[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6349582B2 - - Google Patents

Info

Publication number
JPS6349582B2
JPS6349582B2 JP57212767A JP21276782A JPS6349582B2 JP S6349582 B2 JPS6349582 B2 JP S6349582B2 JP 57212767 A JP57212767 A JP 57212767A JP 21276782 A JP21276782 A JP 21276782A JP S6349582 B2 JPS6349582 B2 JP S6349582B2
Authority
JP
Japan
Prior art keywords
mold
core
hollow steel
steel ingot
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57212767A
Other languages
Japanese (ja)
Other versions
JPS59104249A (en
Inventor
Shinji Kojima
Kanji Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21276782A priority Critical patent/JPS59104249A/en
Publication of JPS59104249A publication Critical patent/JPS59104249A/en
Publication of JPS6349582B2 publication Critical patent/JPS6349582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/04Casting hollow ingots

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の関係する技術分野 この発明は、中空鋼塊の製造方法に関し、とく
に大型の中空鋼塊の鋳造時に問題となる最終凝固
位置を自由に制御して健全な内部性状を有する中
空鋼材を、有利に製造することを可能ならしめよ
うとするものである。 ロ 従来技術とその問題点と、発明の目的 一般に圧力容器などの使途において、筒状また
はリング状の如き中空の鍛造用粗材を製造するに
は、古く中実鋼塊から鍛造過程で厄介な穴明け・
穴拡げなどの工程を経る場合のほか、金属中子を
使用し造塊過程で中空状に製造する方法もすでに
知られているが、従来法に基づく中空鋼塊製造法
の場合には、冷却表面積が外面と内面とで一般的
には3対1程に大幅に異なり、とくに凝固をさせ
ようとする中空鋼塊の重量に対する抜熱表面積の
比で考えると5対1程にも著しく異なるため内表
面の冷却は著しく不充分になる。 この点従来の金属板中子に対する単なる空冷の
如きでは、とくに金属板中子自体の溶損を来すう
れいがあり、さればといつて厚子肉板を用いると
中空鋼塊の中子側である内表面に割れ発生などの
不利を伴うので中空鋼塊内面からの凝固速度を速
める抜熱の強化、促進にはとくに問題が多く、そ
の故に実用的には最終凝固位置が組立て中子側か
らして中空鋼塊の肉厚の20〜30%程度の所にしか
達せずして、有効なザク圧着を含めた鍛錬効果
上、中空鋼塊の肉厚の50%にも及ぶ範囲で目標と
する、最終凝固位置の制御には程達いことになら
ざるを得なかつた。 そこで出願人はさきに特公昭56−13537号公報
にて耐火物を充てんした内外2重の連結中子を介
する中空鋼塊製造用鋳型装置について提案した
が、溶鋼の冷却全期間にわたり、上記連結中子に
耐火物を介して間接冷却を適用するので、上記の
ような最終凝固位置の判断目標を成就するために
は、中空鋼塊の肉厚に応じて操業要因に多くの考
慮を必要とした。 発明者らは、さらに一歩を進めて、溶鋼の静圧
と対抗をすべき鋳造の前段期間中にのみ上記とほ
ぼ同様な間接冷却により凝固シエルの成長を導
き、その肥厚化をまつて直接冷却に移行させるこ
とに着目して実験と検討を加え、前述のような欠
点もしくは問題点を有利に解消して、たとえば
100トン以上のような大型中空鋼塊においてさえ
も、該鋼塊の内面性状が優れるだけでなくとくに
最終凝固位置を上掲の目標に従い自由に制御し得
る有利な中空鋼塊の製造に関する開発成果をあげ
ることができた。 ハ 発明の構成 この発明は鋳型用定盤上に環状または筒状の鉄
製鋳型と、その内方中央部で同心配置をなす内外
2重の比較的薄肉鉄管相互間の空〓内に不定形耐
火物を充てん挟持させた全体として筒状の組立て
中子とを据付け、鋳型と組立て中子との間に溶鋼
を注入する中空鋼塊の製造にあたり、組立て中子
の中心部でその内周に面して開口する多数の流体
噴射口を有する冷却媒体ヘツダーを鋳型用定盤の
中央孔を通し配設して上記注入の完了に引続く凝
固の初期過程中組立て中子を、その内方に位置さ
せた鉄管に対し流体噴射口から放出させた冷却媒
体の噴射により、不定形耐火物を介して間接冷却
し、凝固シエルの生長に応じて内方に位置する鉄
管のみを上方に撤去すると同時に不定形耐火物を
鋳型用定盤の中央孔を介し流下除去して、組立て
中子の外方に位置させた鉄管の内面を流体噴射口
からの冷却媒体の噴射により直接冷却し、その冷
却媒体の噴射流量を選択して中空鋼塊の最終凝固
位置を制御することを上記課題の解決手段とする
ものである。 この発明では、中空鋼塊の鋳造過程の第1段階
として慣例に従う溶鋼注入作業中および注入直後
においてとくに上述のように構成した組立て中子
に対しその内周に面して開口する冷却媒体たとえ
ば圧縮ガスもしくは冷水の噴射口を有する加圧ヘ
ツダーからの放出をもつてする間接冷却をなし、
それに由来した凝固シエルの生長をまち、第2段
階として組立て中子からその内方に位置する鉄管
(以下内筒という)のみを上方に吊上げて引抜き
撤去を行うとともに組立て中子の不定形耐水物を
流出除去してこんどは組立て中子の外方に位置す
る鉄管(以下外筒という)の内周に直接冷却を施
し、その冷却媒体噴射流量の選択を加えて中子側
からの抜熱増強調節をすることにより溶鋼の内面
における抜熱速度が外面からのそれに匹敵するに
至るような調整を施し中空鋼塊の最終凝固位置を
制御し、もつて表面性状はもとより内面性状がと
