JPS6338260A - High breakdown strength semiconductor device and manufacture thereof - Google Patents
High breakdown strength semiconductor device and manufacture thereofInfo
- Publication number
- JPS6338260A JPS6338260A JP18310386A JP18310386A JPS6338260A JP S6338260 A JPS6338260 A JP S6338260A JP 18310386 A JP18310386 A JP 18310386A JP 18310386 A JP18310386 A JP 18310386A JP S6338260 A JPS6338260 A JP S6338260A
- Authority
- JP
- Japan
- Prior art keywords
- region
- conductivity type
- insulating film
- active region
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000015556 catabolic process Effects 0.000 title description 14
- 238000002955 isolation Methods 0.000 claims description 60
- 239000000758 substrate Substances 0.000 claims description 36
- 239000012535 impurity Substances 0.000 claims description 28
- 230000003647 oxidation Effects 0.000 claims description 22
- 238000007254 oxidation reaction Methods 0.000 claims description 22
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 108091006146 Channels Proteins 0.000 description 23
- 238000000034 method Methods 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 4
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000005360 phosphosilicate glass Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔目 次〕
概要
産業上の利用分野
従来の技術
発明が解決しようとする問題点
問題点を解決するための手段
作用
実施例
実施例の模式図(第1図)
キャリア濃度プロファイル図(第2図)実施例の工程断
面図 (第3図)
発明の効果
〔概 要〕
DSA (デイフュージョンセルファライン)方式テ形
成した狭い幅のエンハンスメント領域と、デプリーショ
ン領域を用いてゲートを構成することによって、オン抵
抗を減少せしめて増幅ファクタの増大を図ったオフセッ
ト型の高耐圧素子であって、ゲート下部の活性領域を厚
い分離絶縁膜によってソース領域及びドレイン領域と離
隔せしめる構造にすることによって、ソース領域、エン
ノ\ンスメントチャネル領域、デプリーション領域、オ
フセット領域、ドレインを総てセルファラインで形成す
ることを可能にし、且つオフセット領域とゲート電極間
に上記分離絶縁膜を介在せしめることによってドレイン
−ゲート間耐圧の向上を図る。[Detailed Description of the Invention] [Table of Contents] Overview Industrial Field of Use Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Action Examples Schematic diagram of the embodiments (Fig. 1) Carrier Concentration profile diagram (Fig. 2) Process cross-sectional view of the embodiment (Fig. 3) Effects of the invention [Summary] A gate is formed using a narrow enhancement region formed using a DSA (diffusion self-alignment) method and a depletion region. This is an offset-type high voltage element that reduces on-resistance and increases the amplification factor by configuring the device. By doing so, it is possible to form the source region, the enrichment channel region, the depletion region, the offset region, and the drain all by self-line, and also to interpose the above-mentioned isolation insulating film between the offset region and the gate electrode. This aims to improve the drain-gate breakdown voltage.
本発明はMIS型高耐高耐圧半導体装置造及びその製造
方法の改良に係り、特に集積度及びドレイン−ゲート間
耐圧の向」−を図ったl1ls型高耐圧半導体装置及び
その製造方法に関する。The present invention relates to an MIS type high breakdown voltage semiconductor device and an improvement in its manufacturing method, and more particularly to an 11LS type high breakdown voltage semiconductor device and a manufacturing method thereof, which are aimed at improving the degree of integration and drain-to-gate breakdown voltage.
近時、エレクトロルミネッセンス、プラズマデイスプレ
ィ等で代表される表示デバイス等の高電圧駆動デバイス
の制御回路を具備した半導体ICの所要が増大しており
、目、つ上記高電圧駆動デバイスの大規模化、高機能化
、高速化に伴って、制御回路を構成する半導体装置の一
層の高耐圧化、大電力化、高速化、及び増幅ファクタの
増大が要望されている。Recently, the demand for semiconductor ICs equipped with control circuits for high-voltage drive devices such as display devices such as electroluminescence and plasma displays has increased, and the scale of the high-voltage drive devices has increased. With the increasing functionality and speed, there is a demand for semiconductor devices constituting control circuits to have higher voltage resistance, higher power, higher speed, and an increased amplification factor.
第4図は従来のMIS型高耐高耐圧半導体装置ち高耐圧
M I S l−ランシスタの代表的な構造における一
例を示した模式側断面図でよ)る。FIG. 4 is a schematic side sectional view showing an example of a typical structure of a conventional MIS type high breakdown voltage semiconductor device, ie, a high breakdown voltage MIS l-run transistor.
図において、51はn−型ウェル、52はフィールド酸
化膜、53はn−”、リナ傳ネルストッパ、54はゲー
ト酸化膜、55はゲート電極、56はp−型オフセント
領域、57はp゛゛ソース領域、58はp゛゛ドレイン
領域、59は不純物ブロック用酸化膜、60は層間絶縁
膜、61はソース配線、62はゲート配線、63ばドレ
イン配線を示す。In the figure, 51 is an n-type well, 52 is a field oxide film, 53 is an n-'' liner stopper, 54 is a gate oxide film, 55 is a gate electrode, 56 is a p-type offset region, and 57 is a p' source. 58 is a P drain region, 59 is an oxide film for impurity blocking, 60 is an interlayer insulating film, 61 is a source wiring, 62 is a gate wiring, and 63 is a drain wiring.
図示のように従来構造においては、チャネル形成部ch
とドレイン領域58との間に低不純物濃度で高抵抗を有
するオフセント領域56を配設し、ドレイン近傍の空乏
層の拡がりを増大せしめることによってドレイン耐圧の
向上が図られていた。As shown in the figure, in the conventional structure, the channel forming portion ch
An offset region 56 having a low impurity concentration and high resistance is disposed between the drain region 58 and the drain region 58, and the drain breakdown voltage is improved by increasing the spread of the depletion layer near the drain.
しかしこの構造には、以下に示すような問題点が含まれ
ていた。However, this structure included the following problems.
即ち、
1)より一層の高耐圧化を図るためには、オフセソ]・
領域56の長さり。Fを長くする必要があるため素子面
積が拡大する。In other words, 1) In order to achieve even higher voltage resistance, off-separation]・
Length of area 56. Since it is necessary to lengthen F, the element area increases.
2)10Fを長くすることによりその抵抗値が増大する
ので、増幅ファクタ(β)が減少し、動作速度が低下す
る。2) By increasing the length of 10F, its resistance value increases, so the amplification factor (β) decreases and the operating speed decreases.
3)I−OFを長くすることによりコンダクタンスが低
下するので、大電力を駆動するためにオフセント領域の
幅を拡大しなければならず、一層素子面積が拡大する。3) Since the conductance decreases by lengthening the I-OF, the width of the offset region must be increased in order to drive large power, which further increases the device area.
4)チャネル領域がリソグラフィ技術の限界で規定され
るゲート電極の幅に整合形成されるので、ショートチャ
ネル化が困難であり、高速化、高β化が図れない。4) Since the channel region is formed to match the width of the gate electrode defined by the limits of lithography technology, it is difficult to make a short channel, and it is difficult to achieve high speed and high β.
5)エンハンスメント型であるためオン抵抗が高く、大
電力化、高β化が図り運い。5) Since it is an enhancement type, the on-resistance is high, making it possible to achieve high power and high β.
等である。etc.
