JPS6339307B2 - - Google Patents
Info
- Publication number
- JPS6339307B2 JPS6339307B2 JP55071827A JP7182780A JPS6339307B2 JP S6339307 B2 JPS6339307 B2 JP S6339307B2 JP 55071827 A JP55071827 A JP 55071827A JP 7182780 A JP7182780 A JP 7182780A JP S6339307 B2 JPS6339307 B2 JP S6339307B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- coagulation
- flocculant
- cod
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010802 sludge Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000004062 sedimentation Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- 239000002351 wastewater Substances 0.000 claims description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 8
- 239000011707 mineral Chemical group 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 238000005345 coagulation Methods 0.000 claims description 7
- 230000015271 coagulation Effects 0.000 claims description 7
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 5
- 150000004692 metal hydroxides Chemical class 0.000 claims description 5
- 159000000014 iron salts Chemical class 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 230000003311 flocculating effect Effects 0.000 claims description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 229910001424 calcium ion Inorganic materials 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- 235000010755 mineral Nutrition 0.000 description 7
- 238000005189 flocculation Methods 0.000 description 6
- 230000016615 flocculation Effects 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000001112 coagulating effect Effects 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000701 coagulant Substances 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 206010013496 Disturbance in attention Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000002367 phosphate rock Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、CODを含む廃水の凝集沈殿処理方
法、とくに凝集沈殿スラツジを凝集剤として再利
用する方法の改良方法に関するものである。
従来、上水処理のように、粘土系の懸濁物質を
主体とする河川水などを処理するにあたり、硫酸
ばん土を凝集剤として添加して凝集沈殿処理する
際に発生する沈殿スラツジに硫酸を添加して水酸
化アルミニウム(Al(OH)3)をAl3+イオンに溶
解し、この溶解液を再び凝集剤として再利用する
方法が広く知られており、コマーシヤルブラント
規模でも実施されている。
しかしながら、下水の活性汚泥処理水の3次処
理として凝集沈殿を行う場合のように、COD、
BOD成分などの有機物を凝集除去した結果発生
するスラツジに酸を加えAl(OH)3を溶解して凝
集剤として再利用しようとすると、せつかく凝集
除去されたCOD、BOD成分も再溶出し、これら
が原水に添加されてしまうため、本未転倒となり
凝集沈殿(または浮上)プロセスそのものが無意
味になるため、上水処理におけるように凝集沈殿
スラツジの酸溶解、再利用法は、現実に実施する
ことは不可能であつた。
本発明は、このようなCOD、BOD成分を凝集
除去するプロセスから発生するスラツジを、上記
のような予盾を生じることなく、再び凝集剤とし
て再利用することを可能にすると共に、従来最大
の問題点であつた濃縮脱水性の悪い凝集スラツジ
の発生を実質的に無くすことのできる革新的な方
法を提供することを目的とするものである。すな
わち、本発明はCODを含む廃水を鉄塩、アルミ
ニウム塩、銅塩の少なくとも一つを含む凝集剤を
用いて凝集分離したのち、生成した凝集スラツジ
に鉱酸と、少なくとも過酸化水素又はオゾンを含
む酸化剤を添加し、撹拌せしめて前記凝集スラツ
ジ中の有機物を酸化分解すると共に金属水酸化物
を溶解せしめ、該溶解液を前記金属塩凝集剤とし
て前記凝集分離工程に再利用することを特徴とす
る凝集沈殿処理方法である。
本発明の骨子を要約すると、
凝集剤として金属塩の使用を不可欠とする。
金属塩としては、塩化第2鉄、硫酸第1鉄など
の鉄塩、硫酸アルミニウム、ポリ塩化アルミニ
ウムなどのアルミニウム塩、もしくは銅塩を単
独に、又は組合わせて使用することができる
が、鉄塩が最も好ましい。なお、有機高分子凝
集剤を併用することもできる。
金属塩を凝集剤として使用した結果生成する
金属水酸化物に硫酸などの鉱酸と前記酸化剤を
添加し、酸性条件(PH2〜4の範囲が好まし
い)で凝集スラツジ中のCOD、BOD成分を化
学的に酸化分解する。例えば、前記酸化剤とし
てH2O2は、金属イオンの共存、酸性条件下で
ヒドロキシルラジカル、すなわち・OHを発生
し、強力な酸化力を発揮することが知られてお
り、本発明では金属水酸化物を主体とする凝集
スラツジ中の金属を利用してこの反応を起こさ
せる点に最大の特徴があり、従来その例をみな
い。前項において、本発明における凝集剤と
して金属塩の使用を重要要件とする意味はここ
にあるのである。なお、前記酸化剤として酸素
又は塩素などを併用することもできる。
凝集スラツジ中の金属の酸化を行うのと同
時、又は行つたのち、硫酸などの鉱酸を添加し
てPH2以下にして、例えば水酸化第2鉄の場
合、
Fe(OH)3+3H+→Fe3++3H2O
の反応によつて完全にFe3+イオン状に溶解し
たのち、これを凝集剤として再利用する。な
お、ここで重要な点は項に記した金属と酸化
剤の併用による化学酸化処理によつて凝集スラ
ツジ中のCOD、成分はCO2とH2Oにまで分解
されているため、凝集剤として再利用される
Fe3+イオンを含む溶解液を原水にリサイクル
しても、従来のような単なる凝集スラツジの酸
