[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6347609A - Shape inspection apparatus - Google Patents

Shape inspection apparatus

Info

Publication number
JPS6347609A
JPS6347609A JP19076186A JP19076186A JPS6347609A JP S6347609 A JPS6347609 A JP S6347609A JP 19076186 A JP19076186 A JP 19076186A JP 19076186 A JP19076186 A JP 19076186A JP S6347609 A JPS6347609 A JP S6347609A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
article
shape
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19076186A
Other languages
Japanese (ja)
Inventor
Tsutomu Yano
屋野 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19076186A priority Critical patent/JPS6347609A/en
Publication of JPS6347609A publication Critical patent/JPS6347609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To measure a shape in a stable state with high accuracy, by detecting an article to be measured on an inspection stand to drive an ultrasonic transmitter-receiver after a definite time and measuring the distance up to the article to be measured by an ultrasonic distance measuring device. CONSTITUTION:An article 3 to be measured is placed on an inspection stand 1 formed into the same shape as a normal article 3 to be measured and, after this state is detected by a detection sensor 8, an ultrasonic distance measuring device 9 is started by operating a control part 10 after 10sec and each ultrasonic transmitter-receiver 4 transmits and receives an ultrasonic wave to detect the distance from the surface of the stand 1 to the article 3 to be measured. The measured value of each transmitter-receiver due to temp. change is compensated by a transmitter-receiver 4c, a temp. sensor 7 and an operational processing part 12. Since the article to be measured is high temp., the shape of said article to be measured is measured in a stable state delayed by about 10sec and measurement is repeated several times while each transmitter-receiver is changed over by the measuring device 9 and the shape judging accuracy of the article to be measured can be enhanced using the average value of the measured values.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガラス、プラスチック等の高温で成型された
被測定物を室温まで冷却する時間を置くことなく、高温
状態のままで被測定物の形状を検査(測定)するための
形状検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is capable of changing the shape of a workpiece molded at high temperature, such as glass or plastic, without allowing time for it to cool down to room temperature. This invention relates to a shape inspection device for inspecting (measuring).

従来の技術 最近、超音波距離計測装置や光学式距離計が被測定物ま
での距離や形状を検査するのによく用いられるようにな
ってきた。これらは通常、常温の被測定物に対して用い
られることが多い。一方、ガラスやプラスチック等の高
温で成型された被測定物を高温状態のまま形状測定した
いという要望も増加してきている。ところで、超音波距
離計測装置においては、超音波送受波器と被測定物間の
超音波の往復伝搬時間と、超音波の伝搬速度により形状
を測定するが、被測定物が高温状態の場合、超音波伝搬
速度が変化し、正確な形状を測定することができない。
2. Description of the Related Art Recently, ultrasonic distance measuring devices and optical distance meters have come into widespread use for inspecting the distance and shape of an object. These are usually used for objects to be measured at room temperature. On the other hand, there is an increasing desire to measure the shape of objects molded at high temperatures, such as glass and plastics, while they remain at high temperatures. By the way, in an ultrasonic distance measuring device, the shape is measured by the round trip propagation time of the ultrasonic waves between the ultrasonic transducer and the object to be measured and the propagation speed of the ultrasonic waves, but when the object to be measured is in a high temperature state, The ultrasonic propagation speed changes, making it impossible to measure accurate shapes.

そこで、従来の超音波距離計測装置にあっては、例えば
、特開昭55−50173号公報や特開昭57−100
361号公報等に記載されているように温度変化に基づ
く音速の変化を補正する手段として、音速補正用の超音
波受波器を用い、距離測定精度を向上するようにした構
成が知られている。
Therefore, in conventional ultrasonic distance measuring devices, for example,
As described in Publication No. 361, etc., a configuration is known in which an ultrasonic receiver for sound speed correction is used as a means for correcting changes in sound speed due to temperature changes to improve distance measurement accuracy. There is.