そこで上記問題を解決する構造として、発明者は先に特
願昭61−118506によって、第5図に示すような
デイフュージョンセルフ7ライン(DS八)エンハンス
メントゲート及びデプリーションゲートを有するオフセ
ント型の高耐圧半導体装置を提案した。Therefore, as a structure to solve the above problem, the inventor previously proposed in Japanese Patent Application No. 61-118506 an offset type structure having a diffusion self 7 line (DS8) enhancement gate and a depletion gate as shown in FIG. We proposed a high-voltage semiconductor device.
図中、64はp”−型デプリーション領域、65はソー
ス領域57形成前にソース形成領域側にデー1−電極に
整合して不純物を導入し、デプリーション領域64を所
定の幅W(チャネル長Lchに対応)だけ反転するよう
にドライブイン処理を行って形成したキャリア濃度10
” 〜10I9cA−”程度のn゛型領領域66は例え
ば0.2〜0.5μm程度の幅W(LCh)を有する反
転領域でエンハンスメント型チャネル領域で、その他の
領域は第4図と同符号で示されている。In the figure, reference numeral 64 denotes a p''-type depletion region, and reference numeral 65 denotes a p''-type depletion region. Before forming the source region 57, impurities are introduced into the source formation region side in alignment with the D1-electrode, and the depletion region 64 is formed with a predetermined width W (channel length Lch). Carrier concentration 10 formed by performing drive-in processing so as to invert by
The n-type region 66 of about "~10I9cA-" is an inversion region having a width W (LCh) of about 0.2 to 0.5 μm and is an enhancement type channel region, and the other regions have the same symbols as in FIG. is shown.
そしてこの構造においては、ドレイン領域58とチャネ
ル領域66との間のオフセント部を、ドレイン領域58
とゲート間に設けた低濃度を有するオフセント領域56
と、ゲート下部に設けたより低濃度のデプリーション領
域64とによって構成せしめ、このデプリーション領域
64がゲート電圧が印加されない状態で非常に高抵抗を
有することによって、デプリーション領域64のエンハ
ンスメント型チャネル領域66との接触部の電位を大幅
に低下せしめ、第4図に示す従来構造よりも高いドレイ
ン耐圧を得ている。In this structure, the offset portion between the drain region 58 and the channel region 66 is
an offset region 56 having a low concentration provided between the gate and the gate;
and a depletion region 64 of lower concentration provided below the gate, and this depletion region 64 has a very high resistance when no gate voltage is applied, so that the depletion region 64 and the enhancement type channel region 66 have a high resistance. The potential of the contact portion is significantly lowered, and a drain breakdown voltage higher than that of the conventional structure shown in FIG. 4 is obtained.
また動作時即ちゲート電圧印加時においては、不純物の
横方向拡散によりチャネル長LChに相当するエンハン
スメント領域の幅Wが極めて狭く形成されていることと
、デプリーション領域が低抵抗領域になることとによっ
て、オン抵抗は大幅に減少して駆動電流が増大し、I土
つβも同士Jるという効果を生ずる。In addition, during operation, that is, when gate voltage is applied, the width W of the enhancement region corresponding to the channel length LCh is formed to be extremely narrow due to lateral diffusion of impurities, and the depletion region becomes a low resistance region. The on-resistance is significantly reduced and the drive current is increased, producing the effect that I and β are also different from each other.
しかしこの構造において問題になるのは、前記ソース領
域、エンハンスメント領域、デプリーション領域、オフ
セット領域が総てセルフ”メ′ラインで形成できるのに
対し′ζドレイン領域のみがセルファラインで形成でき
ないことのために、素子面積の縮小が充分になし得なか
ったことと、1−レイン領域近傍のオフセット領域とゲ
ート電極との間の絶縁が薄いゲート絶縁膜及び不純物ブ
ロック用絶縁膜のみでなされているために、ゲート電極
とオフセット領域との間に高密度の電界集中が生じ、ド
レイン−ゲート間の耐圧の向」−が充分になし得なかっ
たことである。However, a problem with this structure is that while the source region, enhancement region, depletion region, and offset region can all be formed with self-aligned lines, only the drain region cannot be formed with self-aligned lines. Secondly, the element area could not be reduced sufficiently, and the insulation between the offset region near the 1-rain region and the gate electrode was made only by a thin gate insulating film and an impurity blocking insulating film. A high density electric field concentration occurred between the gate electrode and the offset region, and the dielectric strength between the drain and the gate could not be sufficiently adjusted.
上記問題点は、一導電型半導体基体(2)と、該半導体
基体(2)の表面に形成された素子分離用絶縁膜(!J
a) (9b)と、該素子分離用絶縁膜(9a) (9
b)で画定された領域面に、該素子分離用絶縁膜(9a
) (9b)から離隔し、且つ互いに離間して形成され
た一対の活性領域分離用絶縁膜(10a) (10b)
と、一方の側の活性領域分離用絶縁膜(10a)と素子
分離用絶縁膜(9a)によって画定された基体面に形成
された反対導電型ソース領域(15)と、他方の側の活
性領域分離用絶縁膜(10b)と素子分離用絶縁膜(9
b)によって画定された基体面に形成された反対導電型
ドレイン領域(1G)と、該ソース領域(15)側の活
性領域分離用絶縁膜(10a)の下部に、該絶縁膜(1
0a)の底面に沿い且つ接して形成され、ソース領域(
15)と活性領域(11)との間を連通ずるソース領域
(15)と同等若しくはそれ以上のキャリア濃度を有す
る反対導電型高濃度領域(7)と、該反対導電型高濃度
領域(7)の下部に該反対導電型高濃度領域(7)の底
面に沿い且つ接して形成された該基体(2)より高キャ
リア濃度の一導電型不純物導入領域(5)と、該ドレイ
ン領域(16)側の活性領域分離用絶縁膜の(10b)
下部に、該絶縁膜(10h)の底面に沿い且つ接して形
成されドレイン領域と活性領域の間を連通ずる該ドレイ
ン領域(16)より低ギヤリア濃度の第1の反対導電型
低濃度領域(8)と、該第1の反対導電型低濃度領域(
8)と一導電型不純物導入領域(5)との間の活性領域
(11)表面部に形成された該第1の反対導電型低濃度
領域(8)より低キャリア濃度の第2の反対導電型低濃
度領域(12)と、該活性領域(11)上に形成された
ゲート絶縁膜(13)と、該ゲート絶縁膜(13)上に
該活性領域分離用絶縁膜(10a) (10b)上へ延
在して形成されたゲート電極(14)とを有してなる本
発明による高耐圧半導体装置、及び
一導電型半導体基体上に、ソース形成領域上と、ドレイ
ン形成領域上と、ソース領域とドレイン領域間にこれら
と離間して設けられる活性領域の形成領域上とをそれぞ
れ個々に覆う第1、第2、第3の耐酸化膜パターンを、
同一のマスクに整合して同時に形成する工程と、該第1
の耐酸化膜パターンと第3の耐酸化膜パターンの間隙部
に整合して選択的に不純物を導入して、該間隙部の基体
面に該基体より高不純物濃度を有し且つソース・ドレイ
ン領域より低不純物濃度を有する一導電型不純物導入領
域を形成する工程と、第1の耐酸化膜パターンと第3の
耐酸化膜パターンの間隙部に整合して該一導電型高濃度
領域の表面部に選択的に、ソース・ドレイン領域と同等
若しくはそれ以上の濃度に反対導電型不純物を導入する
工程と、第3の耐酸化膜パターンと第2の耐酸化膜パタ
ーンの間隙部に整合して該間隙部の基体面に選択的に、
該基体より高濃度で且つソース・ドレイン領域より低濃
度に反対導電型不純物を導入する工程と、該第1、第2
、第3の耐酸化膜パターンをマスクにして選択酸化によ
り第1、第2の耐酸化膜パターンの外側に素子分離用酸
化膜を、また第1、第2、第3の耐酸化膜パターンの間
隙部に活性領域分離用酸化膜を形成し、且つ該導入不純
物を活性化して、ソース領域側の活性領域分離用酸化膜
の下部に、該分離用酸化膜の底面に沿い且つ接する反対
導電型高濃度領域及び該反対導電型高濃度領域の底面に
沿い且つ接する一導電型不純物導入領域を、またドレイ
ン領域側の活性領域分離用酸化膜の下部に該分離用酸化
膜の底面に沿いJlつ接する第1の低濃度反対導電型領
域をそれぞれ形成する工程と、活性領域形成面に、第1
の低濃度反対導電型領域よりも低濃度で、且つ該領域の
基体面を反転する濃度に反対導電型不純物を導入する工
程と、該活性領域上にゲート絶縁膜を形成し、該ゲート
絶縁膜−11から活性領域分離用酸化膜1ニへ延在する
ゲート電極を形成する工程と、素子分離用酸化膜と活性
領域分離用酸化膜の間隙部に整合して不純物を導入し反
対導電型のソース領域及びトレイン領域を形成する一L
程とを3む本発明による高耐圧半導体装置の製造方法に
よって解決される。The above problem is caused by a semiconductor substrate (2) of one conductivity type and an insulating film for element isolation (!J) formed on the surface of the semiconductor substrate (2).