溶解法のようなCOD成分の悪循環を招かない
ことである。
本発明の実施態様を図面を参照しつつ説明すれ
ば、下水、し尿の生物処理水などのCOD含有廃
水1は凝集槽2において塩化第二鉄3が添加され
(通常運転スタート時のみでよい)、フロツキユレ
ーシヨンされたのち、通常、アニオンポリマーな
どの有機高分子凝集剤4が添加され、沈殿池5に
おいて凝集スラツジ6と処理水7に分離される。
凝集スラツジ6はFe(OH)3を主成分とし、凝
集除去されたCOD成分、色度成分を含むスラツ
ジである。
次いで、凝集スラツジ6は必要ならばシツクサ
ー(図示せず)でさらに濃縮されたのち、第1撹
拌槽8において鉱酸9と過酸化水素10が添加さ
れ、PH2〜4の酸性条件下で所要時間(通常数時
間〜1日程度でよい)撹拌されたのち、次の第2
撹拌槽11においてさらに鉱酸9の添加を受けPH
2以下(好ましくはPH1程度)に設定され、Fe
(OH)3はFe3+イオン状に溶解されたのち、返送
管12によつて廃水1にリサイクルされ凝集剤と
して再利用される。なお、撹拌槽8のPHを1.5〜
2.5程度に設定すれば第2撹拌槽11はふ省略で
きる。
廃水1中に無機性のSS成分が含まれている場
合は、全く排泥しないと、処理系内にSSの著積
が生じ好ましくないので、一部の凝集スラツジ6
を排泥管13から排泥する必要がある。
また、廃水1中にリン酸酸が含まれている場合
は、これがFePO4として沈殿するが、第1撹拌槽
8において、次式の反応
FePO4↓+3H+→Fe3++H3PO4
に従つてリン酸が溶出してしまうという問題を解
決するためには、凝集沈殿処理水7又は沈殿池5
への流入水に消正灰、塩化カルシウムなどの
Ca2+イオン源14を加えたのち、既に本出願人
が先に出願したリン鉱石又は骨炭などの粒状固体
表面への晶析を利用する接触脱リン(晶析脱リン
とも呼ばれる)工程15においてリンを除去する
方法を採用すればよい。
以上述べたように本発明は、一旦廃水の凝集初
処理用に添加した鉄塩等の金属塩凝集剤中の金属
成分つまり金属イオンをフエントン処理用の薬剤
として利用し、該凝集汚泥中のCOD、BOD成分
の酸化分解処理を行つたのち、さらにこの金属イ
オンを前記凝集処理用の凝集剤として再利用する
ように構成したものであり、本発明によれば、次
のような工業上重要な利益を得ることができる。
(1) CODと含有する原水を対象としても、従来
技術における単なる凝集スラツジの酸溶解法の
ようなCOD成分の悪循環を招く予盾を生ずる
ことなく凝集スラツジを鉱酸により溶解して再
利用ができるため、凝集スラツジの系外排出量
が極めて少量になる。
(2) この結果、濃縮脱水性の悪い金属水酸化物を
含有する凝集スラツジの発生を実質的に無くす
ることができるので、汚泥処理(脱水、焼却)
工程が著るしく合理化される。
(3) 過酸化水素又はオゾンによる化学酸化に際に
必要とされる金属イオンとして凝集スラツジ中
の金属水酸化物を利用するので、別個に金属塩
を添加する必要がなく、運転経費が著しく低減
される。
次に本発明の実施例を記す。
実施例
下水の活性汚泥処理水を原水として、塩化第2
鉄50mg/(FeCl3として)とアニオンポリマー
(アコフロツクA720)1.0mg/を加えフロツク
形成したのち、沈殿池(沈降分離速度50mm/
min)にてフロツクを分離し、凝集沈殿処理水と
沈殿スラツジを得た。
原水と凝集沈殿処理水の水質は第1表のとおり
であつた。
The present invention relates to a method for coagulation-sedimentation treatment of wastewater containing COD, and particularly to an improved method for reusing coagulation-sediment sludge as a flocculant. Conventionally, when treating river water that mainly contains clay-based suspended solids, such as water treatment, sulfuric acid is added to the precipitated sludge generated during coagulation and sedimentation treatment by adding sulfuric acid as a coagulant. The method of adding aluminum hydroxide (Al(OH) 3 ) to Al 3+ ions and reusing this solution as a flocculant is widely known and is also practiced on a commercial brand scale. . However, COD,
When an acid is added to the sludge generated as a result of coagulating and removing organic substances such as BOD components to dissolve Al(OH) 3 and trying to reuse it as a flocculant, the COD and BOD components that were painstakingly coagulated and removed will also re-elute. Since these are added to the raw water, the process of flocculation and sedimentation (or flotation) becomes meaningless as it is not overturned, so acid dissolution and reuse of flocculation and sedimentation sludge, as in water treatment, is not actually implemented. It was impossible. The present invention makes it possible to reuse the sludge generated from the process of coagulating and removing COD and BOD components as a coagulant again without causing the above-mentioned pre-shielding, and at the same time, it is possible to reuse the sludge generated from the process of coagulating and removing COD and BOD components. The purpose of this invention is to provide an innovative method that can substantially eliminate the problem of agglomerated sludge having poor concentration and dewatering properties. That is, the present invention involves coagulating and separating COD-containing wastewater using a coagulant containing at least one of iron salts, aluminum salts, and copper salts, and