JPS6333093Y2 - - Google Patents
Info
- Publication number
- JPS6333093Y2 JPS6333093Y2 JP1981059162U JP5916281U JPS6333093Y2 JP S6333093 Y2 JPS6333093 Y2 JP S6333093Y2 JP 1981059162 U JP1981059162 U JP 1981059162U JP 5916281 U JP5916281 U JP 5916281U JP S6333093 Y2 JPS6333093 Y2 JP S6333093Y2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- control
- introduction pipe
- compressor
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 28
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【考案の詳細な説明】 本考案はヒートポンプ式空気調和機に関する。[Detailed explanation of the idea] The present invention relates to a heat pump type air conditioner.
従来の容量制御型ロータリ圧縮機(以下圧縮機
という)を用いた冷凍サイクルは、第1図系統図
矢印に示すように、圧縮機1より吐出された冷媒
ガスを凝縮器2にて液化し、キヤピラリチユーブ
3を経て蒸発器4にてガス化したのち圧縮機1に
吸入し、一方凝縮器2を出た高圧冷媒の一部を制
御弁5、制御配管6を経て圧縮機1に導入するよ
うになつている。 A refrigeration cycle using a conventional capacity-controlled rotary compressor (hereinafter referred to as a compressor) liquefies refrigerant gas discharged from a compressor 1 in a condenser 2, as shown by the arrow in the system diagram in Figure 1. After passing through the capillary tube 3 and being gasified in the evaporator 4, it is sucked into the compressor 1, while a part of the high-pressure refrigerant exiting the condenser 2 is introduced into the compressor 1 through the control valve 5 and control piping 6. It's becoming like that.
圧縮機1では、第2図縦断面図、第3図−
横断面図に示すように、ロータ9が嵌挿されたク
ランクシヤフト8はモータMにより駆動されシリ
ンダ10内を矢印方向に偏心回転運動を行ない、
吸入口12よりシリンダ10内に吸入した冷媒を
ブレード11、ロータ9およよびシリンダ10に
より形成される空間容積のクランクシヤフト8の
回動に伴う減少により圧縮し、吐出口13、図示
せざる吐出弁を経てハウジング7内へ吐出する。 In the compressor 1, Fig. 2 is a vertical sectional view, Fig. 3-
As shown in the cross-sectional view, the crankshaft 8 into which the rotor 9 is fitted is driven by the motor M and performs eccentric rotational movement in the direction of the arrow within the cylinder 10.
The refrigerant sucked into the cylinder 10 from the suction port 12 is compressed by reducing the space volume formed by the blades 11, the rotor 9, and the cylinder 10 as the crankshaft 8 rotates, and is then transferred to the discharge port 13 and a discharge (not shown). It is discharged into the housing 7 through the valve.
アンロード状態では、制御弁5は開弁され、制
御配管6を経て、第3図−断面を示す第4図
に示すように、圧縮機内の作動圧力導入管21へ
導入された高圧冷媒の圧力がばね22の弾圧力に
抗してプランジヤ17を上動し、圧縮室23の冷
媒ガスはバイパス孔18、プランジヤ小経部2
0、バイパス管19を経て吸入口12へ流入し、
ロータ9とシリンダ10との接触点16がバイパ
ス孔18を通過するまで圧縮作用が行なわれず冷
媒能力は減少する。 In the unload state, the control valve 5 is opened, and the pressure of the high-pressure refrigerant introduced into the working pressure introduction pipe 21 in the compressor through the control piping 6 as shown in FIG. moves the plunger 17 upward against the elastic force of the spring 22, and the refrigerant gas in the compression chamber 23 is transferred to the bypass hole 18 and the plunger small diameter section 2.
0, flows into the suction port 12 via the bypass pipe 19,
Until the contact point 16 between the rotor 9 and the cylinder 10 passes through the bypass hole 18, no compression is performed and the refrigerant capacity is reduced.