a) (9b) and the element isolation insulating film (9a) (9
The element isolation insulating film (9a
) (9b) and a pair of active region isolation insulating films (10a) (10b) formed apart from each other.
, an opposite conductivity type source region (15) formed on the substrate surface defined by the active region isolation insulating film (10a) and the element isolation insulating film (9a) on one side, and the active region on the other side. Isolation insulating film (10b) and element isolation insulating film (9
The insulating film (1G) is formed under the active region isolation insulating film (10a) on the opposite conductivity type drain region (1G) formed on the substrate surface defined by b) and the source region (15).
0a) and is formed along and in contact with the bottom surface of the source region (
15) and the active region (11), a high concentration region (7) of an opposite conductivity type having a carrier concentration equal to or higher than that of the source region (15), and the high concentration region (7) of the opposite conductivity type. an impurity-introduced region (5) of one conductivity type with higher carrier concentration than the base (2) formed along and in contact with the bottom surface of the high concentration region (7) of the opposite conductivity type, and the drain region (16). (10b) of the side active region isolation insulating film
At the bottom, a first opposite conductivity type low concentration region (8) is formed along and in contact with the bottom surface of the insulating film (10h) and has a lower gear concentration than the drain region (16) which communicates between the drain region and the active region. ) and the first opposite conductivity type low concentration region (
8) and a second opposite conductivity region having a lower carrier concentration than the first opposite conductivity type low concentration region (8) formed on the surface of the active region (11) between the one conductivity type impurity introduction region (5) and the first opposite conductivity type low concentration region (8). a type low concentration region (12), a gate insulating film (13) formed on the active region (11), and the active region isolation insulating film (10a) (10b) on the gate insulating film (13). A high voltage semiconductor device according to the present invention has a gate electrode (14) extending upwardly, and a semiconductor substrate of one conductivity type, on a source formation region, on a drain formation region, and on a source formation region. first, second, and third oxidation-resistant film patterns each individually covering the active region formation region provided between the drain region and the active region formed in a spaced manner;
a step of simultaneously forming the first mask in alignment with the same mask;
Impurities are selectively introduced in alignment with the gap between the oxidation-resistant film pattern and the third oxidation-resistant film pattern, so that the substrate surface in the gap has a higher impurity concentration than the substrate and the source/drain regions. A step of forming an impurity-introduced region of one conductivity type having a lower impurity concentration, and a step of forming a surface portion of the high concentration region of one conductivity type in alignment with the gap between the first oxidation resistant film pattern and the third oxidation resistant film pattern. selectively introducing impurities of the opposite conductivity type to a concentration equal to or higher than that of the source/drain regions, and aligning the impurities with the gap between the third oxidation resistant film pattern and the second oxidation resistant film pattern. selectively on the base surface in the gap,
a step of introducing an opposite conductivity type impurity at a higher concentration than the substrate and at a lower concentration than the source/drain region;
By selective oxidation using the third oxidation resistant film pattern as a mask, an oxide film for element isolation is formed on the outside of the first and second oxidation resistant film patterns, and also on the first, second, and third oxidation resistant film patterns. An active region isolation oxide film is formed in the gap, and the introduced impurity is activated to form an opposite conductivity type oxide film along and in contact with the bottom surface of the isolation oxide film under the active region isolation oxide film on the source region side. An impurity-introduced region of one conductivity type along and in contact with the bottom surface of the high concentration region and the high concentration region of the opposite conductivity type, and a doped region along the bottom surface of the isolation oxide film under the active region isolation oxide film on the drain region side. forming contacting first low concentration opposite conductivity type regions, and forming first low concentration regions on the active region forming surface.
forming a gate insulating film on the active region; -11 to the active region isolation oxide film 1D, and the process of introducing impurities in alignment with the gap between the element isolation oxide film and the active region isolation oxide film 1D to form a gate electrode of the opposite conductivity type. One L forming the source region and train region
The problem is solved by a method of manufacturing a high voltage semiconductor device according to the present invention, which includes steps and three.
即ち本発明に係るI) SAエンハンスメントゲート及
びデブリー:’y’ 、IJンy−1・をイ]するオフ
セット構造のMTS型高耐高耐圧半導体装置いては、ゲ
ート下部の活性領域とソース領域及びドレイン領域との
間を、素子分離用絶縁膜と同時形成になる厚い絶縁膜に
よって分離画定する構造とすることによって、該活性領
域分離用絶縁膜及び該絶縁膜の形成工程を介してソース
領域、エンハンスメントチャネル領域、デプリーション
領域、オフセン1−領域、及びドレイン配線の総てがセ
ルファラインで形成できるようにして素子の高集積化が
図られ、且つオフセット領域を活性領域分離用絶縁膜の
下部に配設してオフセット領域とゲート電極との間に」
二記厚い活性領域分離用絶縁膜を介在せしめ、これによ
って電界集中を緩和してドレイン−ゲ−1・間の耐圧を
向−卜せしめられる。That is, in the MTS type high breakdown voltage semiconductor device with an offset structure in which I) SA enhancement gate and debris: 'y', IJn y-1, according to the present invention, By creating a structure in which the drain region is separated and defined by a thick insulating film that is formed at the same time as the element isolation insulating film, the source region, The enhancement channel region, the depletion region, the offset region 1-region, and the drain wiring can all be formed using self-aligned lines, thereby achieving high integration of the device. In addition, the offset region is arranged under the active region isolation insulating film. between the offset region and the gate electrode.
By interposing a thick insulating film for separating the active region, electric field concentration can be alleviated and the withstand voltage between the drain and the gate 1 can be improved.
以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.
第1図は本発明に係る高耐圧半導体装置の構造の−・実
施例を示す模式側断面図、第2図は同実施例におけるソ
ース−ドレイン間の不純物濃度プロファイル図、第3図
481〜(hlはその製造方法の一実施例を示す工程断
面図である。FIG. 1 is a schematic side sectional view showing an embodiment of the structure of a high voltage semiconductor device according to the present invention, FIG. 2 is an impurity concentration profile diagram between the source and drain in the same embodiment, and FIG. hl is a process sectional view showing an example of the manufacturing method.