then adding mineral acid and at least hydrogen peroxide or ozone to the resulting coagulated sludge. An oxidizing agent containing the sludge is added and stirred to oxidize and decompose the organic matter in the flocculating sludge and dissolve the metal hydroxide, and the dissolved solution is reused as the metal salt flocculant in the flocculation separation step. This is a coagulation and precipitation treatment method. To summarize the gist of the present invention, it is essential to use a metal salt as a flocculant.
As the metal salt, iron salts such as ferric chloride and ferrous sulfate, aluminum salts such as aluminum sulfate and polyaluminum chloride, or copper salts can be used alone or in combination, but iron salts is most preferred. Note that an organic polymer flocculant can also be used in combination. A mineral acid such as sulfuric acid and the above-mentioned oxidizing agent are added to the metal hydroxide produced as a result of using a metal salt as a flocculant, and the COD and BOD components in the flocculated sludge are removed under acidic conditions (preferably in the pH range of 2 to 4). Chemically oxidized and decomposed. For example, it is known that H 2 O 2 as the oxidizing agent exhibits strong oxidizing power by generating hydroxyl radicals, i.e., . The most distinctive feature of this method is that it uses the metal in the agglomerated sludge, which is mainly composed of oxides, to cause this reaction, which has never been seen before. This is the reason why the use of a metal salt as a flocculant in the present invention is an important requirement in the previous section. Note that oxygen, chlorine, or the like can also be used together as the oxidizing agent. Simultaneously with or after oxidizing the metal in the flocculated sludge, add a mineral acid such as sulfuric acid to lower the pH to below 2, for example, in the case of ferric hydroxide, Fe(OH) 3 +3H + →Fe After it is completely dissolved into Fe 3+ ions through the reaction of 3+ + 3H 2 O, this is reused as a flocculant. The important point here is that the COD components in the flocculated sludge are decomposed into CO 2 and H 2 O by the chemical oxidation treatment using a combination of metal and oxidizing agent as described in the section above, so they cannot be used as flocculants. be reused
Even if the dissolved solution containing Fe 3+ ions is recycled to raw water, it does not lead to a vicious cycle of COD components, as is the case with the conventional method of simply dissolving coagulated sludge with acid. To explain the embodiment of the present invention with reference to the drawings, COD-containing wastewater 1 such as biologically treated water such as sewage and human waste is treated with ferric chloride 3 in a flocculation tank 2 (this is necessary only at the start of normal operation). After flocculation, an organic polymer flocculant 4 such as an anionic polymer is usually added, and the sludge is separated into flocculated sludge 6 and treated water 7 in a settling basin 5. The flocculated sludge 6 is a sludge whose main component is Fe(OH) 3 and which contains a COD component and a chromaticity component which have been coagulated and removed. Next, the flocculated sludge 6 is further concentrated using a sixer (not shown) if necessary, and then mineral acid 9 and hydrogen peroxide 10 are added in the first stirring tank 8, and the mixture is heated under acidic conditions of pH 2 to 4 for the required time. (Usually, it takes about several hours to a day) After stirring, the next second