くにすぐれ、鋳造後の鍛造にてザクが容易に圧着
されて、健全な内部性能が簡便に確保され、大型
の中空鋼塊にあつても支障なく製造できるように
したものである。 第1図および第2図により、この発明を具体的
に説明する。 第1図に第1段階として溶鋼注入中、ないしは
その直後に施される中空鋼塊の冷却過程を示し、
また第2図に第2段階として組立て中子の内筒を
撤去しかつ不定形耐火物を鋳型定盤の中央孔から
流出除去して組立て中子の外筒の内面に対する直
接冷却を施す過程を示した。 第1図において例えば環状または筒状の鉄製鋳
型3を、その内方中央部で同心配置とした内、外
2重の比較的薄肉鉄管よりなる内、外筒4,5間
の空隙内に不定形耐火物6を充てん挟持させた全
体とし筒状をなす組立て中子7とともに据付けた
上、下二段重ねの鋳型用定盤1,2には、組立て
中子7の内部と連通する中央孔16を設ける。そ
して、この中央孔16を通して内筒4の内周に面
して開口する多数の噴射口8を高さ方向および周
方向に多数具備した冷却媒体噴射用ヘツダー9
を、とくに鋳型用定盤1,2の中央孔16を通り
抜けた直立姿勢にて組立て中子7と同心に配設
し、鋳型用定盤1,2内に設けた溶鋼10の導入
路11を通して溶鋼10を鋳型3と組立て中子7
間に下注ぎ注入を行う。 この注入中およびこれに引続く凝固の初期過程
中、組立て中子7を、その内筒4に対し噴射口8
からたとえば圧縮ガス12または冷却水13を噴
射して、組立て中子7を介して溶鋼の内面の間接
冷却を行うのである。この間接冷却は過度急冷に
よる中空鋼塊内周の内面性状の悪化や割れを、外
筒5の溶損なしに防止するのに役立つ。なお14
は湯道耐火物である。 もちろんこの溶鋼注入に当つては、組立て中子
7の下端と上定盤1との隙間その他において溶鋼
洩れ事故を防止するような配慮が必要であるが、
万一の場合に対する安全性を重視して上記の第1
段階の間接冷却は、冷却水によるよりも、それと
洩れ鋼との反応による水蒸気爆発のような事故を
未然に回避するのに有用な圧縮ガスの使用が好ま
しい。 ここに組立て中子7の内、外筒4,5間に不定
形耐火物6を充てん挾持させた理由は、外筒5の
みのような鉄板中子に直接冷却を施す場合に懸念
される中子の亀裂や溶損の不利に加え、とくに水
冷を行つた場合の上掲事故の回避のほか、さらに
不定形耐火物を介した内筒4による中子剛性の確
保の下に外筒5の鉄板を比較的薄肉として中空鋼
塊の内面における熱収縮を有利に許容し内面亀裂
の発生を効果的に防止するためである。 次に溶鋼内面の凝固シエルの生長に応じその凝
固シエルの強度が溶鋼の静圧に十分匹敵する時点
に達したとき、第2段階として組立て中子7の内
筒4をその頂部に設けた吊手15を介してクレー
ンなどで上方に撤去する。同時に組立て中子7の
内、外筒4,5間に充てん挾持された不定形耐火
物は、その内周支持が失われて第2図に示すとお
り定盤1,2の中央孔16を介して流出除去さ
れ、ダクト17中に回収される。 この間噴射口8を介してスプレイ状に噴出する
冷却媒体により外筒5を直接冷却するので、溶鋼
10の内面からの冷却速度は、第3図につき後述
するように極度に増強され、このとき冷却水13
の使用に何らの不安はなくその水量を加減して中
空鋼塊の最終凝固位置を適切に制御できる。 なおこの際に発生する蒸気は内筒4の撤去後に
たとえばフード18を据えて、系外に排出され得
るしまた余分な冷却水は、ダクト17から回収で
きる。 また不定形耐火物6は、組立て中子7の内筒4
の徹去後容易に下方に流下除去され得ることが必
要で、焼結化しない不定形耐火物例えばクロマイ
ト砂などの使用がのぞましく、もちろんその回収
再利用は有利である。 この発明に従う鋳造方法における中空鋼塊の内
外面からの凝固の進展状況を電子計算機で差分法
により求めた結果の一例を第3図に示す。またこ
の場合の計算条件の代表値を表1に示す。 表 1 初期溶融金属の温度:1550℃ 金属製鋳型の輻射率:ε=0.8 〃 表面熱伝達率:自然対流 鋼塊外表面の輻射率:ε=0.8 スプレイ冷却水の量:100/m2・min 不定形耐火物:クロマイト砂(厚み50mm) 鋼塊形状 内径:800φmm 外径:2800φmm 内、外筒:鉄板製(厚み15mm) 鉄製鋳型3中における溶鋼は第1段階におい
て、組立て中子の内、外筒間に耐火物が挾持され
ているため内面側の凝固速度が、第3図に示すと
おり外面側のそれに較べかなりに低いが、溶鋼内
面の凝固シエルの生長により所定の厚み以上に達
するA点において、第2段階として組立て中子の
内筒を上方に撤去すると同時に不定形耐火物を下
方に流下除去しつつスプレイ冷却水で外筒の内面
を直接冷却した。ここに溶鋼の外面と比べるとや
や冷却遅れがみられるものの内面側凝固速度が極
度に増大し、最終凝固位置は中空鋼塊の内面より
肉厚のほぼ45%程度に達する計算結果が得られ
た。 ニ 実施例 内径700mmφ、外径2300mmφ、100トンの中空鋼
塊をこの発明により鋳造した。その溶鋼の成分を
表2に、鋳込設備条件および鋳込条件を表3に示
す。
B. Technical field to which the invention pertains The present invention relates to a method for manufacturing hollow steel ingots, and in particular, to freely control the final solidification position, which is a problem when casting large hollow steel ingots, to produce hollow steel materials with sound internal properties. The aim is to make it possible to manufacture it advantageously. B. Prior art, its problems, and purpose of the invention In general, in order to manufacture hollow forging material in the shape of a cylinder or ring for use in pressure vessels, etc., it is difficult to make a forging process from an old solid steel ingot. drilling·