全図を通じ同一・対象物は同一・符合で示す。Objects that are the same throughout the drawings are indicated by the same reference numerals.
本発明に係る構造の一実施例を示す第1図において、1
はp−型シリコン基板(ρ−3uh)、2は〜導電型基
体であるキャリア濃度I Q I S cm −3程度
のn−型ウェル、5はエンハンスメントチャネルを形成
するキャリア濃度101Ilc13程度、深さ0.5〜
Iμm程度のn゛型領領域6はn型チャネルストッパ、
7はキャリア濃度1020cffl−3若しくはそれ以
上、深さ0.3〜0.5μm程度のp“型ソース延在領
域、8はキャリア濃度1017cm−3程度、深さ0.
1〜0.3μm程度のp−型オフセン1−領域、9a及
び9bは厚さ0.5〜0.6μm程度の素子分離用酸化
膜、10a及び10bは厚さ0.5〜0.6μm程度の
活性領域分離用酸化膜、11は活性領域、12はキャリ
ア濃度 I Q ” cm −3,深さ0.1〜0.2
μm程度のp−型デプリーション領域、I3はゲート酸
化膜、14は多結晶Si等よりなるゲート電極、15は
キャリア濃度1 Q 20 cm−3,深さ0.3〜0
.5 μm程度のp゛゛ソース領域、16はキャリア濃
度1020口″3.深さ0.3〜0.5 μm程度のp
゛型トドレイン領域17は厚さ0゜1μm程度の不純物
ブロック用酸化膜、18は燐珪酸ガラス(PSG)層間
絶縁膜、19はアルミニウム等よりなるゲート配線、2
0は同じくソース配線、21は同じくドレイン配線、2
2はエンハンスメントチャネル領域を示す。In FIG. 1 showing an embodiment of the structure according to the present invention, 1
is a p-type silicon substrate (ρ-3uh), 2 is an n-type well with a carrier concentration of about IQ I S cm -3, which is a conductivity type substrate, and 5 is a carrier concentration of about 101Ilc13, which forms an enhancement channel, and the depth 0.5~
The n-type region 6 of about I μm is an n-type channel stopper,
7 is a p" type source extension region with a carrier concentration of 1020 cffl-3 or more and a depth of about 0.3 to 0.5 μm; 8 is a p" type source extension region with a carrier concentration of about 1017 cm-3 and a depth of 0.3 to 0.5 μm.
p-type offset 1-region of about 1 to 0.3 μm; 9a and 9b are element isolation oxide films of about 0.5 to 0.6 μm; 10a and 10b are about 0.5 to 0.6 μm thick. 11 is an active region, 12 is a carrier concentration I Q '' cm −3, depth 0.1 to 0.2
A p-type depletion region of about μm, I3 a gate oxide film, 14 a gate electrode made of polycrystalline Si, etc., 15 a carrier concentration of 1 Q 20 cm-3, and a depth of 0.3 to 0.
.. p source region of about 5 μm, 16 is a p source region with a carrier concentration of 1020 µm,
The 'type drain region 17 is an oxide film for impurity blocking with a thickness of about 0.1 μm, 18 is a phosphosilicate glass (PSG) interlayer insulating film, 19 is a gate wiring made of aluminum or the like, 2
0 is the same source wiring, 21 is the same drain wiring, 2
2 indicates an enhancement channel region.
この実施例に示すように本発明に係るpチャネル型の高
耐圧半導体装置においては、ゲート下部の活性領域11
とp°型ソース領域15及びp゛゛ドレイン領域16と
の間に、素子分離用酸化膜(絶縁膜) 9a及び9bと
同時形成になる厚い活性領域分離用酸化膜(絶縁膜)1
0a及び10bが設けられ、ソース領域15と活性領域
11とを導通せしめるためにソース側の活性領域分離用
酸化膜10aの下部に、直列抵抗の低い高キャリア濃度
のp゛゛ソース延在領域7が、該酸化膜10aの底面に
接して配設される。そしてその下部には、上記ソース延
在領域7に沿い且つ接して該ソース延在領域7とディフ
ュージョンセルファラインによって、チャネル長L(h
となる幅が規定されるエンハンスメント型のn゛型領領
域5配設される。As shown in this embodiment, in the p-channel type high breakdown voltage semiconductor device according to the present invention, the active region 11 under the gate
A thick active region isolation oxide film (insulating film) 1 is formed simultaneously with the element isolation oxide films (insulating films) 9a and 9b between the p° type source region 15 and the p° type drain region 16.
0a and 10b are provided, and in order to conduct the source region 15 and the active region 11, a p source extension region 7 with a high carrier concentration and low series resistance is provided under the active region isolation oxide film 10a on the source side. , are disposed in contact with the bottom surface of the oxide film 10a. In the lower part thereof, along and in contact with the source extension region 7, a channel length L (h
An enhancement type n-type region 5 whose width is defined is provided.
またドレイン領域16例の活性領域分離用酸化膜10b
の下部に、ドレイン領域16と活性領域l]との導通領
域を兼ねてp−型オフセソト領域8が設げられ、活性領
域ll内の該オフセソHJ域8の端部と前記n゛型領領
域の端部との間が該活性領域の表面部に形成されたp−
型デプリージョン領域12によって連通せしめられた構
造を有する。In addition, oxide film 10b for active region isolation in 16 drain regions
A p-type offset region 8 is provided below the drain region 16 and the active region 1, and serves as a conduction region between the drain region 16 and the active region 1, and the edge of the offset HJ region 8 in the active region 1 and the n-type region between the end of the p-
It has a structure that is communicated by a mold depletion region 12.
第2図は参考のために、上記実施例における各領域のキ
ャリア濃度を概略図示したソース−ドレイン間の不純物
濃度プロファイル図で、図中、Ncはキャリア濃度、l
−5oはソース領域からドレイン領域に向かう距離を示
す。For reference, FIG. 2 is an impurity concentration profile diagram between the source and drain schematically showing the carrier concentration in each region in the above example. In the figure, Nc is the carrier concentration, l
-5o indicates the distance from the source region to the drain region.
上記本発明に係る高耐圧半導体装置は、例えば以下に第
3図fat〜fhl及び第1図を参照して説明する製造
方法によって形成される。The high voltage semiconductor device according to the present invention is formed, for example, by the manufacturing method described below with reference to FIGS. 3 fat to fhl and FIG. 1.
第3図fa+参照
即ち先ず、例えば50Ωcm程度の比抵抗を有するp−
型シリコン基板(p−5ub) 1面に通常の方法によ
り薄い緩衝用の熱酸化膜即ち下地酸化膜3を形成し、次
いで該下地酸化膜3上に化学気相成長(CVll)法に
より耐酸化膜である窒化シリコン(Si:IN、)膜を
形成し、1枚のマスクを用いる通常のりソグラフィ手段
によりパターンニングを行って、ソース領域が形成され
る領域上を覆う第1の5iJ4膜パターン4aとドレイ
ン領域が形成される領域上を覆う第2の5iJa膜パタ
ーン4b及びソース領域とドレイン領域との間にこれら
と離間して設けられる活性領域が形成される領域上を覆
う第3のSi3N4膜バクーン4cを形成する。Refer to Fig. 3 fa+, that is, first, p
A thin thermal oxide film for buffering, that is, a base oxide film 3, is formed on one surface of a type silicon substrate (P-5UB) by a normal method, and then an oxidation-resistant film is formed on the base oxide film 3 by a chemical vapor deposition (CVll) method. A first 5iJ4 film pattern 4a is formed by forming a silicon nitride (Si:IN) film, which is a film, and patterning it by ordinary lithography using one mask to cover the region where the source region is to be formed. and a second 5iJa film pattern 4b covering the region where the source region and the drain region are formed, and a third Si3N4 film covering the region where the active region is formed, which is provided between the source region and the drain region and spaced therefrom. Form Bakun 4c.
