to room temperature, a solid product () was obtained in the same manner as in Example 1, and propylene was polymerized. Example 5 200 ml of n-decane, 0.10 mol of di-n-propylaluminium monochloride, and 0.11 mol of di-n-octyl ether were mixed at 20°C for 3 minutes and reacted at the same temperature for 25 minutes. The reaction solution was mixed with titanium tetrachloride. A solution consisting of 0.83 mol and 600 ml of toluene was mixed at 20°C for 30 minutes, left at the same temperature for 2 hours to react, and then the di-n
-0.54 mol of dodecyl ether was added at 20°C over 5 minutes, the temperature was raised to 75°C, and the mixture was reacted for 20 minutes. After cooling to room temperature, a solid product () was obtained in the same manner as in Example 1, and propylene was polymerized. Example 6 200 ml of n-heptane, 0.12 mol of diethylaluminum monochloride, diisopropyl ether
A reaction solution consisting of 0.12 mol of toluene and 0.04 mol of titanium tetrachloride was mixed at 10°C for 2 minutes and left to react at the same temperature for 30 minutes, and a solution consisting of 200 ml of toluene and 0.25 mol of titanium tetrachloride was mixed at 55°C for 10 minutes. After reacting at the same temperature for 10 minutes, 0.50 mol of di-n-butyl ether was added at 55°C for 30 seconds, the temperature was raised to 85°C, and the mixture was reacted for 25 minutes. After the reaction is complete, remove the supernatant liquid by decantation, add 300 ml of n-hexane, and remove the supernatant liquid three times. Using the solid product () suspended in n-hexane, Polymerization of propylene was carried out in the same manner as in Example 1. Example 7 The solid product () obtained in Example 1 was stored at 30° C. for 2 months, and then propylene was polymerized in the same manner as in Example 1. Example 8 Catalyst components were combined, stirred, left to stand, and propylene treated in the same manner as in Example 1, except that the amount of solid product () used was 18 mg, the amount of diethylaluminium chloride was 370 mg, and the polymerization temperature was 80 ° C. Polymerization was carried out. The bulk specific gravity of the polymer was 0.45, the polymer particles were not made into fine particles, and there was no problem of swelling caused by the solvent used in the polymerization reaction. Example 9 Solid product 16 obtained analogously to Example 2
420mg of diethylaluminum monochloride and 11g of n-hexane were placed in a reactor, 60ml of H2 was added, the polymerization temperature was 60℃, and 10g of ethylene was added each time during polymerization.
While supplying a total of 8 times at 30 minute intervals, the partial pressure of propylene was
The polymerization reaction was carried out at 10 Kg/cm 2 G for 4 hours. After the reaction,
A propylene-ethylene copolymer was obtained by the same operation as in Example 1. Example 10 A propylene-butene-1 copolymer was obtained in the same manner as in Example 9, except that a total of 20 g (2.5 g per supply x 8 times) of butene-1 was used instead of ethylene. Example 11 25 mg of the solid product of Example 3 () was combined with 480 mg of triisobutylaluminum at a hydrogen partial pressure of 5 Kg/cm 2 G and an ethylene partial pressure of 5 Kg/cm 2 G at 85°C.
A time polymerization reaction was carried out and an ethylene polymer was obtained by the same operation as in Example 1. Example 12 32 mg of the solid product () of Example 1 and 290 mg of triethylaluminum were combined, 1 part of n-hexane was added to the same polymerization vessel as in Example 1, and butene-
After adding 510 g of 1, a polymerization reaction was carried out at 70°C for 3 hours. After the reaction was completed, the solvent was distilled off and dried to obtain polybutene. Example 13 16 mg of the solid product () obtained in Example 2 and 380 mg of diethylaluminium monocnylide were heated with hydrogen.
It was added together with 90 ml to 500 g of liquefied propylene, and a polymerization reaction was carried out at a polymerization temperature of 70° C. for 3 hours. After the reaction was completed, unreacted propylene was purged to obtain a propylene polymer. Comparative Example 1 In Example 1, only diethylaluminum monochloride was used instead of the reaction solution of di-n-butyl ether and diethylaluminium monochloride, and 0.228 mol of di-n-butyl ether was used as the second electron donor. Polymerization of propylene was carried out in the same manner as in Example 1, except that 0.304 mol (plus the unused initial electron donor) was used to obtain a solid product. It was very low. Comparative Example 2 In Example 1, instead of reaction product liquid (A) (initial molar ratio 1), 0.053 mol of di-n-butyl ether and 0.076 mol of diethylaluminum monochloride were reacted in the same solvent as in Example 1. A solid product was obtained in the same manner as in Example 1, except that 0.251 mol of di-n-butyl ether was used as the second electron donor instead of 0.228 mol. Polymerization was carried out. Comparative Example 3 In Example 1, only 0.076 mol of diethylaluminium monochloride was used instead of the reaction product solution (A), and 0.300 mol of titanium tetrachloride was reacted with 0.304 mol of di-n-butyl ether instead of 0.300 mol of titanium tetrachloride. A solid product was obtained and propylene was polymerized in the same manner as in Example 1 except that a liquid (reacted in 300 ml of toluene at 35°C for 4 minutes) was used. Comparative Example 4 A solid product was obtained and propylene was polymerized in the same manner as in Example 1, except that 300 ml of n-heptane was used instead of 300 ml of toluene. The polymerization activity is extremely low, and aromatic compounds are essential components in the production of solid products (). Comparative Example 5 A solution of 600 ml of hexane and 150 ml of Ticl 4 was heated to 1°C.
450 ml of hexane and 173 ml of AlEt 2 cl were added within 4 hours, the temperature was raised to 65° C., and the resulting solid was washed to obtain 285 g of reduced solid. 285 g of reduced solid is suspended in 1720 ml of hexane, 256 ml of diisoamyl ether is added, stirred at 35° C. for 1 hour, separated and washed. The treated solid thus obtained was added to 850 ml of a 40% by volume solution of Ticl 4 in hexane.
After stirring at 65°C for 2 hours, the product was washed with hexane to obtain a solid product, which was stored and propylene polymerized in the same manner as in Example 7. Comparative Example 6 150 ml of purified heptane, 10 ml of Ticl 4 , and 52.4 ml of di-n-octyl ether were added to obtain a homogeneous solution of Ticl 4 and ether in heptane, and 9.9 ml of diethyl aluminum monochloride was added little by little at 25°C to 30°C. This was added dropwise to obtain a brown homogeneous solution of titanium trichloride. at 25℃
After completing the reduction reaction for 30 minutes, the temperature was raised to 50℃,
Stirring was continued for 60 minutes, the temperature was further raised to 90°C, and the solid obtained by stirring for 60 minutes was washed and dried.
Storage and propylene polymerization were carried out in the same manner. Comparative Example 7 In Example 1, the first electron donor (di-n-
Except that the reaction product liquid (A) was obtained by adjusting the molar ratio of (butyl ether) and organoaluminum to 3.
A solid product was obtained in the same manner as in Example 1, and propylene was polymerized. The results of the above Examples and Comparative Examples are summarized in the following table.