発明が解決しようとする問題点 しかし、上記従来例の構成では、高温の被測定物を設置
した直後は、雰囲気が安定していないことと、被測定物
まで超音波伝搬経路中に温度分配が生じている等の理由
により、精度よく距離計測、すなわち、形状の測定を行
うことができない問題があった。また従来の光学式距離
計では1本質的にガラスやプラスチックのような透明な
被測定物に対しては測距精度が悪く、高温の被測定物に
限らず、適用が困難であるという問題があった。
Problems to be Solved by the Invention However, in the configuration of the conventional example described above, the atmosphere is not stable immediately after installing a high-temperature object to be measured, and there is a temperature distribution in the ultrasonic propagation path to the object to be measured. There has been a problem that distance measurement, that is, shape measurement cannot be performed with high accuracy due to the following reasons. In addition, conventional optical rangefinders inherently have poor distance measurement accuracy when measuring objects that are transparent such as glass or plastic, making it difficult to apply them not only to high-temperature objects. there were.

そこで、本発明は、高温の被測定物を設置し、一定時間
経過後の雰囲気が安定した状態で計測し、形状測定の精
度を向上することができるようにした形状検査装置を提
供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention aims to provide a shape inspection device that can improve the accuracy of shape measurement by installing a high-temperature object to be measured and performing measurement in a stable atmosphere after a certain period of time has elapsed. It is something.

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、被測定物を所定の位置に設置する検査台と、この
検査台に取付けられた複数の超音波送受波器と、被測定
物が上記検査台に設置されたことを検出する検出センサ
と、この検出センサの出力から一定時間経過した後に上
記超音波送受波器を駆動させるための遅延ユニットと、
上記超音波送受波器に接続された超音波距離計測器を備
えたものである。
Means for solving the problems and the technical means of the present invention for solving the above-mentioned problems include an inspection table on which an object to be measured is installed at a predetermined position, and a plurality of superstructures attached to this inspection table. a sonic transducer; a detection sensor that detects that the object to be measured is placed on the inspection table; and a delay unit that drives the ultrasonic transducer after a certain period of time has elapsed from the output of the detection sensor. ,
It is equipped with an ultrasonic distance measuring device connected to the ultrasonic transducer.

作  用 上記技術的手段による作用は次のようになる。For production The effects of the above technical means are as follows.

すなわち、検出センサにより高温の被測定物が検査台に
設置されたことを検出し、遅延ユニットにより雰囲気が
安定するまでの所定時間を経過した後、超音波送受波器
を駆動し、超音波の送受波の伝搬時間と超音波の伝搬速
度により超音波距離計測器で、被測定物までの距離を計
測し、これにより被測定物の形状を測定(検査)するこ
とができる。このような雰囲気が安定した後、形状測定
を行うので、精度を向上させることができる。
In other words, the detection sensor detects that a high-temperature object is placed on the inspection table, and after a predetermined period of time has elapsed for the atmosphere to stabilize using the delay unit, the ultrasonic transducer is activated to emit ultrasonic waves. Using the propagation time of transmitted and received waves and the propagation speed of the ultrasonic waves, an ultrasonic distance measuring device measures the distance to the object to be measured, thereby making it possible to measure (inspect) the shape of the object. Since shape measurement is performed after such an atmosphere is stabilized, accuracy can be improved.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。図は本発明の一実施例における形状検査装置の説
明図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. The figure is an explanatory diagram of a shape inspection device in an embodiment of the present invention.