また、フルロード状態では、制御弁5は閉弁さ
れ、高圧冷媒が圧縮機内の作動圧力導入管21に
導入されず、プランジヤ17はばね22の弾圧力
により下動し、バイパス孔18とバイパス管19
は遮断されるので、圧縮機は容量制御機構を具え
ない通常の圧縮機として運転される、14は上部
軸受板、15は下部軸受板である。 In addition, in the full load state, the control valve 5 is closed, high-pressure refrigerant is not introduced into the working pressure introduction pipe 21 in the compressor, and the plunger 17 is moved downward by the elastic force of the spring 22 to connect the bypass hole 18 and the bypass pipe. 19
is shut off, so the compressor operates as a normal compressor without a capacity control mechanism. 14 is an upper bearing plate, and 15 is a lower bearing plate.
しかしながら、このような容量制御型圧縮機で
は、アンロードとフルロードとの切換えに制御弁
を必要とし、またヒートポンプシステムに適用す
るには、さらに液インジエクシヨン用配管を具え
なければならない。 However, such a capacity-controlled compressor requires a control valve to switch between unloading and full loading, and in order to be applied to a heat pump system, it must also be provided with piping for liquid injection.
また従来、ヒートポンプシステムでは電気ヒー
タによりヒートアツプを行なつているが、最近電
源容量等の関係からヒータなしのヒートアツプを
行なう容量制御型圧縮機が開発されつゝある。 Conventionally, heat pump systems have used electric heaters to perform heat up; however, due to power supply capacity considerations, capacity control type compressors have recently been developed that perform heat up without a heater.
本考案はこのような事情に鑑みて提案されたも
ので、故障の発生を防止し、EERの高い冷暖房
運転を行う高性能、長寿命かつ低コストのヒート
ポンプ式空気調和機を提供することを目的とし、
制御用圧力導入管に導入される圧力により切替え
られ圧縮途中の冷媒ガスを吸入側へバイパスさせ
る容量制御弁を備えるとゝもに、圧縮中の冷媒ガ
ス中に液冷媒をインジエクシヨンする液インジエ
クシヨン孔を備えた圧縮機、四方弁、室内熱交換
器、絞り機構、室外熱交換器からなるヒートポン
プ式空気調和機において、前記液インジエクシヨ
ン孔と前記制御用圧力導入管とを連通する通路を
設けるとゝもに前記圧力導入管を一端が前記室内
熱交換器と絞り機構との間の冷媒回路に接続され
た制御管に接続し、前記四方弁の切替えによる暖
房時、前記制御管及び制御用圧力導入管を介して
導入される高圧液冷媒で前記容量制御弁をフルロ
ード位置に切替えるとゝもに同液冷媒を前記通路
及び液インジエクシヨン孔を経てインジエクシヨ
ンし、冷房時、前記制御管及び圧力導入管を介し
て導入される低圧冷媒で前記容量制御弁をアンロ
ード位置に切替えることを特徴とする。 The present invention was proposed in view of these circumstances, and the purpose is to provide a high-performance, long-life, and low-cost heat pump air conditioner that prevents failures and performs heating and cooling operations with high EER. year,
It is equipped with a capacity control valve that bypasses the refrigerant gas in the middle of compression to the suction side, which is switched by the pressure introduced into the control pressure introduction pipe, and has a liquid injection hole that injects liquid refrigerant into the refrigerant gas that is being compressed. In a heat pump air conditioner comprising a compressor, a four-way valve, an indoor heat exchanger, a throttling mechanism, and an outdoor heat exchanger, a passage connecting the liquid injection hole and the control pressure introduction pipe is provided. The pressure introduction pipe is connected to a control pipe whose one end is connected to a refrigerant circuit between the indoor heat exchanger and the throttling mechanism, and when heating by switching the four-way valve, the control pipe and the control pressure introduction pipe are connected. When the capacity control valve is switched to the full load position with high pressure liquid refrigerant introduced through The capacity control valve is switched to an unload position by low-pressure refrigerant introduced through the refrigerant.
本考案の実施例を図面について説明すると、第
6図はその系統図、第7図は本考案の第1実施例
を示す横断面図、第8図、第9図はそれぞれ第7
図の−に沿つた部分断面図で、第8図はフル
ロード状態、第9図はアンロード状態をそれぞれ
示す、第10図は本考案の第2実施例を示す横断
面図、第11図は第10図のXI−XIに沿つた部分
断面図である。 To explain the embodiment of the present invention with reference to the drawings, Fig. 6 is a system diagram thereof, Fig. 7 is a cross-sectional view showing the first embodiment of the present invention, and Figs.