In the stirring tank 11, mineral acid 9 is further added and the pH is increased.
Set to 2 or less (preferably around PH1), Fe
After the (OH) 3 is dissolved into Fe 3+ ions, it is recycled into the waste water 1 through the return pipe 12 and reused as a flocculant. In addition, the pH of stirring tank 8 should be set to 1.5~
If it is set to about 2.5, the second stirring tank 11 can be omitted. If the wastewater 1 contains inorganic SS components, if no sludge is removed at all, a significant accumulation of SS will occur in the treatment system, which is undesirable.
It is necessary to remove the sludge from the sludge pipe 13. In addition, if phosphoric acid is contained in the wastewater 1, it will precipitate as FePO 4 , but in the first stirring tank 8, it will be converted into the following reaction FePO 4 ↓ + 3H + →Fe 3+ +H 3 PO 4 . Therefore, in order to solve the problem that phosphoric acid is eluted, it is necessary to use coagulation and sedimentation treated water 7 or sedimentation tank 5.
The inflow water contains slaked ash, calcium chloride, etc.
After adding the Ca 2+ ion source 14, in the catalytic dephosphorization (also called crystallization dephosphorization) step 15, which utilizes crystallization on the surface of a granular solid such as phosphate rock or bone char, which has already been applied by the present applicant. A method for removing phosphorus may be used. As described above, the present invention utilizes metal components, that is, metal ions, in a metal salt flocculant such as iron salt, which has been added for the initial coagulation treatment of wastewater, as a treatment agent for Fuenton treatment, and COD in the flocculated sludge. After the BOD component is subjected to oxidative decomposition treatment, the metal ions are further reused as a flocculant for the flocculation treatment.According to the present invention, the following industrially important You can make a profit. (1) Even when COD and raw water containing it are targeted, it is possible to reuse the flocculated sludge by dissolving it with mineral acid without creating a shield that will lead to a vicious cycle of COD components, unlike the conventional method of simply dissolving flocculated sludge with acid. As a result, the amount of coagulated sludge discharged from the system is extremely small. (2) As a result, the generation of flocculated sludge containing metal hydroxides with poor concentration and dewatering properties can be virtually eliminated, so sludge treatment (dewatering, incineration)
The process is significantly streamlined. (3) Since the metal hydroxide in the flocculated sludge is used as the metal ion required for chemical oxidation with hydrogen peroxide or ozone, there is no need to separately add metal salts, and operating costs are significantly reduced. be done. Next, examples of the present invention will be described. Example: Using activated sludge treated sewage water as raw water,
After adding 50 mg of iron (as FeCl 3 ) and 1.0 mg of anionic polymer (Acofrock A720) to form a floc, the sedimentation tank (sedimentation separation speed 50 mm/
The flocs were separated at 1 min) to obtain flocculation-sedimentation treated water and sedimentation sludge. The water quality of the raw water and coagulation-sedimentation treated water was as shown in Table 1.