図において、1は検出台で、表面複数個所にスペーサ2
を有している。3は検査台1のスペーサ2上に設置され
る高温の被測定物である。図示例では、被測定物3が風
防ガラスのような曲面状に形成されているので、検査台
1の表面は正常な被測定物3の形状と同じ曲面形状に形
成され、被測定物3はスペーサ2により検査台10表面
との間隔が一定、例えば約3闘に保たれている。4a、
4b、4c、・・・4nは超音波を送受波する超音波送
受波器で、被測定物3に対向して検査台1の凹所6内で
検査台1の表面から所定の深さになるように埋込まれて
いる。上記超音波送受波器43〜4nの中、中間部の少
なくとも一つの超音波送受波器4cが温度変化による測
定値の変化を補償する校正用超音波送受波器として構成
され、前方の校正板6やその前方の温度センサ7を有し
ている。8はリミットスイッチ等よりなる検出センサで
、検査台1の表面の隅部に取付けられ、被測定物3が検
査台1のスペーサ2に設置されたことを検出する。9は
超音波距離計測器で、複数の超音波送受波器4a、4b
、4c、・・・4nを切換えつつ駆動して超音波を送波
させ、被測定物3からの反射波を超音波送受波器4a、
4b、4c、・・・4nが受信し。
In the figure, 1 is a detection stand, and there are spacers 2 at multiple locations on the surface.
have. Reference numeral 3 denotes a high temperature object to be measured, which is placed on the spacer 2 of the inspection table 1. In the illustrated example, the object to be measured 3 is formed in a curved shape like a windshield, so the surface of the inspection table 1 is formed in the same curved shape as the normal object to be measured 3, and the object to be measured 3 is The spacer 2 maintains a constant distance from the surface of the inspection table 10, for example, about 3 inches. 4a,
4b, 4c, . . . , 4n are ultrasonic transducers that transmit and receive ultrasonic waves, and are placed at a predetermined depth from the surface of the inspection table 1 in the recess 6 of the inspection table 1, facing the object to be measured 3. It is embedded so that Among the ultrasonic transducers 43 to 4n, at least one ultrasonic transducer 4c in the middle part is configured as a calibration ultrasonic transducer that compensates for changes in measured values due to temperature changes, and a calibration plate in the front 6 and a temperature sensor 7 in front of it. Reference numeral 8 denotes a detection sensor consisting of a limit switch or the like, which is attached to a corner of the surface of the inspection table 1 and detects that the object to be measured 3 is placed on the spacer 2 of the inspection table 1. 9 is an ultrasonic distance measuring device, which includes a plurality of ultrasonic transducers 4a and 4b.
, 4c, .
4b, 4c,...4n received.

この送受波の伝搬時間により超音波送受波器4a、4b
、4c、・・・4nと被測定物3の各部までの距離を計
測する。10は各超音波送受波器4a、4b、4c、・
・・4nの制御部、11は検出センサ8の出出を一定時
間1例えば10秒程度遅延し、制御部1oに信号伝達す
る遅延ユニット、12は超音波距離計測器9の出力及び
温度センサ7の出力から温度校正し、被測定物3の形状
に換算する演算処理部である。
Due to the propagation time of this transmitted and received wave, the ultrasonic transducers 4a and 4b
, 4c, . . . 4n and the distances from each part of the object to be measured 3 are measured. 10 is each ultrasonic transducer 4a, 4b, 4c, .
... 4n control unit, 11 is a delay unit that delays the output of the detection sensor 8 for a certain period of time, for example, about 10 seconds, and transmits a signal to the control unit 1o; 12 is the output of the ultrasonic distance measuring device 9 and the temperature sensor 7; This is an arithmetic processing unit that calibrates the temperature from the output of and converts it into the shape of the object to be measured 3.