In addition to processes such as hole expansion, methods are already known in which metal cores are used to produce hollow steel ingots during the ingot making process. Generally speaking, the surface area of the outer surface and the inner surface differs significantly by about 3:1, and especially when considering the ratio of heat removal surface area to the weight of the hollow steel ingot to be solidified, it differs significantly by about 5:1. Cooling of the inner surface becomes significantly insufficient. In this respect, if the conventional metal plate core is simply air cooled, there is a risk that the metal plate core itself will be damaged by melting, and if a thick wall plate is used, the core side of the hollow steel block will There are many problems in strengthening and promoting heat removal to speed up the solidification rate from the inner surface of the hollow steel ingot because it is accompanied by disadvantages such as the occurrence of cracks on a certain inner surface.Therefore, in practice, the final solidification position is from the assembled core side. However, due to the effectiveness of the forging process, including effective crimp bonding, the target can reach up to 50% of the wall thickness of the hollow steel ingot. However, the control of the final solidification position was inevitably insufficient. Therefore, the applicant previously proposed in Japanese Patent Publication No. 56-13537 a mold device for manufacturing hollow steel ingots using a double inner and outer connecting core filled with refractories. Since indirect cooling is applied to the core through the refractory, in order to achieve the goal of determining the final solidification position as described above, it is necessary to take into account many operational factors depending on the wall thickness of the hollow steel ingot. did. The inventors went one step further and guided the growth of the solidified shell through indirect cooling, similar to the above, only during the pre-casting period when it must compete with the static pressure of molten steel, and then directly cooled the solidified shell after its thickening. We conducted experiments and studies with a focus on transitioning to
Development results related to the production of advantageous hollow steel ingots that not only have excellent inner surface properties, but also allow the final solidification position to be freely controlled according to the above goals, even for large hollow steel ingots weighing more than 100 tons. I was able to give you C. Structure of the Invention This invention provides an annular or cylindrical iron mold on a mold surface plate, and a monolithic refractory in the space between two relatively thin-walled iron pipes arranged concentrically at