【表】
次に、沈殿スラツジをシツクナーで濃縮して
SS濃度32g/の濃縮スラツジを得、これに硫
酸をPH3に調整したのち、沈殿スラツジ中に含ま
れるCOD1mg/に対しH2O21.2mg/の比率に
なるようにH2O2(過酸化水素)を添加し、15時間
撹拌した。このあとさらに硫酸を添加し、PH1.5
に調整して3時間撹拌し、Fe(CH)3スラツジを
Fe3+イオンに溶解し、これを原水に添加される
凝集剤として再使用した。この結果、新品の凝集
剤として塩化第2鉄を添加した場合と同様に沈降
性、脱水性ともに良好なフロツクが形成され、第
2表に示す水質の処理水が得られた。
また、凝集剤として再利用される液中のCOD
は数mg/であり、FeとH2O2との酸化分解が効
果的に行われていることが確認できた。[Table] Next, concentrate the precipitated sludge with a thickener.
After obtaining a concentrated sludge with an SS concentration of 32 g/sludge and adjusting sulfuric acid to pH 3, H 2 O 2 (peroxide Hydrogen) was added and stirred for 15 hours. After this, add more sulfuric acid to make the pH 1.5.
Adjust the Fe(CH) 3 sludge to
It was dissolved in Fe 3+ ions and reused as a flocculant added to raw water. As a result, flocs with good sedimentation and dewatering properties were formed, similar to when ferric chloride was added as a new flocculant, and treated water with the quality shown in Table 2 was obtained. In addition, COD in the liquid that is reused as a flocculant
was several mg/, confirming that the oxidative decomposition of Fe and H 2 O 2 was carried out effectively.
図面は本発明の実施態様を示す系統説明図であ
る。
1……廃水、2……凝集槽、3……塩化第2
鉄、4……有機高分子凝集剤、5……沈殿池、6
……凝集スラツジ、7……処理水、8……第1撹
拌槽、9……鉱酸、10……過酸化水素、11…
…第2撹拌槽、12……返送管、13……排泥
管、14……Ca2+イオン源、15……接触脱リ
ン工程。
The drawings are system explanatory diagrams showing embodiments of the present invention. 1...Wastewater, 2...Coagulation tank, 3...Second chloride
Iron, 4... Organic polymer flocculant, 5... Sedimentation tank, 6
...Agglomerated sludge, 7 ... Treated water, 8 ... First stirring tank, 9 ... Mineral acid, 10 ... Hydrogen peroxide, 11 ...
... Second stirring tank, 12 ... Return pipe, 13 ... Sludge removal pipe, 14 ... Ca 2+ ion source, 15 ... Catalytic dephosphorization process.
Claims (1)
銅塩の少なくとも一つを含む凝集剤を用いて凝集
分離したのち、生成した凝集スラツジに鉱酸と、
少なくとも過酸化水素又はオゾンを含む酸化剤を
添加し、撹拌せしめて前記凝集スラツジ中の
COD、BODを酸化分解すると共に金属水酸化物
を溶解せしめ、該溶解液を前記金属塩凝集剤とし
て前記凝集分離工程に再利用することを特徴とす
る凝集沈殿処理方法。 2 前記凝集分離工程からの分離水が予めカルシ
ウムイオン源を添加されたのち接触脱リン工程で
処理して放流されるものである特許請求の範囲第
1項記載の凝集沈殿処理方法。[Claims] 1. Wastewater containing COD is treated with iron salts, aluminum salts,
After flocculating and separating using a flocculant containing at least one copper salt, mineral acid and
An oxidizing agent containing at least hydrogen peroxide or ozone is added and stirred to dissolve the agglomerated sludge.
