JPS6347256B2 - - Google Patents
Info
- Publication number
- JPS6347256B2 JPS6347256B2 JP2236082A JP2236082A JPS6347256B2 JP S6347256 B2 JPS6347256 B2 JP S6347256B2 JP 2236082 A JP2236082 A JP 2236082A JP 2236082 A JP2236082 A JP 2236082A JP S6347256 B2 JPS6347256 B2 JP S6347256B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- silicon
- electron beam
- single crystal
- crystal silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/2636—Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明はラテラルエピタキシヤル成長法に関す
るもので、特に非単結晶シリコン層への電子ビー
ム照射を行う際の被覆材に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a lateral epitaxial growth method, and in particular to a coating material for irradiating a non-single crystal silicon layer with an electron beam.
(b) 技術の背景
近年、多層集積回路或いは三次元集積回路を実
現する為の技術として、ラテラルエピタキシヤル
成長が注目されている。(b) Background of the Technology In recent years, lateral epitaxial growth has attracted attention as a technology for realizing multilayer integrated circuits or three-dimensional integrated circuits.
これは、例えば二酸化珪素層上に非晶質シリコ
ン層を被着し、その一箇所から再結晶化を開始し
て全域に及ぼすもので、単結晶化が水平方向に進
行することからラテラルエピタキシヤル成長と呼
ばれている。非単結晶シリコン層は部分的にでは
あるが、順次溶融状態となるので、表面形状が変
化しないように二酸化珪素等の皮膜を被せおくこ
とが行われる。この被覆層はキヤツプと称せられ
る。 In this method, for example, an amorphous silicon layer is deposited on a silicon dioxide layer, and recrystallization starts from one point and is applied to the entire area.Since single crystallization progresses in the horizontal direction, it is called lateral epitaxial. It's called growth. Since the non-single crystal silicon layer gradually becomes molten, albeit partially, it is covered with a film of silicon dioxide or the like so that the surface shape does not change. This covering layer is called a cap.
非単結晶シリコン層を単結晶化させる為の加熱
手段としては、レーザ光、電子ビーム等を走査的
に照射するのが一般的であるが、棒状の赤外ヒー
タが用いられることもある。 As a heating means for single crystallizing a non-single crystal silicon layer, scanning irradiation with laser light, electron beam, etc. is generally used, but a rod-shaped infrared heater is sometimes used.
ラテラルエピタキシヤル成長は又、第1図aに
示すような、選択的に絶縁物を被着した単結晶シ
リコン基板上に実施されることもある。この場
合、新に形成される単結晶層は、単結晶シリコン
1上では基板結晶の結晶方位を受け継ぎ、絶縁物
2上ではそれ迄に成長した単結晶層の結晶方位を
受け継ぐ事になる。このラテラルエピタキシヤル
成長の目的は、第1図bに示す構造の集積回路基
板を得ることであり、絶縁物2は二酸化珪素であ
る場合が通常である。 Lateral epitaxial growth may also be performed on single crystal silicon substrates with selectively deposited insulators, as shown in FIG. 1a. In this case, the newly formed single crystal layer inherits the crystal orientation of the substrate crystal on the single crystal silicon 1, and inherits the crystal orientation of the single crystal layer grown up to that point on the insulator 2. The purpose of this lateral epitaxial growth is to obtain an integrated circuit substrate having the structure shown in FIG. 1b, and the insulator 2 is usually silicon dioxide.
(c) 従来技術と問題点
前記単結晶化にレーザ光を使用する場合は、二
酸化珪素層での吸収が殆ど無いので、二酸化珪素
層をキヤツプに用いても、キヤツプ自身が軟化変
形することはないが、電子ビームを使用する場合
は、電子ビームのエネルギーは二酸化珪素層にも
吸収される為、二酸化珪素層の軟化が起り、基板
表面形状の維持という目的は果されない。(c) Prior art and problems When laser light is used for the single crystallization, there is almost no absorption in the silicon dioxide layer, so even if a silicon dioxide layer is used for the cap, the cap itself will not be softened and deformed. However, when an electron beam is used, the energy of the electron beam is also absorbed by the silicon dioxide layer, which causes softening of the silicon dioxide layer, and the purpose of maintaining the substrate surface shape is not achieved.
また、非単結晶シリコン層の単結晶化温度に関
しても、シリコン基板上で単結晶化が十分に進む
程度に非単結晶シリコン層の温度を上げると、熱
伝導度の低い二酸化珪素層上では温度が上がり過
ぎて「はがれ」が起り、温度を下げてこの「はが
れ」を避けようとすると、シリコン基板上での温
度上昇が不足となり、非単結晶シリコンが単結晶
化されない事態が起る。 Regarding the single crystallization temperature of the non-single-crystal silicon layer, if the temperature of the non-single-crystal silicon layer is raised to the extent that single crystallization progresses sufficiently on the silicon substrate, the temperature rises on the silicon dioxide layer with low thermal conductivity. If the temperature rises too much, "peeling" occurs, and if an attempt is made to lower the temperature to avoid this "peeling", the temperature rise on the silicon substrate will not be sufficient, and a situation will occur in which non-single crystal silicon will not become single crystal.