the inner center of the mold. In manufacturing a hollow steel ingot, a cylindrical assembly core filled with materials and sandwiched together is installed, and molten steel is injected between the mold and the assembly core. A coolant header having a number of fluid injection ports opening through the center hole of the mold platen is disposed through the central hole of the mold platen so that the assembled core is positioned inside thereof during the initial stage of solidification following completion of the above-mentioned injection. By injecting the cooling medium from the fluid injection port, the iron pipes are cooled indirectly through the monolithic refractories, and as the solidified shell grows, only the iron pipes located inward are removed upward, and at the same time, the iron pipes located inside are removed upward. The shaped refractory is removed by flowing down through the center hole of the mold surface plate, and the inner surface of the iron pipe located outside the assembled core is directly cooled by the injection of cooling medium from the fluid injection port. The solution to the above problem is to control the final solidification position of the hollow steel ingot by selecting the injection flow rate. In this invention, during and immediately after the conventional molten steel pouring operation as the first step in the casting process of a hollow steel ingot, a cooling medium, such as a compressed indirect cooling by discharge from a pressurized header with gas or cold water injection ports;
To prevent the growth of the solidified shell derived from this, in the second step, only the iron pipe located inside the assembly core (hereinafter referred to as the inner tube) is lifted upwards and pulled out and removed, and the amorphous waterproof material of the assembly core is removed. After removing the outflow, we directly cool the inner periphery of the iron pipe (hereinafter referred to as the outer tube) located outside the assembled core, and increase the heat removal from the core side by selecting the cooling medium injection flow rate. By making adjustments, the heat removal rate on the inner surface of the molten steel is made comparable to that from the outer surface, and the final solidification position of the hollow steel ingot is controlled, resulting in particularly excellent surface and inner surface properties, making it possible to cast. In the subsequent forging process, the zaku is easily crimped, ensuring sound internal performance, and it is possible to manufacture large hollow steel ingots without any problems. This invention will be specifically explained with reference to FIGS. 1 and 2. Figure 1 shows the cooling process of a hollow steel ingot that is performed during or immediately after pouring molten steel as the first step.
