[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63393B2 - - Google Patents

Info

Publication number
JPS63393B2
JPS63393B2 JP54164512A JP16451279A JPS63393B2 JP S63393 B2 JPS63393 B2 JP S63393B2 JP 54164512 A JP54164512 A JP 54164512A JP 16451279 A JP16451279 A JP 16451279A JP S63393 B2 JPS63393 B2 JP S63393B2
Authority
JP
Japan
Prior art keywords
powder
oxide ceramics
sintering
amorphous
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54164512A
Other languages
Japanese (ja)
Other versions
JPS5688880A (en
Inventor
Akio Hara
Eiji Kamijo
Matsuo Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16451279A priority Critical patent/JPS5688880A/en
Publication of JPS5688880A publication Critical patent/JPS5688880A/en
Publication of JPS63393B2 publication Critical patent/JPS63393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は非酸化物セラミツクスの製造法に関す
るものである。 近年、ニユーセラミツクスが色々な分野で注目
されている。特に非酸化物セラミツクスが注目さ
れているが、そのなかでも工業的重要性の面で最
も期待されているのは、Si3N4、SiC、Sialonな
どの非酸化物系の耐熱セラミツクスである。 しかしながら現在までにこの分野で達成されて
いる技術をみると、非酸化物セラミツクスにおい
て焼結性をあげることと、充分な耐熱強度を持た
せることの矛盾にぶち当つているように思われ
る。 即ち、例えばSi3N4の場合、SiおよびNの体拡
散率は小さいので通常の焼結条件では粒成長は起
つても収縮は殆んど起らない。 これを焼結させるためには、ダイヤモンド合成
において必要とするような超高圧をかけてホツト
プレスする必要があるとされている。 しかし、このような方法では余りにも焼結コス
トが高くなり、工業的な耐熱材料として使用する
ことができない。従つて現在研究されている方法
は、主として焼結助剤を用いる方法であり、その
ような助剤としてMgO、Al2O3、Y2O3などを5
〜20重量%加えることが行なわれている。 そしてこれらの助剤はSi3N4結晶境界に低融点
物質を形成して焼結を促進するものである。 しかし、上記のような助剤の使用は耐熱強度の
低下を招来することにほかならない。 本発明者らはこのような矛盾を解決する方法に
ついて種々思考の結果まず着目したのがアモルフ
アス粉末の利用である。 SiCの焼結において有機金属重合体を用いる
と、1300℃で加熱処理して高強度、高弾性のSiC
が得られることは、東北大学の矢島教授らによつ
て報告されている。この機構は有機金属重合体が
熱分解して極めて微細なSiCすなわちアモルフア
ス状態のSiCが生成し、これが相互に焼結するた
めとされている。 これら耐熱セラミツクスの極微細な粉末、特に
細かいものは結晶を示さずアモルフアスである
が、これは塩化物を用いる気相合成法で容易に得
られるのである。 例えばSiCl4にNH3を作用させると低温ではア
モルフアスSi3N4粉末が生成する。 本発明者らは、このような観点からアモルフア
スSi3N4粉末を用い、これを型押成型し、真空や
高圧窒素ガス雰囲気などの雰囲気や温度の焼結条
件を変えて焼結を行つたが、良好な焼結体は得ら
れなかつた。この原因は以前に本発明者らの一人
が発表している粉末の空気による酸化現象に起因
するものと考えられる。(原 昭夫:粉体および
粉末治金、第18巻、第8号、第338頁) 即ち、微粉末は多くの凹所をもち、この凹所に
は次式によつて大気中の湿分が凝縮する。 lnp/po=Vγ/RT×2/r 但し、p:凹所の飽和蒸気圧、po:平面での
飽和蒸気圧、V:分子容、R:ガス定数、γ:表
面張力、T:温度、r:凹み半径。 この式で吸湿するか否かを凹み半径(r)の関
係で求めると、 r(μ) p/po(%、25℃、相対湿度) 1 99.96 0.1 98.96 0.01 90.07 0.001 35.12 となる。 アモルフアス粉末はオングストロームの大きさ
であり、このような微粉末は相互にくつつき合う
(絡み合う)状態となるから半径0.001μ程度の凹
みは沢山あると考えられる。 即ち大気中では吸湿が著しく、吸湿した水分が
加熱したときそのまま容易に離脱してくれれば問
題はないが、この水分は空気と共にちようど金属
の発錆現象と同様な化学反応を生ずる。 上記した引用文献においてはWCの場合につい
て述べているが、1000℃になつてはじめて解離す
る形の水、一種の水酸化物が生成されており、高
温に加熱することにより、COやH2ガスの形で分
離するのである。そしてこのようなガスの発生
は、焼結を阻害することが容易に理解できる。 このような現象の対策については本出願人が既
に特公昭50−4442号および特公昭50−4443号にて
提案したが、本発明もそのようなカルボン酸また
は酸無水物を気化状態で粉末に付着せしめる方法
である。 使用するカルボン酸または酸無水物は低分子量
で沸点の低いものが望ましい。分子量が高いと粉
末の細部にまで侵透しがたく、また沸点が高いと
気化状態で用い難い。 従つて酢酸、アクリル酸、プロピオン酸および
無水酢酸を用いることが好ましい。 カルボン酸誘導体のうち無水酢酸などの酸無水
物は性質がよく似ているので同様に使用できる
が、他の置換基を有するもので、焼結に悪影響を
与えたりするものは用いることができない。この
ようにカルボン酸または酸無水物を気化状態で粉
末に付着せしめると、前述したような吸湿やそれ
に伴なう水酸化物の形成を防止するばかりでな
く、これらは加熱により比較的低温において容易
に粉末から分離するので極めて新鮮な粉末表面を
得ることができるのである。 これはちようど有機金属重合体を用いて高密
度、高強度のセラミツクス焼結体やセラミツクス
繊維を比較的低温度で得ることができるのと同じ
現象をもたらすのである。 以下本発明を実施例により説明する。 実施例 1 アンモニアガス(純度99.99%)と窒素ガス
(純度99.99%)をキヤリヤーガスとして四塩化け
い素(純度99.99%)を用いてそれぞれ流量25
c.c./min、80c.c./minで1050℃に加熱した反応管
に導入した。その結果、反応管下部に粉末が堆積
した。この粉末を窒素ガスで真空度5×10-2mm
Hgに保つた容器内に導入した。この容器内には
30〜40℃に加温して得た無水酢酸の蒸気を予め導
いておいた。30分後に容器を開放し、粉末を取出
し無水酢酸による処理を行なわない粉末とともに
恒温恒湿槽に7日間保持した。槽内は温度40℃、
湿度80%の酸化しやすい条件に保つておいた。 上記の条件で保持後恒温恒湿槽から粉末を取出
し、3ton/cm2の圧力でプレスを行ない、圧粉体を
作成し、窒素雰囲気中1600℃で保持時間1時間の
条件で焼結を行ない、得られた焼結体を試験した
ところ、第1表に示すように無水酢酸によつて処
理した粉末を用いた焼結体の密度、強度とも無処
理粉末の焼結体より高く、更に高温における強度
低下も殆んど起らないという結果が得られた。 一方恒温恒湿槽に入れなかつた無水酢酸処理粉
末のX線回折を行なつたところ非晶質構造を有す
ることがわかつた。さらに粉末中のけい素、窒素
の含有量を分析した結果窒化けい素であることが
確認された。