FIG. 8 is a fully loaded state and FIG. 9 is an unloaded state. FIG. 10 is a cross-sectional view showing the second embodiment of the present invention. FIG. is a partial sectional view taken along the line XI-XI in FIG. 10.
まず、第6〜9図の第1実施例において、第1
〜5図と同一の符号はそれぞれ第1〜5図と同一
の部材を示し、26は四方弁、27は室内熱交換
器、28は室外熱交換器、29は一端がキヤピラ
リチユーブ3と室内熱交換器27との間の冷媒管
路に接続されるとゝもに他端が圧縮機1の圧力導
入管21に接続する制御管、30は下端軸受板1
5に穿設されシリンダ室に開口する液インジエク
シヨン孔、31は下部軸受板15中に穿設され一
端が制御管29に連通する圧力導入管21に小孔
32で連通するとゝもに他端が液インジエクシヨ
ン孔30に連通する液インジエクシヨン通路であ
る。 First, in the first embodiment shown in FIGS.
The same reference numerals as in Figs. 1 to 5 indicate the same members as in Figs. A control pipe is connected to the refrigerant pipe line between the heat exchanger 27 and the other end thereof is connected to the pressure introduction pipe 21 of the compressor 1; 30 is the lower end bearing plate 1;
A liquid injection hole 31 is bored in the lower bearing plate 15 and communicates with the pressure introduction pipe 21 which communicates with the control pipe 29 through a small hole 32, and the other end communicates with the pressure introduction pipe 21. This is a liquid injection passage communicating with the liquid injection hole 30.
このような装置において、まず、暖房運転時に
は、第6図に破線矢印で示すように、圧縮機1で
圧縮されたガス冷媒は四方弁26を経て、室内熱
交換器27にて液化し、キヤピラリチユーブ3を
経て室外熱交換器28にて蒸発し、四方弁26を
経て圧縮機1に吸入されるとゝもに、室内熱交換
器27にて液化した高圧冷媒の一部は制御管29
を経て圧縮機内の圧力導入管21に導入され、第
8図に示ように、プランジヤ17を押し上げ、バ
イパス孔18とバイパス管19とを遮断するの
で、圧縮機はフルロードで運転される。 In such an apparatus, first, during heating operation, the gas refrigerant compressed by the compressor 1 passes through the four-way valve 26 and is liquefied in the indoor heat exchanger 27, as shown by the broken line arrow in FIG. A part of the high-pressure refrigerant is evaporated in the outdoor heat exchanger 28 via the pillar tube 3 and sucked into the compressor 1 via the four-way valve 26, and liquefied in the indoor heat exchanger 27.
As shown in FIG. 8, the plunger 17 is pushed up and the bypass hole 18 and the bypass pipe 19 are cut off, so that the compressor is operated at full load.
その際、圧縮機内の圧力導入管21に導かれた
液冷媒は小孔32、液インジエクシヨン通路3
1、液インジエクシヨン孔30を経て、圧縮行程
にあるシリンダ内にインジエクシヨンされ、圧縮
ガスの温度を低下させ、モータの冷却を促進させ
る。 At that time, the liquid refrigerant introduced into the pressure introduction pipe 21 inside the compressor passes through the small holes 32 and the liquid injection passage 3.
1. The liquid is injected into the cylinder during the compression stroke through the injection hole 30, lowering the temperature of the compressed gas and promoting cooling of the motor.
次に、冷房運転時には、第6図に実線で示すよ
うに、圧縮機1で圧縮されたガスは、四方弁26
を経て室外熱交換器28にて液化し、キヤピラリ
チユーブ3を経て室内熱交換器27にて蒸発し四
方弁26を経て圧縮機1に吸入される。 Next, during cooling operation, as shown by the solid line in FIG. 6, the gas compressed by the compressor 1 is
It is liquefied in the outdoor heat exchanger 28, passed through the capillary tube 3, evaporated in the indoor heat exchanger 27, and is sucked into the compressor 1 through the four-way valve 26.