In addition, Figure 2 shows the second step of removing the inner cylinder of the assembled core and removing the monolithic refractory from flowing out from the center hole of the mold surface plate to provide direct cooling to the inner surface of the outer cylinder of the assembled core. Indicated. In Fig. 1, for example, an annular or cylindrical iron mold 3 is arranged concentrically at its inner center, and an inner and outer cylinder made of two relatively thin-walled iron pipes is placed in the gap between the inner and outer cylinders 4 and 5. Installed together with a cylindrical assembly core 7 filled with a shaped refractory 6 and sandwiched therein, the lower two-tiered mold surface plates 1 and 2 have a central hole that communicates with the inside of the assembly core 7. 16 will be provided. A coolant injection header 9 is provided with a large number of injection ports 8 in the height direction and circumferential direction that open facing the inner periphery of the inner cylinder 4 through the central hole 16.
is arranged concentrically with the assembly core 7 in an upright position passing through the center hole 16 of the mold surface plates 1 and 2, and the molten steel 10 is passed through the introduction passage 11 provided in the mold surface plates 1 and 2. Assemble molten steel 10 with mold 3 and core 7
Perform a bottom pour injection in between. During this injection and the initial stage of solidification that follows, the assembly core 7 is moved against the injection port 8 against its inner cylinder 4.
For example, compressed gas 12 or cooling water 13 is injected from the assembly core 7 to indirectly cool the inner surface of the molten steel. This indirect cooling is useful for preventing deterioration of the inner surface properties and cracking of the inner periphery of the hollow steel ingot due to excessive rapid cooling, without causing melting damage to the outer cylinder 5. Note 14
is a runner refractory. Of course, when pouring this molten steel, consideration must be given to prevent molten steel from leaking in the gap between the lower end of the assembly core 7 and the upper surface plate 1, etc.
With emphasis on safety in the unlikely event that
For indirect cooling of the stages, it is preferable to use compressed gas, which is useful to avoid accidents such as steam explosions due to reactions between cooling water and leaking steel, rather than using cooling water. The reason for filling and sandwiching the monolithic refractory material 6 between the outer cylinders 4 and 5 in the assembled core 7 is to avoid concerns when directly cooling a steel plate core such as the outer cylinder 5 only. In addition to avoiding the disadvantages of cracking and melting of the core, especially when water cooling is performed, it is possible to avoid the above-mentioned accidents, especially when water cooling is performed, and to ensure the rigidity of the core with the inner tube 4 through the monolithic refractory, while the outer tube 5 is This is to advantageously allow thermal contraction on the inner surface of the hollow steel ingot by making the iron plate relatively thin, thereby effectively preventing the occurrence of inner surface cracks. Next, as the solidified shell grows on the inner surface of the molten steel, when the strength of the solidified shell reaches a point where it sufficiently rivals the static pressure of the molten steel, in the second step, the inner cylinder 4 of the assembly core 7 is attached to a suspension provided at the top. It is removed upward using a crane or the like using hands 15. At the same time, the monolithic refractory filled and held between the outer cylinders 4 and 5 of the assembled core 7 loses its inner periphery support, and as shown in FIG. It is removed and collected in the duct 17. During this time, the outer cylinder 5 is directly cooled by the cooling medium ejected in a spray form through the injection port 8, so the cooling rate from the inner surface of the molten steel 10 is extremely increased as will be described later with reference to FIG. water 13
There is no need to worry about using it, and the final solidification position of the hollow steel ingot can be appropriately controlled by adjusting the amount of water. The steam generated at this time can be discharged from the system by installing a hood 18, for example, after the inner cylinder 4 is removed, and excess cooling water can be recovered from the duct 17. Moreover, the monolithic refractory 6 is the inner cylinder 4 of the assembly core 7.