(d) 発明の目的
本発明の目的は、電子ビーム照射による非単結
晶シリコンの単結晶化に於て、基板の表面形状の
維持という目的に適したキヤツプを提供し、更
に、シリコン基板上と二酸化珪素層上での非単結
晶シリコン層の温度上昇の差を減少せしめ、「は
がれ」を避けながら、単結晶化を十分に進行せし
める方法を提供することである。(d) Purpose of the Invention The purpose of the present invention is to provide a cap suitable for maintaining the surface shape of a substrate in single crystallization of non-single crystal silicon by electron beam irradiation, and to provide a cap suitable for maintaining the surface shape of a substrate. It is an object of the present invention to provide a method for reducing the difference in temperature rise of a non-single crystal silicon layer on a silicon dioxide layer and sufficiently promoting single crystallization while avoiding "peeling".
(e) 発明の構成
本発明のラテラルエピタキシヤル成長法では、
表面領域に選択的に第一の絶縁物層が形成された
単結晶シリコン基板上に、非単結晶シリコン層、
第二の絶縁物層、高融点金属層を順次被着した
後、前記第一の絶縁物層上方の前記高融点金属層
表面に対する電子ビームの照射量を、前記第一の
絶縁物層が形成されない前記単結晶シリコン基板
上方の前記高融点金属層表面に対する電子ビーム
の照射量よりも減少させることによつて、前記非
単結晶シリコン層が単結晶化される。(e) Structure of the invention In the lateral epitaxial growth method of the present invention,
A non-single-crystal silicon layer is formed on a single-crystal silicon substrate on which a first insulating layer is selectively formed in the surface region.
After sequentially depositing a second insulating layer and a high melting point metal layer, the first insulating layer controls the amount of electron beam irradiation to the surface of the high melting point metal layer above the first insulating layer. The non-single-crystal silicon layer is made into a single crystal by reducing the amount of electron beam irradiation to the surface of the refractory metal layer above the single-crystal silicon substrate, which is not irradiated with the electron beam.
(f) 発明の実施例
第2図に本発明の一実施例を示す。第1図の場
合と同様に、シリコン基板1の表面に二酸化珪素
層2が選択的に形成されており、それを覆つて多
結晶シリコン層3(厚さ400nm)が被着されて
いる。本発明ではさらにその上に50nmの窒化珪
素層4と40nmのタングステン層5が被着形成さ
れている。なお、3はアモルフアスシリコンであ
つてもよく、窒化珪素層4は二酸化珪素層であつ
てもよい。更に、5は他の高融点金属、例えばモ
リブデン、白金等、であつてもよい。此等各層の
被着形成は従来技術によつて実施し得るものであ
る。(f) Embodiment of the invention FIG. 2 shows an embodiment of the invention. As in the case of FIG. 1, a silicon dioxide layer 2 is selectively formed on the surface of a silicon substrate 1, and a polycrystalline silicon layer 3 (400 nm thick) is deposited to cover it. In the present invention, a 50 nm thick silicon nitride layer 4 and a 40 nm thick tungsten layer 5 are further deposited thereon. Note that 3 may be amorphous silicon, and the silicon nitride layer 4 may be a silicon dioxide layer. Furthermore, 5 may be other high melting point metals, such as molybdenum, platinum, etc. The deposition of these layers can be performed using conventional techniques.
タングステン層5は、後の工程で多結晶シリコ
ン層が部分的に溶融状態となつたとき、表面形状
が変化するのを防ぐ為のものであり、窒化珪素層
4は該状況に於て多結晶シリコン層3とタングス
テン層5とが反応するのを防ぐ為のものである。
該層4は薄いものであり、表面形状の維持はタン
グステン層に依存することから、二酸化珪素のよ
うに軟化し易い材料も使用可能である。また、タ
ングステン層は、後の電子ビーム照射工程に於て
基板表面が帯電するのを防ぐ役割も果す。 The tungsten layer 5 is for preventing the surface shape from changing when the polycrystalline silicon layer becomes partially molten in a later process, and the silicon nitride layer 4 is for preventing the polycrystalline silicon layer from changing in this situation. This is to prevent the silicon layer 3 and tungsten layer 5 from reacting.