次いでn型不純物を前記Si:IN、膜4a、4b、4
c及び下地酸化膜3を貫く注入エネルギーにより選択的
に導入し、熱処理を施して、10 ” c+n −3程
度のキャリア濃度を有するn−型ウェル2を形成する。Next, n-type impurities are added to the Si:IN, films 4a, 4b, 4.
The n-type well 2 having a carrier concentration of about 10''c+n-3 is formed by selectively introducing energy through injection into the base oxide film 3 and performing a heat treatment.
第3図(bl参照
次いで該基板上に第1のSi3N4膜パターン4aと第
3のSi3N4膜パターン4cとの間隙部を選択的に表
出する開孔を有する第1のレジストマスクRM。FIG. 3 (See BL) Next, a first resist mask RM having an opening on the substrate that selectively exposes the gap between the first Si3N4 film pattern 4a and the third Si3N4 film pattern 4c.
を形成し、該レジストマスクRM、の開孔及び」二記S
i+Na膜パターン4aと40との間隙部を介して基体
1面に例えば燐(P’)をイオン注入し、レジストマス
クRM、を除去した後、例えば1000℃60分程度の
ドライビング処理を行って、キャリア濃度IQ11Ic
m −’、深さ0.5〜1μm程度のn゛型領領域5形
成する。このn゛型領領域5後に基体表面部においてエ
ンハンスメントヂヤネルを構成する。, forming an opening in the resist mask RM and
For example, phosphorus (P') is ion-implanted into one surface of the substrate through the gap between the i+Na film patterns 4a and 40, and after removing the resist mask RM, a driving process is performed at, for example, 1000° C. for about 60 minutes. Carrier concentration IQ11Ic
An n-type region 5 with a depth of about 0.5 to 1 μm is formed. An enhancement channel is formed on the surface of the substrate after this n-type region 5.
なお、上記n゛型領領域の深さは、後の工程で形成され
るソース延在領域の深さとの差が所要のチャネル長にな
るように制御される。Note that the depth of the n-type region is controlled so that the difference from the depth of the source extension region formed in a later step becomes the required channel length.
第3図(C)参照
次いで図示しないレジストマスクを用い該ウェル1面に
選択的にn型チャネルストッパ用のP+注入領域106
を形成した後、次いで該基板上に、第1のレジストマス
クRM+ と同様の開孔を有する第2のレジストマスク
RM、を形成し、該第2のレジストマスクRM、の開孔
及びSi3N4膜パターン4aと4cとの間隙部を介し
て、nゝ型領領域5面高濃度に硼素(B゛)をイオン注
入する(1074;t: n”高濃度注入領域)。この
注入量は活性化再分布後のキャリア濃度がソース領域と
同等若しくはそれ以上の値になるように調節される。Referring to FIG. 3(C), a P+ implantation region 106 for an n-type channel stopper is selectively placed on one surface of the well using a resist mask (not shown).
After forming, a second resist mask RM having openings similar to those of the first resist mask RM+ is formed on the substrate, and the openings of the second resist mask RM and the Si3N4 film pattern are Through the gap between 4a and 4c, boron (B) ions are implanted to a high concentration on the 5th surface of the n-type region (1074; t: n'' high-concentration implantation region). The carrier concentration after distribution is adjusted to a value equal to or higher than that of the source region.
なお、チャネルストッパ用のP1注入と、上記B゛の高
濃度注入とは何れが先であってもよい。Note that either the channel stopper P1 implantation or the B' high concentration implantation may be performed first.
第3図(d+参照
レジストマスクRMzを除去した後、次いで該基板上に
5iJ4膜パターン4cとSi3N4膜パターン4bと
の間隙部を選択的に表出する開孔を有する第3のレジス
トマスクRM3を形成し、該レジストマスクRM、の開
孔及び上記5isN4膜パターン4cと4bとの間隙部
を介し基体1面にB゛を活性化再分布の時点で10′6
〜10′7印−3程度のキャリア濃度が得られるような
注入量でイオン注入する。なお、108は活性化再分布
後オフセット領域となるB゛注大領域である。FIG. 3 (d+) After removing the reference resist mask RMz, a third resist mask RM3 having an opening that selectively exposes the gap between the 5iJ4 film pattern 4c and the Si3N4 film pattern 4b is formed on the substrate. 10'6 at the time of activation and redistribution of B' onto the surface of the substrate through the opening of the resist mask RM and the gap between the 5isN4 film patterns 4c and 4b.
Ions are implanted at a dosage such that a carrier concentration of about 10'7 -3 is obtained. Note that 108 is a large B-note region which becomes an offset region after activation redistribution.
なお、このオフセント用B゛注入領域108は、図示し
ない基板側のチャネルストッパ用B゛注大領域と同時に
形成しても良い。The offset B injection region 108 may be formed at the same time as the channel stopper B injection region on the substrate side (not shown).
第3図te+参照
次いでSi:+Nn膜パターン4a、4b、4Cをマス
クにし900℃程度で行う通常の選択酸化処理により、
該基体1面に素子分離用酸化膜9a、9b及び活性領域
分離用酸化膜10a −10bを形成する。これと同時
に活性領域分離用酸化膜10aの下部のn゛高濃度注入
領域IQTを活性化再分布させてキャリア濃度I Q
2’ cm −’、深さ0.3〜0.5 μm程度のp
+型ソース延在領域7、と該p゛゛ソース延在領域7を
包囲する幅0.5〜111m程度のn゛型領領域5形成
し、また活性領域分離用酸化膜101)及び素子分離用
酸化膜9hの下部のn゛゛入領域108を活性化再分布
サセテ、キャリア濃度101b〜10I7cn+−’、
深さ0.1〜083μm程度の p−型オフセント領域
8を形成する。この際n型チャネルスト・ツバ(iも同
時に形成される。Refer to FIG. 3. Then, by using the Si:+Nn film patterns 4a, 4b, and 4C as masks, a normal selective oxidation process is performed at about 900°C.
Element isolation oxide films 9a and 9b and active region isolation oxide films 10a and 10b are formed on one surface of the substrate. At the same time, the n high concentration implantation region IQT under the active region isolation oxide film 10a is activated and redistributed to increase the carrier concentration IQ.
2' cm −', depth of about 0.3 to 0.5 μm
A +-type source extension region 7 and an n-type region 5 with a width of about 0.5 to 111 m surrounding the P-type source extension region 7 are formed, and an oxide film 101 for active region isolation and an oxide film 101 for element isolation are formed. Activate and redistribute the n-input region 108 under the oxide film 9h, carrier concentration 101b to 10I7cn+-',
A p-type offset region 8 having a depth of about 0.1 to 083 μm is formed. At this time, an n-type channel strike collar (i) is also formed at the same time.
なおここで、素子分離用酸化膜9bの下部のp−型オフ
セソDJ域8は、耐圧を確保するためn型チャネルスト
ッパ6とは離して形成されねばならない。Here, the p-type offset DJ region 8 under the element isolation oxide film 9b must be formed apart from the n-type channel stopper 6 in order to ensure breakdown voltage.