It is necessary that the refractory can be easily flowed down and removed after removal of the refractory, and it is preferable to use a monolithic refractory that does not undergo sintering, such as chromite sand, and of course, it is advantageous to recover and reuse it. FIG. 3 shows an example of the results obtained by calculating the progress of solidification from the inner and outer surfaces of a hollow steel ingot in the casting method according to the present invention using an electronic computer using the differential method. Table 1 shows representative values of calculation conditions in this case. Table 1 Temperature of initial molten metal: 1550℃ Emissivity of metal mold: ε=0.8 Surface heat transfer coefficient: Natural convection Emissivity of outer surface of steel ingot: ε=0.8 Amount of spray cooling water: 100/m 2 min Monolithic refractory: Chromite sand (thickness 50mm) Steel ingot shape Inner diameter: 800φmm Outer diameter: 2800φmm Inner and outer cylinders: Made of iron plate (thickness 15mm) Molten steel in the iron mold 3 is transferred to the inside of the assembly core in the first stage. Since the refractory is sandwiched between the outer cylinders, the solidification rate on the inner surface is much lower than that on the outer surface, as shown in Figure 3, but it reaches a predetermined thickness or more due to the growth of the solidified shell on the inner surface of the molten steel. At point A, in the second step, the inner cylinder of the assembled core was removed upward, and at the same time, the monolithic refractory was flowed down and removed, and the inner surface of the outer cylinder was directly cooled with spray cooling water. Although there is a slight cooling delay compared to the outer surface of the molten steel, the solidification rate on the inner surface is extremely increased, and the calculation results show that the final solidification position is approximately 45% of the wall thickness than the inner surface of the hollow steel ingot. . D. Example A 100-ton hollow steel ingot with an inner diameter of 700 mmφ and an outer diameter of 2300 mmφ was cast according to the present invention. The composition of the molten steel is shown in Table 2, and the casting equipment conditions and casting conditions are shown in Table 3.

【表】 表 3 溶鋼初期温度:1548℃ 鋳型外筒鉄板厚み:11mm 鋳型内筒鉄板厚み:11mm 不定形耐火物:クロマイト砂(厚み35mm) 第1段階冷却媒体:空気(ガス圧;5.5気圧、流
量;20m3/h、時間150分) 第2段階冷却媒体:水(水圧;4.5気圧、流量;
9m3/h、時間240分) 噴射ノズル:フルコーンノズル3〜4/min 噴射口数量:8箇/m2 間接冷却後切換時凝固シエルの厚み(推定):135
mm 中空鋼塊最終凝固位置:内面より45〜48% その結果鋳造作業は安全に行なうことができ、
中空鋼塊の最終凝固位置もほぼ肉厚中心近傍に至
つた。 ホ 効果 この発明によれば環状または筒形の鉄製鋳型と、
その内方中央部に位置する組立て中子との間で鋳
型定盤上に形成される鋳造空間内に注入した溶鋼
に対する冷却過程を、凝固シエルの成長の前後で
第1段階と第2段階とに区分し、前段階において
は凝固シエルの生長を充分に養生し得る中子構造
での間接冷却により、比較的薄肉の組立て外皮を
用いてその溶損を生じるおそれなしに凝固シエル
の成長に伴う収縮を適切に吸収して内周割れを有
効に防止し、また第2段階での直接冷却により溶
鋼の最終凝固位置をして中央鋼塊のほぼ肉厚中央
に至らせるような広範な調整を可能ならしめて、
内、外面性状はもとよりとくに内部性状の健全化
を有効に達成できる。
[Table] Table 3 Molten steel initial temperature: 1548℃ Mold outer cylinder steel plate thickness: 11mm Mold inner cylinder steel plate thickness: 11mm Monolithic refractory: chromite sand (thickness 35mm) 1st stage cooling medium: Air (gas pressure: 5.5 atm, Flow rate: 20m 3 /h, time 150 minutes) Second stage cooling medium: Water (water pressure: 4.5 atm, flow rate;
9m3 /h, time 240 minutes) Injection nozzle: Full cone nozzle 3-4/min Number of injection ports: 8/ m2 Thickness of solidified shell when switching after indirect cooling (estimated): 135
mm Final solidification position of hollow steel ingot: 45-48% from the inner surface As a result, casting work can be performed safely,
The final solidification position of the hollow steel ingot was also approximately near the center of thickness. E. Effects According to this invention, an annular or cylindrical iron mold;