The present invention relates to a method for manufacturing non-oxide ceramics. In recent years, new ceramics has attracted attention in various fields. Non-oxide ceramics are attracting particular attention, and among them, non-oxide heat-resistant ceramics such as Si 3 N 4 , SiC, and Sialon are most expected to be of industrial importance. However, looking at the technologies that have been achieved in this field to date, it seems that we are running into a contradiction between increasing sinterability and providing sufficient heat-resistant strength in non-oxide ceramics. That is, in the case of Si 3 N 4 , for example, the body diffusivity of Si and N is small, so even if grain growth occurs under normal sintering conditions, shrinkage hardly occurs. In order to sinter this material, it is said that it is necessary to hot press it by applying ultra-high pressures such as those required in diamond synthesis. However, such a method results in too high sintering cost and cannot be used as an industrial heat-resistant material. Therefore, the methods currently being researched mainly use sintering aids, such as MgO, Al 2 O 3 , Y 2 O 3 , etc.
Addition of ~20% by weight has been carried out. These auxiliary agents form low melting point substances at the Si 3 N 4 crystal boundaries to promote sintering. However, the use of such auxiliary agents as described above only results in a decrease in heat resistance strength. As a result of various considerations, the inventors of the present invention first focused on the use of amorphous amorphous powder as a result of various considerations as to how to resolve such contradictions. When organometallic polymers are used in SiC sintering, high strength and high elastic SiC can be produced by heat treatment at 1300℃.
It has been reported by Professor Yajima et al. of Tohoku University that this can be obtained. This mechanism is believed to be due to the thermal decomposition of organometallic polymers, which produce extremely fine SiC, that is, amorphous SiC, which sinter together. Ultrafine powders of these heat-resistant ceramics, particularly fine powders, do not show crystals and are amorphous, which can be easily obtained by a gas phase synthesis method using chlorides. For example, when NH 3 is applied to SiCl 4 , amorphous Si 3 N 4 powder is produced at low temperatures. From this point of view, the present inventors used amorphous Si 3 N 4 powder, pressed it, and sintered it by changing the sintering conditions such as vacuum or high-pressure nitrogen gas atmosphere and temperature. However, a good sintered body could not be obtained. This is thought to be due to the oxidation phenomenon of powder caused by air, which was previously reported by one of the inventors. (Akio Hara: Powder and Powder Metallurgy, Vol. 18, No. 8, p. 338) In other words, fine powder has many recesses, and these recesses contain moisture in the atmosphere according to the following equation. is condensed. lnp/po=Vγ/RT×2/r, where p: saturated vapor pressure in the recess, po: saturated vapor pressure on the plane, V: molecular volume, R: gas constant, γ: surface tension, T: temperature, r: concavity radius. Using this formula to determine whether or not it absorbs moisture in relation to the concave radius (r), it becomes r (μ) p/po (%, 25°C, relative humidity) 1 99.96 0.1 98.96 0.01 90.07 0.001 35.12. Amorphous amorphous powder has a size of angstroms, and since such fine powders stick together (entangle) with each other, it is thought that there are many depressions with a radius of about 0.001 μm. That is, moisture absorption is significant in the atmosphere, and if the absorbed moisture is easily released as it is when heated, there will be no problem, but this moisture together with air will cause a chemical reaction similar