また、制御管29内の圧力は低圧となるので圧
縮機内の圧力導入管21内には低圧が導入され、
第9図に示すように、プランジヤー17はばね2
2の力により下方へ押し上げられバイパス孔18
とバイパス管19を連通させロータ9とシリンダ
10の接触点16がバイパス孔18を通過するま
では圧縮作用が行なわれず、冷凍能力は減少す
る、その察、圧縮中のガスの一部は、液インジエ
クシヨン孔30、液インジエクシヨン通路31、
小孔32、圧縮機内の圧力導入管21、制御管2
9を経て室内熱交換器27に入るため、冷房能力
が低下する。 Furthermore, since the pressure inside the control pipe 29 is low, low pressure is introduced into the pressure introduction pipe 21 inside the compressor.
As shown in FIG.
The bypass hole 18 is pushed downward by the force of 2.
Until the contact point 16 between the rotor 9 and the cylinder 10 passes through the bypass hole 18, the compression action will not take place and the refrigeration capacity will decrease. injection hole 30, liquid injection passage 31,
Small hole 32, pressure introduction pipe 21 in the compressor, control pipe 2
9 and enters the indoor heat exchanger 27, the cooling capacity is reduced.
このような装置によれば、暖房運転時には圧縮
機をフルロード運転とするとゝもに、シリンダ内
に液インジエクシヨンさせ、冷房運転時には圧縮
機をアンロード運転とし、さらに圧縮中のガスの
一部を低圧側へ逃がし、冷房能力を減少させるこ
とを、四方弁以外の制御弁を具えることなしで、
かつ圧縮機への制御管1本のみで実現することが
できる。 According to such a device, during heating operation, the compressor is operated at full load and liquid is injected into the cylinder, and during cooling operation, the compressor is operated at unload operation, and a portion of the gas being compressed is also pumped out. This allows air to escape to the low pressure side and reduce cooling capacity without requiring any control valve other than a four-way valve.
Moreover, it can be realized with only one control pipe to the compressor.
第10〜11図の第2実施例では、プランジヤ
挿入孔25の下方側面のシリンダ10に液インジ
エクシヨン通路33を穿設し、下部軸受板15に
穿設した液インジエクシヨン通路31とこれを連
通させるようにしたものであり、冷房運転時、プ
ランジヤ17により液インジエクシヨン通路33
を閉止し、シリンダ内からの圧縮中のガスが圧力
導入管21を介して制御管29を経て室内熱交換
器27へ流入することを停止する。 In the second embodiment shown in FIGS. 10 and 11, a liquid injection passage 33 is formed in the cylinder 10 on the lower side surface of the plunger insertion hole 25, and this is communicated with a liquid injection passage 31 formed in the lower bearing plate 15. During cooling operation, the plunger 17 closes the liquid injection passage 33.
, and the gas being compressed from inside the cylinder is stopped from flowing into the indoor heat exchanger 27 via the pressure introduction pipe 21 and the control pipe 29 .
上記実施例では、容量制御をプランジヤを用い
て行なうものを示したが、プランジヤ以外の弁を
用いて圧縮機の容量制御を行なうこともできる。 In the above embodiment, the capacity control is performed using a plunger, but the capacity control of the compressor can also be performed using a valve other than the plunger.
また、液インジエクシヨン孔30を下部軸受板
に設ける代わりにこれをシリンダまたは上部軸受
板に設けることもできる。 Also, instead of providing the liquid injection hole 30 in the lower bearing plate, it can also be provided in the cylinder or the upper bearing plate.