The cooling process of the molten steel injected into the casting space formed on the mold surface plate between the assembly core located in the inner center part is divided into the first stage and the second stage before and after the growth of the solidified shell. In the previous stage, indirect cooling with a core structure that can sufficiently cure the growth of the solidified shell allows the use of a relatively thin assembled skin to allow the growth of the solidified shell to occur without the risk of melting and damage. The shrinkage is properly absorbed to effectively prevent internal cracking, and the final solidification position of the molten steel is adjusted to approximately the center of the wall thickness of the central steel ingot through direct cooling in the second stage. Make it possible,
It is possible to effectively improve the internal and external properties as well as the internal properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、この発明にかかる中空
鋼塊製造過程を、模式的に示す断面図であり、第
3図は中空鋼塊内外面からの凝固進展状況を電算
機で差分法により求めた説明用図表である。 1,2……鋳型用定盤、3……鋳型、4……組
立て中子の内筒、5……組立て中子の外筒、6…
…不定形耐火物、7……組立て中子、8……噴射
口、9……冷却媒体噴射用ヘツダー、10……溶
鋼、11……導入路、12……圧縮ガス、13…
…冷却水、14……湯道耐火物、15……吊手、
16……中央孔。
Figures 1 and 2 are cross-sectional views schematically showing the process of manufacturing a hollow steel ingot according to the present invention, and Figure 3 shows the progress of solidification from the inner and outer surfaces of the hollow steel ingot using a computer using the differential method. This is the explanatory chart I found. 1, 2... Surface plate for mold, 3... Mold, 4... Inner cylinder of assembly core, 5... Outer cylinder of assembly core, 6...
... Monolithic refractory, 7 ... Assembly core, 8 ... Injection port, 9 ... Header for cooling medium injection, 10 ... Molten steel, 11 ... Inlet passage, 12 ... Compressed gas, 13 ...
...cooling water, 14... runner refractory, 15... hanging hand,
16...Central hole.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳型用定盤上に環状または筒状の鉄製鋳型
と、その内方中央部で同心配置をなす内外2重の
比較的薄肉鉄管相互間の空〓内に不定形耐火物を
充てん挾持させた全体として筒状の組立て中子と
を据付け、鋳型と組立て中子との間に溶鋼を注入
する中空鋼塊の製造にあたり、組立て中子の中心
部でその内周に面して開口する多数の流体噴射口
を有する冷却媒体ヘツダーを鋳型用定盤の中央孔
を通し配設して上記注入の完了に引続く凝固の初
期過程中組立て中子を、その内方に位置させた鉄
管に対し流体噴射口から放出させた冷却媒体の噴
射により、不定形耐火物を介して間接冷却し、凝
固シエルの生長に応じて内方に位置する鉄管のみ
を上方に撒去すると同時に不定形耐火物を鋳型用
定盤の中央孔を介し流下除去して、組立て中子の
外方に位置させた鉄管の内面を流体噴射口からの
冷却媒体の噴射により直接冷却し、その冷却媒体
の噴射流量を選択して中空鋼塊の最終凝固位置を
制御することを特徴とする中空鋼塊の鋳造方法。
1 An annular or cylindrical iron mold is placed on a mold surface plate, and a monolithic refractory is filled and held in the space between two relatively thin-walled iron pipes arranged concentrically at the inner center of the mold. In manufacturing a hollow steel ingot, a generally cylindrical assembly core is installed and molten steel is injected between the mold and the assembly core. A cooling medium header having a fluid injection port is installed through the central hole of the mold surface plate to inject fluid into the iron pipe located inside the assembled core during the initial stage of solidification following completion of the above injection. By injecting the cooling medium from the injection port, indirect cooling is performed through the monolithic refractory, and as the solidified shell grows, only the inner iron pipe is thrown upward, and at the same time, the monolithic refractory is cast. The inner surface of the iron pipe located outside the assembled core is directly cooled by the injection of cooling medium from the fluid injection port, and the injection flow rate of the cooling medium is selected. A method for casting a hollow steel ingot, characterized by controlling the final solidification position of the hollow steel ingot.