第3図(「)参照
次いで、5iJn膜パターン4a、4b、 4c及び下
地酸化膜3を除去した後、ゲート酸化膜13を形成し、
該基板上に活性領域分離用酸化膜10a 、10b間の
間隙部即ち活性領域11を表出する開孔を有する第4の
レジストマスクRM4を形成し、該レジストマスクR)
14の開孔から選択的にR゛を低濃度にイオン注入し、
レジストマスクRM4を除去し、所要の活性化熱処理を
行って、前記n゛型領領域と p−型オフセッlfJ域
8の間の活性領域面にキャリア濃度1016cm−3、
深さ0.1〜0.2 pm程度の p−型デプリーショ
ン領域12を形成する。Refer to FIG. 3() Next, after removing the 5iJn film patterns 4a, 4b, 4c and the base oxide film 3, a gate oxide film 13 is formed.
A fourth resist mask RM4 having an opening exposing the gap between the active region isolation oxide films 10a and 10b, that is, the active region 11, is formed on the substrate, and the resist mask R)
14 holes, R゛ was selectively implanted at a low concentration,
The resist mask RM4 is removed and a necessary activation heat treatment is performed to form a carrier concentration of 1016 cm-3 on the active region surface between the n-type region and the p-type offset lfJ region 8.
A p-type depletion region 12 having a depth of about 0.1 to 0.2 pm is formed.
第3図(沿参照
次いで通常の方法により該ゲート酸化膜13を有する活
性領域11上から活性領域分離用酸化!l!toa、1
0b上へ延在する例えば多結晶Siゲート電極14を形
成する。Referring to FIG. 3, the active region 11 having the gate oxide film 13 is then oxidized for isolation by a conventional method.
For example, a polycrystalline Si gate electrode 14 is formed extending onto 0b.
第3図(hl参照
次いでゲート電極14及び活性領域分離用酸化膜10a
、10b、素子分離用酸化膜9a、9bをマスクにして
B゛を高濃度にイオン注入し、所要の活性化処理を行っ
てp゛゛ソース領域15及びp″型トドレイン領域16
形成する。FIG. 3 (see hl) Next, the gate electrode 14 and the active region isolation oxide film 10a.
, 10b, using the element isolation oxide films 9a and 9b as a mask, B' is ion-implanted at a high concentration, and the required activation process is performed to form a p' source region 15 and a p'' type drain region 16.
Form.
第1図参照
次いでソース、ドレイン領域15.16」二の酸化膜(
ゲート酸化膜13と同じもの)を除去した後、通常通り
熱酸化法等によりグー;−電極14の表面及びソース、
ドレイン領域15.16の表面に不純物ブロック用酸化
膜17を形成し、該基板上にCVO法によりPSG層間
絶縁膜18を形成し、該psc層間絶縁膜18及び不純
物ブロック用酸化膜17にゲート電極14、ソース領域
15、ドレイン領域16にたいするコンタクト窓を形成
し、該PSG層間絶縁膜18上に前記コンタクト窓にお
いてそれぞれの領域に接続するアルミニウム等のゲート
配線19、ソース配線20、ドレイン配′fa21等を
形成し、以後図示しないカバー絶縁膜の形成等がなされ
て本発明に係るpチャネル型高耐圧半導体装置が完成す
る。Refer to Figure 1. Next, the source and drain regions 15.
After removing the same material as the gate oxide film 13, the surface of the electrode 14 and the source,
An impurity blocking oxide film 17 is formed on the surface of the drain region 15, 16, a PSG interlayer insulating film 18 is formed on the substrate by CVO method, and a gate electrode is formed on the PSC interlayer insulating film 18 and the impurity blocking oxide film 17. 14. Form a contact window for the source region 15 and drain region 16, and form a gate wiring 19 made of aluminum or the like, a source wiring 20, a drain wiring fa 21, etc. on the PSG interlayer insulating film 18 and connected to each region in the contact window. After that, a cover insulating film (not shown) is formed, and the p-channel type high voltage semiconductor device according to the present invention is completed.
以上の実施例に示すpチャネル型高耐圧半導体装置にお
いては、ドレイン領域16とエンハンスメントチャネル
領域22との間のオフセット部が、ドレイン領域16と
ゲート間に配設されるオフセント領域8と、ゲート下部
に設けたデプリーション領域12とによって構成され、
このデプリーション領域12がグーI・電圧が印加され
ない状態で非常に高抵抗を有することによって、デプリ
ーション領域12のエンハンスメントチャネル領域22
との接触部の電位を大幅に低下せしめて高いドレイン耐
圧が得られる。In the p-channel type high-voltage semiconductor device shown in the above embodiment, the offset portion between the drain region 16 and the enhancement channel region 22 is located between the offset region 8 disposed between the drain region 16 and the gate, and the offset portion between the drain region 16 and the enhancement channel region 22. and a depletion region 12 provided in the
Since this depletion region 12 has a very high resistance in the state where no voltage is applied, the enhancement channel region 22 of the depletion region 12
A high drain breakdown voltage can be obtained by significantly lowering the potential at the contact point with the drain.
また動作時、即ちゲート電圧印加時において、DSA方
式によるチャネル長I−chに相当するn゛型領領域5
(エンハンスメンH1域)の幅が極めて狭く形成し得る
ことと、デプリーション領域が低抵抗領域として機能す
ることとによって、オン抵抗は大幅に減少して動作速度
及び駆動電流が増大する。In addition, during operation, that is, when applying a gate voltage, the n-type region 5 corresponding to the channel length I-ch in the DSA method
Since the width of the (enhancement H1 region) can be formed extremely narrow and the depletion region functions as a low resistance region, the on-resistance is significantly reduced and the operating speed and drive current are increased.
そして上記以外に、ソース領域15及びドレイン領域1
6とゲート下部の活性領域11とを厚い絶縁膜9a、9
bで分離したことによって、上記製造方法の説明から明
らかなように、活性領域分離用酸化膜9a、9b及びそ
の形成工程を介してソース領域15、ソース延在領域7
、エンハンスメントチャネル領域22、デプリーション
領域12、オフセット領域8、及びドレイン領域16が
総てセルファラインで形成されるので、ドレイン領域1
6とオフセント領域8との位置合わせ余裕は必要なくな
り、トレイン領域がセルファラインで形成できなかった
従来構造に比べて、素子の集積度を向」二せしめること
が出来る。In addition to the above, source region 15 and drain region 1
6 and the active region 11 under the gate are covered with thick insulating films 9a, 9.
By separating the source region 15 and the source extension region 7 through the active region isolation oxide films 9a and 9b and their formation process, as is clear from the above description of the manufacturing method,
, the enhancement channel region 22, the depletion region 12, the offset region 8, and the drain region 16 are all formed by self-alignment, so that the drain region 1
6 and the offset region 8 are no longer required, and the degree of device integration can be improved compared to the conventional structure in which the train region could not be formed by self-line.
また、オフセット領域8が活性領域分離用酸化膜9bの
下部に配設されので、該オフセット領域8とゲート電極
14との間には0.5〜0.6μm程度の厚い酸化膜が
介在する形になり、その間の電界密度は緩和されてドレ
イン領域−1・間耐圧は大幅に向トする。Further, since the offset region 8 is provided under the active region isolation oxide film 9b, a thick oxide film of about 0.5 to 0.6 μm is interposed between the offset region 8 and the gate electrode 14. The electric field density therebetween is relaxed, and the withstand voltage between the drain regions 1 and 1 is greatly reduced.