次に上記実施例の動作について説明する。被測定物3を
検査台1のスペーサ2上に設置する。このとき、上記の
ように検査台10表面の形状を正常な被測定物3の形状
と同じにしておくことにより被測定物3の形状の異常の
有無を判定することができる。そして検出センサ8によ
って被測定物3が検査台1に設置されたことを検出する
。この検出により遅延ユニット11で約10秒間遅延し
た後、制御部10を動作させる。これにより超音波距離
計測器9を動作させ、この超音波距離計測器9の信号に
より超音波送受波器4a、4b、4d、・・・4nが超
音波を被測定物3に向って送波すると共に超音波送受波
器4cが校正板らに向って送波する。被測定物3の表面
で反射された超音波は再び超音波送受波器4a、4b、
4d、・・・4nで受信され、この送受波の伝搬時間か
ら超音波距離計測器9により超音波送受波器4a、4b
、4d、・・・40と被測定物3までの距離が計測され
る。上記のように超音波送受波器4a、4b、4d、・
・・4nは検査台10表面から所定の深さの部分に設置
しであるので、先の測定値から所定の深さを差引くこと
により検査台1表面と被測定物3までの距離が判明する
。このとき、被測定物3を検査台1に設置した直後、超
音波送受波器4a、4b、4d、・・・4nより超音波
を送波すると、被測定物3が高温であるため、雰囲気の
ゆらぎや温度上昇によって超音波出力が極めて不安定に
なる。被測定物3さして100℃位までのガラスを用い
、スペーサ2の厚みを数顛にすると不安定な期間は約1
0秒間となる。しかし、上記のように遅・延ユニット1
1により超音波の送波を約10秒間遅延しているので、
安定状態で超音波を出力することができる。
Next, the operation of the above embodiment will be explained. The object to be measured 3 is placed on the spacer 2 of the inspection table 1. At this time, by making the shape of the surface of the inspection table 10 the same as the normal shape of the object to be measured 3 as described above, it is possible to determine whether or not there is an abnormality in the shape of the object to be measured 3. Then, the detection sensor 8 detects that the object to be measured 3 is placed on the inspection table 1. After this detection causes a delay of about 10 seconds in the delay unit 11, the control section 10 is operated. This causes the ultrasonic distance measuring device 9 to operate, and the ultrasonic transducers 4a, 4b, 4d, . At the same time, the ultrasonic transducer 4c transmits waves toward the calibration plates. The ultrasonic waves reflected on the surface of the object to be measured 3 are transmitted again to the ultrasonic transducers 4a, 4b,
4d, .
, 4d, . . . 40 and the distance to the object to be measured 3 is measured. As mentioned above, the ultrasonic transducers 4a, 4b, 4d, .
...Since 4n is installed at a predetermined depth from the surface of the inspection table 10, the distance between the surface of the inspection table 1 and the object to be measured 3 can be found by subtracting the predetermined depth from the previous measurement value. do. At this time, immediately after the object to be measured 3 is placed on the inspection table 1, when ultrasonic waves are transmitted from the ultrasonic transducers 4a, 4b, 4d,...4n, the object to be measured 3 is at a high temperature, so Ultrasonic output becomes extremely unstable due to fluctuations in the temperature and temperature rise. If the object to be measured 3 is made of glass with a temperature of up to 100°C and the thickness of the spacer 2 is increased to several degrees, the unstable period will be approximately 1
It will be 0 seconds. However, as mentioned above, delay unit 1
1 delays the transmission of ultrasonic waves for about 10 seconds, so
Ultrasonic waves can be output in a stable state.

一方、被測定物3が検査台1上に置かれて10秒経過し
た後でも、被測定物3と超音波送受波器4a、4b、4
d、・・・4nの間には温度勾配が生じている。これは
温度変化の校正用超音波送受波器4cの校正板6までの
距離測定値と温度センサ7の出力によって校正すること
ができる。各々の超音波送受波器で得た距離測定データ
は校正用超音波送受波器4cの測定値、及び温度センサ
7の出力とともに演算処理部12で補正され、被測定物
3の形状を示す形で出力され、異常の有無判定に用いら
れる。
On the other hand, even after 10 seconds have passed since the object to be measured 3 was placed on the inspection table 1, the object to be measured 3 and the ultrasonic transducers 4a, 4b, 4
A temperature gradient occurs between d, . . . 4n. This can be calibrated using the measured distance to the calibration plate 6 of the ultrasonic transducer 4c for calibrating temperature changes and the output of the temperature sensor 7. The distance measurement data obtained by each ultrasonic transducer is corrected by the arithmetic processing unit 12 together with the measurement value of the calibration ultrasonic transducer 4c and the output of the temperature sensor 7, and a shape representing the shape of the object to be measured 3 is obtained. is output and used to determine the presence or absence of an abnormality.