【表】 実施例 14 n―ヘキサン100mlにジエチルアルミニウムモ
ノクロリド7.0g、実施例1で得た固体生成物
()350mgを入れ、プロピレン分圧1Kg/cm2G、
25℃で10分間プロピレンを反応させて予備活性化
した後、28℃で24時間撹拌下で放置後、実施例1
と同様にして、プロピレンの重合を行つた。固体
生成物()1g当りの重合体収量は9700g、ア
イソタクチツクインデツクスは99.5、ポリマー
BDは0.46、32〜60メツシユの割合は83.0%、
MFRは6.5であつた。
[Table] Example 14 Add 7.0 g of diethylaluminum monochloride and 350 mg of the solid product () obtained in Example 1 to 100 ml of n-hexane, set the propylene partial pressure to 1 Kg/cm 2 G,
After preactivation by reacting propylene at 25°C for 10 minutes, and after leaving it under stirring at 28°C for 24 hours, Example 1
Polymerization of propylene was carried out in the same manner. Polymer yield per 1 g of solid product () is 9700 g, isotactic index is 99.5, polymer
BD is 0.46, proportion of 32-60 meshes is 83.0%,
MFR was 6.5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造法に係る触媒のフロー
チヤートである。
FIG. 1 is a flowchart of the catalyst according to the production method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 有機アルミニウム化合物1モルに対してエー
テル含有成分1〜2モルを反応させて得られる反
応生成物に、四塩化チタンを芳香族炭化水素化合
物の存在下で反応させた後に、さらにエーテル含
有成分1〜7モルを反応させて得られる固体生成
物()を、有機アルミニウム化合物と組み合わ
せて得られる触媒の存在下に、α―オレフインを
重合することを特徴とするα―オレフイン重合体
の製造方法。
1 A reaction product obtained by reacting 1 to 2 moles of an ether-containing component with 1 mole of an organoaluminum compound is reacted with titanium tetrachloride in the presence of an aromatic hydrocarbon compound, and then 1 to 1 mole of an ether-containing component is added to the reaction product. A method for producing an α-olefin polymer, which comprises polymerizing α-olefin in the presence of a catalyst obtained by combining a solid product () obtained by reacting ~7 mol of α-olefin with an organoaluminum compound.
JP12507279A 1979-09-28 1979-09-28 Production of alpha-olefin polymer Granted JPS5649707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12507279A JPS5649707A (en) 1979-09-28 1979-09-28 Production of alpha-olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12507279A JPS5649707A (en) 1979-09-28 1979-09-28 Production of alpha-olefin polymer