Since the layer 4 is thin and depends on the tungsten layer to maintain the surface shape, a material that softens easily such as silicon dioxide can also be used. The tungsten layer also serves to prevent the substrate surface from being charged during the subsequent electron beam irradiation process.
次いで、第2図bに示すように、二酸化珪素層
2上の表面領域に、第二の窒化珪素層6(厚さ
50nm)が選択的に被着形成される。該窒化珪素
層6は二酸化珪素層2上の多結晶シリコンにたい
する電子ビーム照射量を減衰させる為のものであ
り、他の手段によつて該目的を達成することも本
発明の技術範囲に含まれる。このような処理が施
された基板表面に電子ビーム7を走査的に照射す
る。8は電子銃である。電子ビームの加速電圧
は、前記窒化珪素層4、タングステン層5を透過
して多結晶シリコン層に大部分のエネルギーが吸
収されるように設定される。 Next, as shown in FIG. 2b, a second silicon nitride layer 6 (thickness
50 nm) is selectively deposited. The silicon nitride layer 6 is for attenuating the amount of electron beam irradiation on the polycrystalline silicon on the silicon dioxide layer 2, and it is also within the technical scope of the present invention to achieve this purpose by other means. . The surface of the substrate subjected to such processing is irradiated with an electron beam 7 in a scanning manner. 8 is an electron gun. The accelerating voltage of the electron beam is set so that most of the energy is transmitted through the silicon nitride layer 4 and tungsten layer 5 and absorbed by the polycrystalline silicon layer.
電子ビームの照射強度は単結晶シリコン上の多
結晶シリコン層の温度が融点直上となるように制
御される。既述したように、二酸化珪素層上の多
結晶シリコン層は同じ照射条件ではより高温とな
るが、本実施例の如く、窒化珪素層6により適度
に弱められた電子ビーム照射が行われた場合に
は、両者の差は僅かである。従つて、単結晶シリ
コン上で多結晶シリコン層の単結晶化が十分進行
する条件でも、二酸化珪素層上の多結晶シリコン
層の温度が過渡に上昇することはなく、「はがれ」
が起ることもない。 The irradiation intensity of the electron beam is controlled so that the temperature of the polycrystalline silicon layer on the single crystal silicon is just above the melting point. As mentioned above, the polycrystalline silicon layer on the silicon dioxide layer becomes hotter under the same irradiation conditions, but when electron beam irradiation is moderately weakened by the silicon nitride layer 6 as in this example, The difference between the two is small. Therefore, even under conditions in which the polycrystalline silicon layer sufficiently progresses to single crystallization on single-crystal silicon, the temperature of the polycrystalline silicon layer on the silicon dioxide layer does not rise transiently, and "peel-off" occurs.
never happens.
上述の実施例は窒化珪素層層によつて電子ビー
ム照射を弱めたが、この目的に使用される減衰用
材料は基板表面に被着されたものである必要はな
く、適当なマスクを使用して電子ビームを選択的
に減衰してもよい。更に、二酸化珪素層2のパタ
ーンに関する情報を電気的な信号として利用し得
る場合には、電子ビームの電流値を該電気信号に
よつて制御し、所望の照射量を実現することがで
きる。 Although the embodiments described above attenuated the electron beam irradiation by a silicon nitride layer, the attenuating material used for this purpose need not be deposited on the substrate surface, but can be used with a suitable mask. The electron beam may be selectively attenuated. Furthermore, if information regarding the pattern of the silicon dioxide layer 2 can be used as an electrical signal, the current value of the electron beam can be controlled by the electrical signal to achieve a desired irradiation amount.
(g) 発明の効果
以上説明したように本発明によれば、電子ビー
ムの照射によつても軟化変形することのないキヤ
ツプが使用されるので基板表面の平坦性が確保さ
れ、更に二酸化珪素層上で「はがれ」を起すこと
のない、電子ビームを用いたラテラルエピタキシ
ヤル成長を行うことができる。(g) Effects of the Invention As explained above, according to the present invention, a cap that does not soften and deform even when irradiated with an electron beam is used, so the flatness of the substrate surface is ensured, and furthermore, the silicon dioxide layer Lateral epitaxial growth using an electron beam can be performed without causing "peeling" on the surface.
第1図はラテラルエピタキシヤル成長が行われ
るシリコン基板の形状を示す図、第2図は本発明
を説明する図であつて、図に於て1はシリコン基
板、2は二酸化珪素層、3は非単結晶シリコン
層、4は窒化珪素層、5はタングステン層、6は
第二の窒化珪素層である。
FIG. 1 is a diagram showing the shape of a silicon substrate on which lateral epitaxial growth is performed, and FIG. 2 is a diagram explaining the present invention, in which 1 is a silicon substrate, 2 is a silicon dioxide layer, and 3 is a silicon substrate. 4 is a silicon nitride layer, 5 is a tungsten layer, and 6 is a second silicon nitride layer.