すなわち、任意の温度における校正用超音波送受波器4
Cと校正板6の距離測定値をds、超音波送受波器4a
、 4b、4d、・・・4nと被測定物3の距離測定値
をdmとすると、距離dは次式で与えられる。
That is, the calibration ultrasonic transducer 4 at any temperature
ds the measured distance between C and the calibration plate 6, and the ultrasonic transducer 4a.
, 4b, 4d, . . . 4n and the measured distance between the object 3 and the measured object 3 is dm, then the distance d is given by the following equation.

d=dso+(dm−ds)X(−)  O (但し、VQは基準温度における音速である。)これは
、演算処理部12で簡単に求めることができる。
d = dso + (dm - ds)

なお、上記実施例においては、検出センサ8として、リ
ミットスイッチを用いているが、このような接触式に代
えて検査台1に取付けられている超音波送受波器4a、
4b、4d、−4nの内の1個を用い、定常的に超音波
を送受波し、所定の受信時間内に反射波が存在するかど
うかを常にモニタすることIこよって、被測定物3が検
査台1上に設置されたかどうかを検出することができる
。また遅延ユニット11は制御部10、或は超音波距離
計測器9の中に組込んでもよい。また超音波送受波器4
a、4b、4d、・・・4nは順次切換え、これを複数
回、繰返すことによって、1つの超音波送受波器に対し
、何回かの測定値を得、これらの測定値の中から、ゆら
ぎの影響の少ない信頼性の高い測定値、すなわち、通常
ゆらぎが生じると測定値は遠方にあるように大きくなる
ので、測定値の中の最少値、或は最少値から2〜3個の
データの平均値を用いることによって精度を高めること
ができる。
In the above embodiment, a limit switch is used as the detection sensor 8, but instead of such a contact type, an ultrasonic transducer 4a attached to the inspection table 1,
4b, 4d, -4n, to constantly transmit and receive ultrasonic waves, and constantly monitor whether or not there is a reflected wave within a predetermined reception time. It is possible to detect whether the test table 1 is placed on the examination table 1 or not. Further, the delay unit 11 may be incorporated into the control section 10 or the ultrasonic distance measuring device 9. Also, the ultrasonic transducer 4
By sequentially switching a, 4b, 4d, . . . 4n and repeating this several times, several measured values are obtained for one ultrasonic transducer, and from these measured values, Highly reliable measurement values that are less affected by fluctuations, that is, normally when fluctuations occur, the measured values become larger the farther away they are, so the minimum value among the measured values, or 2 to 3 data from the minimum value. The accuracy can be improved by using the average value of .

発明の効果 以上述べたように本発明によれば、検査台に高温の被測
定物を設置したことを検出センサにより検出し、遅延ユ
ニットにより雰囲気が安定するまでの所定時間を経過し
た後、検査台に取付けた複数の超音波送受波器を駆動し
、この超音波伝搬時間に基づき超音波距離計測器により
計測するので、安定した状態での計測が可能となり、形
状測定の精度が向上する。
Effects of the Invention As described above, according to the present invention, the detection sensor detects that a high-temperature object is placed on the inspection table, and the delay unit starts the inspection after a predetermined period of time has elapsed until the atmosphere stabilizes. A plurality of ultrasonic transducers attached to the stand are driven, and the ultrasonic distance measuring device measures based on the ultrasonic propagation time, making it possible to measure in a stable state and improve the accuracy of shape measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における形状検査装置を示す説明
図である。 1・・・検査台、3・・・被測定物、4a、4b、4c
、4d、・・・4n・・・超音波送受波器、6・・・校
正板、7・・・温度センサ、8・・・検出センサ、9・
・・超音波距離計測装置、10・・・制御部、11・・
・遅延ユニット、12・・・演算処理部。
The figure is an explanatory diagram showing a shape inspection device in an embodiment of the present invention. 1... Inspection table, 3... Measured object, 4a, 4b, 4c
, 4d,... 4n... Ultrasonic transducer, 6... Calibration plate, 7... Temperature sensor, 8... Detection sensor, 9...
...Ultrasonic distance measuring device, 10...Control unit, 11...
- Delay unit, 12... Arithmetic processing section.