なお実施例においては本発明の構造及び製造方法をn型
基板を使用したn型不純物ウェル内に形成したpチャネ
ル型の素子について説明したが、該素子はn型基板に直
接形成してもよい。In the examples, the structure and manufacturing method of the present invention have been described with respect to a p-channel type element formed in an n-type impurity well using an n-type substrate, but the element may also be formed directly on the n-type substrate. .
また本発明はnチャネル型素子、CM OS素子にも勿
論適用される。Furthermore, the present invention is of course applicable to n-channel type devices and CMOS devices.
以上説明のように本発明によれば、高速、高電流駆動能
力、高増幅ファクタを有し、且つ高いドレイン−ゲ−1
・間耐圧を有するMis型の高耐圧半導体装置を、オー
ルセルファラインにより、高集積度に形成することが可
能になるという効果を生ずる。As explained above, according to the present invention, it has high speed, high current drive capability, high amplification factor, and high drain-gauge 1.
- An effect is produced in that it becomes possible to form a Mis-type high voltage semiconductor device having a high voltage breakdown voltage with a high degree of integration using an all-self line.
第1図は本発明の構造の一実施例の模式側断面図、
第2図は実施例におけるソース−ドレイン間キャリア濃
度プロファイル図、
第3図(al〜+h+は本発明に係る製造方法の一実施
例の工程断面図、
第4図は従来のMis型高耐高耐圧半導体装置式側断面
図、
第5図は従来のDSAエンハンスメントゲート・デプリ
ーションゲート型MrS高耐圧半導体装置
置の模式側断面図である。
図において、
■はp一型シリコン基板(p− sub)、2はn−型
ウェル、
3は緩衝用熱酸化膜、
4a、4b, 4cはSi.N.膜パターン、5はn゛
型領領域
6はn型チャネルストソバ、
7はp゛゛ソース延在領域、
8はp一型オフセソ1・領域、
9a及び9bは素子分離用酸化、
10a及び10bは活性領域分離用酸化膜、11は活性
領域、
12はp−型デプリーション領域、
l3はゲート酸化膜、
l4はゲート電極、
15はp9型ソース領域、
16はp゛型トドレイン領域
22はエンハンスメントチャネル領域
を示す。
時開口RG3−382GO(10)
乙aFIG. 1 is a schematic side sectional view of one embodiment of the structure of the present invention, FIG. 2 is a carrier concentration profile diagram between the source and drain in the embodiment, and FIG. 3 (al~+h+ is one of the manufacturing methods according to the present invention) 4 is a side sectional view of a conventional Mis-type high-withstanding high-voltage semiconductor device; FIG. 5 is a schematic side view of a conventional DSA enhancement gate/depletion gate-type MrS high-voltage semiconductor device. This is a cross-sectional view. In the figure, ① is a p-type silicon substrate (p-sub), 2 is an n-type well, 3 is a thermal oxide film for buffering, 4a, 4b, 4c are Si.N. film patterns, 5 7 is a p-type source extension region; 8 is a p-type offset region; 9a and 9b are oxides for element isolation; 10a and 10b are for active region isolation. 11 is an active region, 12 is a p-type depletion region, 13 is a gate oxide film, 14 is a gate electrode, 15 is a p9-type source region, 16 is a p-type drain region 22 is an enhancement channel region. Opening RG3-382GO (10) Otsu a
Claims (1)
膜(9a)(9b)と、 該素子分離用絶縁膜(9a)(9b)で画定された領域
面に、該素子分離用絶縁膜(9a)(9b)から離隔し
、且つ互いに離間して形成された一対の活性領域分離用
絶縁膜(10a)(10b)と、 一方の側の活性領域分離用絶縁膜(10a)と素子分離
用絶縁膜(9a)によって画定された基体面に形成され
た反対導電型ソース領域(15)と、他方の側の活性領
域分離用絶縁膜(10b)と素子分離用絶縁膜(9b)
によって画定された基体面に形成された反対導電型ドレ
イン領域(16)と、該ソース領域(15)側の活性領
域分離用絶縁膜(10a)の下部に、該絶縁膜(10a
)の底面に沿い且つ接して形成され、ソース領域(15
)と活性領域(11)との間を連通するソース領域(1
5)と同等若しくはそれ以上のキャリア濃度を有する反
対導電型高濃度領域(7)と、 該反対導電型高濃度領域(7)の下部に該反対導電型高
濃度領域(7)の底面に沿い且つ接して形成された該基
体(2)より高キャリア濃度の一導電型不純物導入領域
(5)と、 該ドレイン領域(16)側の活性領域分離用絶縁膜の(
10b)下部に、該絶縁膜(10b)の底面に沿い且つ
接して形成されドレイン領域と活性領域の間を連通する
該ドレイン領域(16)より低キャリア濃度の第1の反
対導電型低濃度領域(8)と、 該第1の反対導電型低濃度領域(8)と一導電型不純物
導入領域(5)との間の活性領域(11)表面部に形成
された該第1の反対導電型低濃度領域(8)より低キャ
リア濃度の第2の反対導電型低濃度領域(12)と、 該活性領域(11)上に形成されたゲート絶縁膜(13
)と、 該ゲート絶縁膜(13)上に該活性領域分離用絶縁膜(
10a)(10b)上へ延在して形成されたゲート電極
(14)とを有してなることを特徴とする高耐圧半導体
装置。 2、一導電型半導体基体上に、ソース形成領域上と、ド
レイン形成領域上と、ソース領域とドレイン領域間にこ
れらと離間して設けられる活性領域の形成領域上とをそ
れぞれ個々に覆う第1、第2、第3の耐酸化膜パターン
を、同一のマスクに整合して同時に形成する工程と、 該第1の耐酸化膜パターンと第3の耐酸化膜パターンの
間隙部に整合して選択的に不純物を導入して、該間隙部
の基体面に該基体より高キャリア濃度を有し且つソース
・ドレイン領域より低キャリア濃度を有する一導電型不
純物導入領域を形成する工程と、 第1の耐酸化膜パターンと第3の耐酸化膜パターンの間
隙部に整合して該一導電型高濃度領域の表面部に選択的
に、ソース・ドレイン領域と同等若しくはそれ以上の濃
度に反対導電型不純物を導入する工程と、 第3の耐酸化膜パターンと第2の耐酸化膜パターンの間
隙部に整合して該間隙部の基体面に選択的に、該基体よ
り高濃度で且つソース・ドレイン領域より低濃度に反対
導電型不純物を導入する工程と、 該第1、第2、第3の耐酸化膜パターンをマスクにして
選択酸化により第1、第2の耐酸化膜パターンの外側に
素子分離用酸化膜を、また第1、第2、第3の耐酸化膜
パターンの間隙部に活性領域分離用酸化膜を形成し、且
つ該導入不純物を活性化して、ソース領域側の活性領域
分離用酸化膜の下部に、該分離用酸化膜の底面に沿い且
つ接する反対導電型高濃度領域及び該反対導電型高濃度
領域の底面に沿い且つ接する一導電型不純物導入領域を
、またドレイン領域側の活性領域分離用酸化膜の下部に
該分離用酸化膜の底面に沿い且つ接する第1の低濃度反
対導電型領域をそれぞれ形成する工程と、 活性領域形成面に、第1の低濃度反対導電型領域よりも
低濃度で、且つ該領域の基体面を反転する濃度に反対導
電型不純物を導入する工程と、該活性領域上にゲート絶
縁膜を形成し、該ゲート絶縁膜上から活性領域分離用酸
化膜上へ延在するゲート電極を形成する工程と、 素子分離用酸化膜と活性領域分離用酸化膜の間隙部に整
合して不純物を導入し反対導電型のソース領域及びドレ
イン領域を形成する工程とを含むことを特徴とする高耐
圧半導体装置の製造方法。[Claims] 1. A semiconductor substrate (2) of one conductivity type, an insulating film for element isolation (9a) (9b) formed on the surface of the semiconductor substrate (2), and an insulating film for element isolation ( A pair of active region isolation insulating films (10a) (10b) formed on the region plane defined by 9a) and (9b), spaced apart from the element isolation insulating films (9a) and (9b), and spaced apart from each other. ), an opposite conductivity type source region (15) formed on the substrate surface defined by the active region isolation insulating film (10a) and the element isolation insulating film (9a) on one side, and the active region on the other side. Insulating film for region isolation (10b) and insulating film for element isolation (9b)
An insulating film (10a) is formed under the active region isolation insulating film (10a) on the opposite conductivity type drain region (16) and the source region (15) side, which are formed on the substrate surface defined by
) is formed along and in contact with the bottom surface of the source region (15
) and the active region (11).