Claims (1)
れた単結晶シリコン基板上に、非単結晶シリコン
層、第二の絶縁物層、高融点金属層を順次被着し
た後、前記第一の絶縁物層上方の前記高融点金属
層表面に対する電子ビームの照射量を、前記第一
の絶縁物層が形成されない前記単結晶シリコン基
板上方の前記高融点金属層表面に対する電子ビー
ムの照射量よりも減少させて、前記非単結晶シリ
コン層を単結晶化することを特徴とするラテラル
エピタキシヤル成長法。 2 前記第一の絶縁物層上の前記高融点金属層表
面に、第三の絶縁物層を被着することによつて、
該領域の非単結晶シリコン層に対する電子ビーム
照射量を減少させることを特徴とする特許請求の
範囲第1項記載のラテラルエピタキシヤル成長
法。[Claims] 1. A non-single crystal silicon layer, a second insulating layer, and a high melting point metal layer are sequentially coated on a single crystal silicon substrate on which a first insulating layer is selectively formed in the surface region. After depositing, the amount of electron beam irradiation on the surface of the high melting point metal layer above the first insulating layer is changed to the amount of irradiation of the electron beam on the surface of the high melting point metal layer above the single crystal silicon substrate on which the first insulating layer is not formed. A lateral epitaxial growth method characterized in that the non-single crystal silicon layer is made into a single crystal by reducing the amount of electron beam irradiation to the non-single crystal silicon layer. 2. By depositing a third insulating layer on the surface of the high melting point metal layer on the first insulating layer,
The lateral epitaxial growth method according to claim 1, characterized in that the amount of electron beam irradiation to the non-single crystal silicon layer in the region is reduced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2236082A JPS58139423A (en) | 1982-02-15 | 1982-02-15 | Lateral epitaxial growing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2236082A JPS58139423A (en) | 1982-02-15 | 1982-02-15 | Lateral epitaxial growing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58139423A JPS58139423A (en) | 1983-08-18 |
JPS6347256B2 true JPS6347256B2 (en) | 1988-09-21 |
Family
ID=12080460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2236082A Granted JPS58139423A (en) | 1982-02-15 | 1982-02-15 | Lateral epitaxial growing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58139423A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01171346U (en) * | 1988-05-23 | 1989-12-05 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61113229A (en) * | 1984-11-08 | 1986-05-31 | Agency Of Ind Science & Technol | Manufacture of semiconductor thin film crystal layer |
JPS61160924A (en) * | 1985-01-09 | 1986-07-21 | Agency Of Ind Science & Technol | Manufacture of semiconductor thin film crystal layer |
JPS61180422A (en) * | 1985-02-06 | 1986-08-13 | Agency Of Ind Science & Technol | Manufacture of semiconductor thin film crystal layer |
-
1982
- 1982-02-15 JP JP2236082A patent/JPS58139423A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01171346U (en) * | 1988-05-23 | 1989-12-05 |
Also Published As
Publication number | Publication date |
---|---|
JPS58139423A (en) | 1983-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59195871A (en) | Manufacture of metal oxide semiconductor field-effect transistor | |
JPH0410216B2 (en) | ||
JPH0588544B2 (en) | ||
US4655850A (en) | Method of forming monocrystalline thin films by parallel beam scanning of belt shaped refractory metal film on amorphous or polycrystalline layer | |
JPS6347256B2 (en) | ||
JPS5886717A (en) | Forming of single crystal silicon film | |
JPS5825220A (en) | Manufacture of semiconductor substrate | |
JPS5833822A (en) | Preparation of semiconductor substrate | |
JPS58116722A (en) | Preparation of semiconductor device | |
JP2703334B2 (en) | Method for manufacturing semiconductor device | |
JPS5856457A (en) | Manufacture of semiconductor device | |
JPS6216509A (en) | Manufacture of substrate for semiconductor device | |
JPS6265410A (en) | Formation of single crystal thin film | |
JPH03250620A (en) | Manufacture of semiconductor device | |
JP2569402B2 (en) | Manufacturing method of semiconductor thin film crystal layer | |
JPS6362894B2 (en) | ||
JPS60105219A (en) | Manufacture of semiconductor thin film crystal layer | |
JPS6265411A (en) | Formation of single crystal thin film | |
JPH0371767B2 (en) | ||
JPS5978999A (en) | Manufacture of semiconductor single crystal film | |
JPH01162321A (en) | Manufacture of semiconductor single crystal layer | |
JPS61201414A (en) | Manufacture of semiconductor single crystal layer | |
JPS59121826A (en) | Fabrication of semiconductor single crystal film | |
JPH0153509B2 (en) | ||
JPS6236381B2 (en) |