Claims (3)

【特許請求の範囲】[Claims] (1)被測定物を所定の位置に設置する検査台と、この
検査台に取付けられた複数の超音波送受波器と、被測定
物が上記検査台に設置されたことを検出する検出センサ
と、この検出センサの出力から一定時間経過した後に上
記超音波送受波器を駆動させるための遅延ユニットと、
上記超音波送受波器に接続された超音波距離計測器を備
えたことを特徴とする形状検査装置。
(1) An inspection table on which the object to be measured is installed at a predetermined position, a plurality of ultrasonic transducers attached to this inspection table, and a detection sensor that detects that the object to be measured is installed on the inspection table. and a delay unit for driving the ultrasonic transducer after a certain period of time has elapsed from the output of the detection sensor,
A shape inspection device comprising an ultrasonic distance measuring device connected to the ultrasonic transducer.
(2)複数の超音波送受波器の中の少なくとも1つ以上
が温度変化の校正用の超音波送受波器として構成されて
いる特許請求の範囲第1項記載の形状検査装置。
(2) The shape inspection device according to claim 1, wherein at least one of the plurality of ultrasonic transducers is configured as an ultrasonic transducer for calibrating temperature changes.
(3)複数の超音波送受波器が順次切換えられ、複数回
繰返されて距離測定され、その中の測定値から信頼性の
高い測定値が選択される特許請求の範囲第1項または第
2項記載の形状検査装置。
(3) A plurality of ultrasonic transducers are sequentially switched, the distance is measured multiple times, and a highly reliable measurement value is selected from the measured values. Shape inspection device as described in section.
JP19076186A 1986-08-14 1986-08-14 Shape inspection apparatus Pending JPS6347609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19076186A JPS6347609A (en) 1986-08-14 1986-08-14 Shape inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19076186A JPS6347609A (en) 1986-08-14 1986-08-14 Shape inspection apparatus

Publications (1)

Publication Number Publication Date
JPS6347609A true JPS6347609A (en) 1988-02-29

Family

ID=16263287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19076186A Pending JPS6347609A (en) 1986-08-14 1986-08-14 Shape inspection apparatus

Country Status (1)

Country Link
JP (1) JPS6347609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394109A (en) * 1989-03-22 1991-04-18 Mitsubishi Electric Corp Ultrasonic measuring device
JP2008157797A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Three-dimensional measuring method and three-dimensional shape measuring device using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394109A (en) * 1989-03-22 1991-04-18 Mitsubishi Electric Corp Ultrasonic measuring device
JP2008157797A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Three-dimensional measuring method and three-dimensional shape measuring device using it

Similar Documents

Publication Publication Date Title
US4437332A (en) Ultrasonic thickness measuring instrument
FI124644B (en) Method and apparatus for measuring bone density
JPS6347609A (en) Shape inspection apparatus
JP2001116733A (en) Ultrasonic sensor and material-measuring apparatus
JPS631987A (en) Ultrasonic distance measuring device
JP2609647B2 (en) Ultrasonic flaw detector
JP3117372B2 (en) Ultrasonic distance measuring device
JPH08271322A (en) Ultrasonic liquid level measuring method
FI124645B (en) Calibratable method and device for measuring bone density
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
JP2000009698A (en) Ultrasonic apparatus for measuring lateral crack depth
KR20090040699A (en) Extension apparatus for measurement range of ultrasonic thickness gage
JP2651269B2 (en) Ultrasonic thickness gauge
JPH06174455A (en) Concurrently measuring method for thickness and sonic velocity of material
JPS6098324A (en) Thermometer
JPH0729447Y2 (en) Ultrasonic measuring device
JPH0727551A (en) Tube inner shape inspecting device
JPH02278181A (en) Temperature compensating method for ultrasonic range finder
JPH10122844A (en) Ultrasonic measuring device and its temperature correction method
JPH02141643A (en) Mechanical-property measuring apparatus
JPH07318397A (en) Ultrasonic liquid gage
JP2003344035A (en) Method and apparatus for measuring thickness with ultrasonic wave
JPH05172793A (en) Sound characteristic value measuring device
JPH0518647Y2 (en)
JPS63309808A (en) Method and device for measuring thickness with ultrasonic wave