to the rusting phenomenon of metals. The above cited document describes the case of WC, but water that dissociates only at 1000℃, a type of hydroxide, is produced, and by heating to high temperatures, CO and H 2 gases are generated. It is separated in the form of It is easy to understand that the generation of such gas inhibits sintering. The present applicant has already proposed countermeasures against such phenomena in Japanese Patent Publication No. 50-4442 and Japanese Patent Publication No. 50-4443, but the present invention also involves converting such carboxylic acids or acid anhydrides into powder in a vaporized state. This is a method of adhesion. The carboxylic acid or acid anhydride used preferably has a low molecular weight and a low boiling point. If the molecular weight is high, it is difficult to penetrate into the fine details of the powder, and if the boiling point is high, it is difficult to use it in a vaporized state. Therefore, it is preferable to use acetic acid, acrylic acid, propionic acid and acetic anhydride. Among carboxylic acid derivatives, acid anhydrides such as acetic anhydride have very similar properties and can be used in the same manner, but those with other substituents that adversely affect sintering cannot be used. When a carboxylic acid or an acid anhydride is attached to powder in a vaporized state, it not only prevents moisture absorption and the accompanying formation of hydroxides as described above, but also prevents the formation of hydroxides, which can be easily removed by heating at relatively low temperatures. Since the powder is separated from the powder, an extremely fresh powder surface can be obtained. This brings about the same phenomenon that allows high-density, high-strength ceramic sintered bodies and ceramic fibers to be obtained at relatively low temperatures using organometallic polymers. The present invention will be explained below with reference to Examples. Example 1 Ammonia gas (purity 99.99%) and nitrogen gas (purity 99.99%) were used as carrier gas and silicon tetrachloride (purity 99.99%) was used at a flow rate of 25% each.
cc/min, 80 c.c./min into a reaction tube heated to 1050°C. As a result, powder was deposited at the bottom of the reaction tube. This powder was vacuumed with nitrogen gas at a vacuum level of 5×10 -2 mm.
It was introduced into a container maintained at Hg. Inside this container
Steam of acetic anhydride obtained by heating to 30 to 40°C was introduced in advance. After 30 minutes, the container was opened, and the powder was taken out and kept in a constant temperature and humidity bath for 7 days together with the powder that was not treated with acetic anhydride. The temperature inside the tank is 40℃.
It was maintained at a humidity of 80%, which facilitates oxidation. After holding under the above conditions, the powder was removed from the constant temperature and humidity chamber, pressed at a pressure of 3 tons/cm 2 to create a green compact, and sintered at 1600°C in a nitrogen atmosphere for 1 hour. When the obtained sintered body was tested, as shown in Table 1, the density and strength of the sintered body using the powder treated with acetic anhydride were higher than those of the untreated powder, and the sintered body was found to be able to withstand higher temperatures. The results showed that there was almost no decrease in strength. On the other hand, X-ray diffraction of the powder treated with acetic anhydride, which had not been placed in a constant temperature and humidity chamber, revealed that it had an amorphous structure. Further analysis of the silicon and nitrogen contents in the powder confirmed that it was silicon nitride.