JP21276782A 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting Granted JPS59104249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21276782A JPS59104249A (en) 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21276782A JPS59104249A (en) 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting

Publications (2)

Publication Number Publication Date
JPS59104249A JPS59104249A (en) 1984-06-16
JPS6349582B2 true JPS6349582B2 (en) 1988-10-05

Family

ID=16628056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21276782A Granted JPS59104249A (en) 1982-12-06 1982-12-06 Casting method of hollow steel ingot and core for casting

Country Status (1)

Country Link
JP (1) JPS59104249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530877U (en) * 1991-08-09 1993-04-23 株式会社大阪クリツプ Name card holder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580966B1 (en) * 1985-04-29 1987-10-16 Cegedur PROCESS FOR CASTING SACRIFICIAL MOLD ANODES
WO2013152478A1 (en) * 2012-04-11 2013-10-17 中冶京诚工程技术有限公司 Hollow billet water cooling casting method and device
KR102205785B1 (en) * 2014-05-14 2021-01-21 재단법인 포항산업과학연구원 Mold for casting aluminum clad ingot and electromagnetic continuous casting apparatus using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252830A (en) * 1975-10-28 1977-04-28 Daido Steel Co Ltd Method of making hollow ingot
JPS55161553A (en) * 1979-06-04 1980-12-16 Hitachi Ltd Production of hollow metal ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252830A (en) * 1975-10-28 1977-04-28 Daido Steel Co Ltd Method of making hollow ingot
JPS55161553A (en) * 1979-06-04 1980-12-16 Hitachi Ltd Production of hollow metal ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530877U (en) * 1991-08-09 1993-04-23 株式会社大阪クリツプ Name card holder

Also Published As

Publication number Publication date
JPS59104249A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
CN104475693A (en) Reduction casting compositing method and device for large iron ingots
CN104785757A (en) Multi-core reducing multi-ladle co-casting method and device for casting large composite steel ingots
JPS6349582B2 (en)
CN201442085U (en) Directional solidification casting device for titanium alloy missile cabins
CN109128023A (en) A kind of big ancient cooking vessel gear casting technique
JP4789241B2 (en) Tire mold casting method
CN101298092B (en) Method for producing movable core low segregation large-sized hollow steel ingot
US3438424A (en) Method of direct casting of steel slabs and billets
US2864141A (en) Molds
US2747245A (en) Process for continuous casting of metal billets
US2867871A (en) Hot-top for ingot mold
JPH0445264B2 (en)
CN218798944U (en) Production equipment for section nodular cast iron cylinder of spent fuel storage and transportation container
JPH0126787B2 (en)
US3477682A (en) Ingot mold with hot top and refractory lining for inducing progressive axial solidification
JPS5917475Y2 (en) Bottom metal for continuous casting
US2585096A (en) Method of making an ingot
CN109261913B (en) Method for improving ingot casting solidification quality of vacuum induction furnace
US6528010B2 (en) Molten metal handling vessel
JPS6333163A (en) Production for large size ingot
JPS59209456A (en) Production of steel ingot
JPH08141703A (en) Production of ingot having shrinkage cavity in center part
Yeming et al. Vacuum Ingot Casting
JPH0242575B2 (en)
CN107790651A (en) Method for improving cooling condition of steel ingot