Publications (2)

Publication Number Publication Date
JPS5649707A JPS5649707A (en) 1981-05-06
JPS6352645B2 true JPS6352645B2 (en) 1988-10-19

Family

ID=14901120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12507279A Granted JPS5649707A (en) 1979-09-28 1979-09-28 Production of alpha-olefin polymer

Country Status (1)

Country Link
JP (1) JPS5649707A (en)

Also Published As

Publication number Publication date
JPS5649707A (en) 1981-05-06

Similar Documents

Publication Publication Date Title
US4309521A (en) Process for producing α-olefin polymers
US4368304A (en) Process for producing α-olefin polymers
US4550144A (en) Propylene-ethylene copolymers for high-rigidity molded products and process for producing the same
US4460757A (en) Process for producing α-olefin polymers
JPS588686B2 (en) Method for producing α↓-olefin polymer
JPS591723B2 (en) Method for producing α-olefin polymer
US4603184A (en) Process for producing alpha-olefin polymers
JPS64406B2 (en)
KR910004484B1 (en) Solid catalyst component for alpha-olefin polymerization
KR860001170B1 (en) Process for producing -olefin polymers
JPS6352645B2 (en)
JPS6352644B2 (en)
JPH0456843B2 (en)
JPS6352647B2 (en)
JPH0867710A (en) Production of olefin polymer
JPS6352646B2 (en)
JPS5817522B2 (en) Method for producing α↓-olefin polymer
JP2657668B2 (en) Titanium trichloride composition for α-olefin polymerization and method for producing the same
JPH0774247B2 (en) Method for producing α-olefin polymer
JPH0794491B2 (en) Process for producing titanium trichloride composition for olefin polymerization
JPS6219443B2 (en)
JPH0778093B2 (en) Method for producing α-olefin polymer
KR850000107B1 (en) Process for producing alpha-olefin polymers
JPS6352648B2 (en)
JPH0780943B2 (en) Method for producing high-rigidity polypropylene