a high concentration region (7) of opposite conductivity type having a carrier concentration equal to or higher than 5); An impurity-introduced region (5) of one conductivity type with a higher carrier concentration than the substrate (2) formed in contact with the substrate (2), and (
10b) A first opposite conductivity type low concentration region formed in the lower part along and in contact with the bottom surface of the insulating film (10b) and having a carrier concentration lower than that of the drain region (16) communicating between the drain region and the active region. (8), and the first opposite conductivity type formed in the surface portion of the active region (11) between the first opposite conductivity type low concentration region (8) and the one conductivity type impurity introduction region (5). a second opposite conductivity type low concentration region (12) having a lower carrier concentration than the low concentration region (8); and a gate insulating film (13) formed on the active region (11).
), and the active region isolation insulating film (13) is on the gate insulating film (13).
10a) A high-voltage semiconductor device comprising: a gate electrode (14) extending upward from (10b); 2. On the semiconductor substrate of one conductivity type, a first layer that individually covers the source formation region, the drain formation region, and the active region formation region provided between the source region and the drain region apart from these regions. , a step of simultaneously forming second and third oxidation resistant film patterns in alignment with the same mask; a first step of introducing an impurity into the substrate surface of the gap to form an impurity-introduced region of one conductivity type having a higher carrier concentration than the substrate and a lower carrier concentration than the source/drain region; In alignment with the gap between the oxidation-resistant film pattern and the third oxidation-resistant film pattern, impurities of the opposite conductivity type are selectively applied to the surface of the high concentration region of one conductivity type at a concentration equal to or higher than that of the source/drain region. Aligning with the gap between the third oxidation resistant film pattern and the second oxidation resistant film pattern, selectively applying it to the substrate surface in the gap at a higher concentration than the substrate and in the source/drain region. A step of introducing impurities of opposite conductivity type at a lower concentration, and element isolation outside the first and second oxidation resistant film patterns by selective oxidation using the first, second and third oxidation resistant film patterns as masks. An oxide film for active region isolation is formed in the gap between the first, second, and third oxidation-resistant film patterns, and the introduced impurities are activated to separate the active region on the source region side. At the bottom of the oxide film, there is a high concentration region of opposite conductivity type along and in contact with the bottom surface of the isolation oxide film, and an impurity-introduced region of one conductivity type along and in contact with the bottom surface of the high concentration region of opposite conductivity type, and a region on the drain region side. forming first low concentration opposite conductivity type regions along and in contact with the bottom surface of the isolation oxide film under the active region isolation oxide film; and forming first low concentration opposite conductivity type regions on the active region forming surface. A step of introducing an impurity of an opposite conductivity type at a concentration lower than that of the active region and at a concentration that reverses the substrate surface of the region, forming a gate insulating film on the active region, and forming a gate insulating film from above the gate insulating film for isolation of the active region. A step of forming a gate electrode extending onto the oxide film, and forming a source region and a drain region of opposite conductivity type by introducing impurities in alignment with the gap between the oxide film for element isolation and the oxide film for active region isolation. A method of manufacturing a high voltage semiconductor device, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18310386A JPS6338260A (en) | 1986-08-04 | 1986-08-04 | High breakdown strength semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18310386A JPS6338260A (en) | 1986-08-04 | 1986-08-04 | High breakdown strength semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6338260A true JPS6338260A (en) | 1988-02-18 |
Family
ID=16129822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18310386A Pending JPS6338260A (en) | 1986-08-04 | 1986-08-04 | High breakdown strength semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6338260A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917218A (en) * | 1996-02-21 | 1999-06-29 | Samsung Electronics Co., Ltd. | Peripheral circuits including high voltage transistors with LDD structures for nonvolatile memories |
US6071775A (en) * | 1997-02-21 | 2000-06-06 | Samsung Electronics Co., Ltd. | Methods for forming peripheral circuits including high voltage transistors with LDD structures |
-
1986
- 1986-08-04 JP JP18310386A patent/JPS6338260A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917218A (en) * | 1996-02-21 | 1999-06-29 | Samsung Electronics Co., Ltd. | Peripheral circuits including high voltage transistors with LDD structures for nonvolatile memories |
US6071775A (en) * | 1997-02-21 | 2000-06-06 | Samsung Electronics Co., Ltd. | Methods for forming peripheral circuits including high voltage transistors with LDD structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5436482A (en) | MOSFET with assymetric lightly doped source-drain regions | |
CN101901835B (en) | Low-resistance high-voltage MOSFET device and manufacturing method thereof | |
JPH07321216A (en) | CMOS and manufacturing method thereof | |
JPH09260651A (en) | Lateral field effect transistor and manufacturing method thereof | |
JP2000286346A (en) | Semiconductor device and manufacturing method thereof | |
JPH0525393B2 (en) | ||
US4818719A (en) | Method of manufacturing an integrated CMOS of ordinary logic circuit and of high voltage MOS circuit | |
JP2001308321A (en) | Semiconductor device and manufacturing method thereof | |
KR920008120B1 (en) | MOS Field Effect Transistor | |
EP0091256B1 (en) | Cmos device | |
JPH0237777A (en) | vertical field effect transistor | |
US6350641B1 (en) | Method of increasing the depth of lightly doping in a high voltage device | |
JPH0555593A (en) | Manufacture of insulated-gate field-effect transistor | |
JP2834058B2 (en) | Method for manufacturing semiconductor device | |
JPS6338260A (en) | High breakdown strength semiconductor device and manufacture thereof | |
JPH0621445A (en) | Semiconductor device and manufacturing method thereof | |
JPH05283687A (en) | Production of semiconductor element | |
JPH06177376A (en) | Method for manufacturing MOS field effect semiconductor device | |
JPH09223793A (en) | Semiconductor device and its manufacture | |
US7736961B2 (en) | High voltage depletion FET employing a channel stopping implant | |
JPH11186402A (en) | Semiconductor device and manufacture of semiconductor | |
JPH0927556A (en) | Semiconductor integrated circuit device and its manufacture | |
JPH0555589A (en) | Insulated-gate field-effect transistor and its manufacture | |
JPH09246478A (en) | Semiconductor integrated circuit device and manufacture thereof | |
KR910009743B1 (en) | High speed and high voltage semiconductor device and its manufacturing method |