【表】 実施例 2 実施例1と同様にして得られた粉末にアクリル
酸(モノマー)の蒸気による処理を行つた。 この処理粉末を無処理粉末とともに室内に7日
間放置した後、3ton/cm2の圧力でプレスを行なつ
て圧粉体を作成し、窒素雰囲気中1600℃で保持時
間1時間で焼結を行なつた。 得られた焼結体について試験したところ第2表
の通りであり、実施例1と同じ結果が得られた。
[Table] Example 2 A powder obtained in the same manner as in Example 1 was treated with acrylic acid (monomer) vapor. After leaving this treated powder together with the untreated powder indoors for 7 days, it was pressed at a pressure of 3 tons/cm 2 to create a green compact, which was then sintered at 1600°C in a nitrogen atmosphere for 1 hour. Summer. The obtained sintered body was tested as shown in Table 2, and the same results as in Example 1 were obtained.

【表】 実施例 3 無水酢酸に代えてアクリル酸(モノマー)、そ
の他のカルボン酸を用いて実施例1と同様にして
粉末を作成後、無処理粉末とともに実施例1と同
一条件の恒温恒湿槽に保持したのち成形、焼結を
行なつた。得られた焼結体の試験を行なつたとこ
ろ第3表に示すようにいずれも本発明の処理粉末
の焼結体が無処理粉末の焼結体よりも高密度で高
温における強度も高いものが得られた。
[Table] Example 3 Powder was prepared in the same manner as in Example 1 using acrylic acid (monomer) and other carboxylic acids in place of acetic anhydride, and then kept at constant temperature and humidity under the same conditions as Example 1 together with the untreated powder. After being held in a tank, it was molded and sintered. When the obtained sintered bodies were tested, as shown in Table 3, the sintered bodies made of the treated powder of the present invention had a higher density and higher strength at high temperatures than the sintered bodies made of the untreated powder. was gotten.