A coagulation-sedimentation treatment method characterized by oxidatively decomposing COD and BOD and dissolving metal hydroxide, and reusing the dissolved solution as the metal salt flocculant in the coagulation separation step. 2. The coagulation-sedimentation treatment method according to claim 1, wherein the separated water from the coagulation and separation step is treated with a catalytic dephosphorization step and discharged after having been previously added with a calcium ion source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7182780A JPS56168879A (en) | 1980-05-29 | 1980-05-29 | Flocculation sedimentation treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7182780A JPS56168879A (en) | 1980-05-29 | 1980-05-29 | Flocculation sedimentation treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56168879A JPS56168879A (en) | 1981-12-25 |
JPS6339307B2 true JPS6339307B2 (en) | 1988-08-04 |
Family
ID=13471764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7182780A Granted JPS56168879A (en) | 1980-05-29 | 1980-05-29 | Flocculation sedimentation treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56168879A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020170343A1 (en) | 2019-02-19 | 2020-08-27 | 株式会社五十嵐電機製作所 | General-purpose rotary encoder and servo motor using same |
WO2021090372A1 (en) | 2019-11-05 | 2021-05-14 | 株式会社五十嵐電機製作所 | Multipurpose rotary encoder |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2297322A (en) * | 1995-01-25 | 1996-07-31 | Air Prod & Chem | Method for treating industrial effluent |
GB2297321A (en) * | 1995-01-25 | 1996-07-31 | Air Prod & Chem | Method for treating water |
JP4879590B2 (en) * | 2006-01-24 | 2012-02-22 | オルガノ株式会社 | Method and apparatus for concentration and volume reduction of sludge |
CA2876794A1 (en) * | 2012-07-31 | 2014-02-06 | Basf Se | Concentration of suspensions |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244052A (en) * | 1975-10-03 | 1977-04-06 | Hitachi Ltd | Factory waste water processing method |
JPS5398153A (en) * | 1977-02-08 | 1978-08-28 | Jgc Corp | Method of treating sludge exuded foul water |
-
1980
- 1980-05-29 JP JP7182780A patent/JPS56168879A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244052A (en) * | 1975-10-03 | 1977-04-06 | Hitachi Ltd | Factory waste water processing method |
JPS5398153A (en) * | 1977-02-08 | 1978-08-28 | Jgc Corp | Method of treating sludge exuded foul water |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020170343A1 (en) | 2019-02-19 | 2020-08-27 | 株式会社五十嵐電機製作所 | General-purpose rotary encoder and servo motor using same |
KR20200103529A (en) | 2019-02-19 | 2020-09-02 | 가부시키가이샤 이가라시덴키세이사쿠쇼 | General purpose rotary encoder and servo motor using it |
WO2021090372A1 (en) | 2019-11-05 | 2021-05-14 | 株式会社五十嵐電機製作所 | Multipurpose rotary encoder |
KR20210056948A (en) | 2019-11-05 | 2021-05-20 | 가부시키가이샤 이가라시덴키세이사쿠쇼 | Universal Rotary Encoder |
Also Published As
Publication number | Publication date |
---|---|
JPS56168879A (en) | 1981-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022159814A (en) | Method and apparatus for treating manganese-containing water | |
JP2506032B2 (en) | Wastewater treatment method | |
JPH04349997A (en) | Treatment of organic waste water | |
JPS6339307B2 (en) | ||
JPS5834197B2 (en) | High speed inosyoriho | |
JP3642516B2 (en) | Method and apparatus for removing COD components in water | |
JPH0124558B2 (en) | ||
JPS6339308B2 (en) | ||
JPH03106493A (en) | Treating waste water | |
US4288328A (en) | Use of specially prepared iron floc to oxidize and remove iron in water treatment processes | |
JPS6211634B2 (en) | ||
JP2823794B2 (en) | Treatment method of ink dissolution waste liquid | |
JPH0141110B2 (en) | ||
JPS6339309B2 (en) | ||
JPH03278883A (en) | Method and apparatus for treating waste water containing hardly decomposable cod | |
JP2601441B2 (en) | Wastewater treatment method | |
JPS591118B2 (en) | How to treat organic wastewater | |
JP3788782B2 (en) | Method for removing and recovering copper by treating waste water and chemicals used therefor | |
JPS6339320B2 (en) | ||
JPS59375A (en) | Treatment of water containing difficultly biodegradative substance | |
JP4407236B2 (en) | Treatment method of wastewater containing antimony | |
JPH0314519B2 (en) | ||
JPH0155920B2 (en) | ||
JPS5938837B2 (en) | How to treat organic waste liquid | |
JP2002153886A (en) | Method and device for flocculation separation treatment |