【表】【table】

Claims (1)

【特許請求の範囲】 1 気相合成法にてアモルフアス状態の非酸化物
セラミツクス粉末を作成し、引続き該生成粉末に
カルボン酸および/または酸無水物を気化状態で
付着せしめたのち、この粉末を所要形状に成形
し、次いで真空および/または非酸化性雰囲気中
で焼結せしめることを特徴とする非酸化物セラミ
ツクスの製造法。 2 非酸化物セラミツクスがSi3N4であることを
特徴とする特許請求の範囲第1項記載の非酸化物
セラミツクスの製造法。 3 非酸化物セラミツクスがSiCであることを特
徴とする特許請求の範囲第1項記載の非酸化物セ
ラミツクスの製造法。
[Claims] 1. A non-oxide ceramic powder in an amorphous state is produced by a vapor phase synthesis method, and then a carboxylic acid and/or an acid anhydride is attached to the produced powder in a vaporized state, and then this powder is A method for producing non-oxide ceramics, which comprises forming into a desired shape and then sintering in a vacuum and/or a non-oxidizing atmosphere. 2. The method for producing non-oxide ceramics according to claim 1, wherein the non-oxide ceramics are Si 3 N 4 . 3. The method for producing non-oxide ceramics according to claim 1, wherein the non-oxide ceramics are SiC.
JP16451279A 1979-12-17 1979-12-17 Manufacture of nonnoxide ceramics Granted JPS5688880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16451279A JPS5688880A (en) 1979-12-17 1979-12-17 Manufacture of nonnoxide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16451279A JPS5688880A (en) 1979-12-17 1979-12-17 Manufacture of nonnoxide ceramics

Publications (2)

Publication Number Publication Date
JPS5688880A JPS5688880A (en) 1981-07-18
JPS63393B2 true JPS63393B2 (en) 1988-01-06

Family

ID=15794562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16451279A Granted JPS5688880A (en) 1979-12-17 1979-12-17 Manufacture of nonnoxide ceramics

Country Status (1)

Country Link
JP (1) JPS5688880A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504443A (en) * 1971-08-18 1975-01-17
JPS54133504A (en) * 1978-04-10 1979-10-17 Ibigawa Electric Ind Co Ltd Manufacture of high density carborundum sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504443A (en) * 1971-08-18 1975-01-17
JPS54133504A (en) * 1978-04-10 1979-10-17 Ibigawa Electric Ind Co Ltd Manufacture of high density carborundum sintered body

Also Published As

Publication number Publication date
JPS5688880A (en) 1981-07-18

Similar Documents

Publication Publication Date Title
US5942455A (en) Synthesis of 312 phases and composites thereof
JPS6047225B2 (en) Manufacturing method for densified silicon products
Speyer et al. Advances in pressureless densification of boron carbide
WO1997018162A9 (en) Synthesis of 312 phases and composites thereof
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
JPH0269358A (en) Production of ceramic of super-structure
Fitzer et al. Chemical Vapor Deposition of Silicon Carbide and Silicon Nitride—Chemistry's Contribution to Modern Silicon Ceramics
JPS63393B2 (en)
JPH09183662A (en) Production of aluminum nitride sintered compact and aluminum nitride powder
US5139719A (en) Sintering process and novel ceramic material
KR101079312B1 (en) Manufacturing method of aluminum nitride powder, aluminum nitride sintered body, and manufacturing method of the aluminum nitride sintered body
JPH0649640B2 (en) Method for manufacturing aluminum nitride Isca
TWI297672B (en) Method for synthesizing aluminum nitride and composite thereof
JP3725686B2 (en) Method for manufacturing aluminum nitride whisker
JPS6121188B2 (en)
JPS5921577A (en) Method of sintering silicon carbide powder molded body
JP2628599B2 (en) Manufacturing method of aluminum nitride substrate
JPS6015589B2 (en) Manufacturing method of non-oxide ceramics
JPS5930672B2 (en) Silicon carbide powder composition for sintered bodies
JPH0524120B2 (en)
JPS6241773A (en) Manufacture of composite ceramics
JP2543353B2 (en) Method for producing silicon nitride based sintered body
JPH0426558A (en) Production of sialon-based sintered body
JPS5834426B2 (en) Manufacturing method of high-density silicon carbide sintered body
JPS62212267A (en) Manufacture of aluminum nitride sintered body