要するに本考案によれば、制御用圧力導入管に
導入される圧力により切替えられ圧縮途中の冷媒
ガスを吸入側へバイパスさせる容量制御弁を備え
るとゝもに、圧縮中の冷媒ガス中に液冷媒をイン
ジエクシヨンする液インジエクシヨン孔を備えた
圧縮機、四方弁、室内熱交換器、絞り機構、室外
熱交換器からなるヒートポンプ式空気調和機にお
いて、前記液インジエクシヨン孔と前記制御用圧
力導入管とを連通する通路を設けるとゝもに前記
圧力導入管を一端が前記室内熱交換器と絞り機構
との間の冷媒回路に接続された制御管に接続し、
前記四方弁の切替えによる暖房時、前記制御管及
び制御用圧力導入管を介して導入される高圧液冷
媒で前記容量制御弁をフルロード位置に切替える
とゝもに同液冷媒を前記通路及び液インジエクシ
ヨン孔を経てインジエクシヨンし、冷房時、前記
制御管及び圧力導入管を介して導入される低圧冷
媒で前記容量制御弁をアンロード位置に切替える
ことにより、故障の発生を防止し、EERの高い
冷暖房運転を行う高性能、長寿命かつ低コストの
ヒートポンプ式空気調和機を得るから、本考案は
産業上極めて有益なものである。 In short, according to the present invention, the capacity control valve is switched by the pressure introduced into the control pressure introduction pipe and bypasses the refrigerant gas in the middle of compression to the suction side. In a heat pump air conditioner comprising a compressor, a four-way valve, an indoor heat exchanger, a throttling mechanism, and an outdoor heat exchanger, the liquid injection exit hole is in communication with the control pressure introduction pipe. connecting the pressure introduction pipe to a control pipe connected at one end to a refrigerant circuit between the indoor heat exchanger and the throttling mechanism;
During heating by switching the four-way valve, high-pressure liquid refrigerant is introduced through the control pipe and control pressure introduction pipe, and when the capacity control valve is switched to the full load position, the same liquid refrigerant is supplied to the passage and the liquid refrigerant. During cooling, the capacity control valve is switched to the unload position using low-pressure refrigerant introduced through the injection exit hole and introduced through the control pipe and pressure introduction pipe, thereby preventing failures and achieving high EER for heating and cooling. The present invention is extremely useful industrially because it provides a heat pump type air conditioner with high performance, long life, and low cost.
第1図は従来の容量制御型ロータリ圧縮機を用
いた冷凍サイクルの系統図、第2図は第1図の圧
縮機の縦断面図、第3図は第2図の−に沿つ
た横断面図、第4図、第5図はそれぞれ第3図の
−に沿つた部分断面図で第4図はアンロード
状態、第5図はフルロード状態をそれぞれ示す、
第6図は本考案の冷媒系統図、第7図は本考案の
第1実施例を示す横断面図、第8図、第9図はそ
れぞれ第7図の−に沿つた部分断面図で第8
図はフルロード状態、第9図はアンロード状態を
それぞれ示す、第10図は本考案の第2実施例を
示す横断面図、第11図は第10図のXI−XIに沿
つた部分断面図である。
1……容量制御型圧縮機、2……凝縮器、3…
…キヤピラリチユーブ、4……蒸発器、8……ク
ランクシヤフト、9……ロータ、10……シリン
ダ、11……ブレード、12……吸入口、13…
…吐出口、14……上部軸受板、15……下部軸
受板、16……接触点、17……プランジヤ、1
8……バイパス孔、19……バイパス管、20…
…プランジヤ小径部、21……圧力導入管、22
……ばね、23……圧縮室、24……上部ストツ
パ、25……プランジヤ挿入孔、26……四方
弁、27……室内熱交換器、28……室外熱交換
器、29……制御管、30……液インジエクシヨ
ン孔、31……液インジエクシヨン通路、32…
…小径、33……液インジエクシヨン通路、M…
…モータ。
Figure 1 is a system diagram of a refrigeration cycle using a conventional capacity-controlled rotary compressor, Figure 2 is a vertical cross-sectional view of the compressor in Figure 1, and Figure 3 is a cross-sectional view taken along - in Figure 2. Figures 4 and 5 are partial sectional views taken along - in Figure 3, with Figure 4 showing the unloaded state and Figure 5 showing the fully loaded state, respectively.
FIG. 6 is a refrigerant system diagram of the present invention, FIG. 7 is a cross-sectional view showing the first embodiment of the present invention, and FIGS. 8 and 9 are partial sectional views taken along - in FIG. 8
The figure shows a fully loaded state, and Fig. 9 shows an unloaded state. Fig. 10 is a cross-sectional view showing the second embodiment of the present invention. Fig. 11 is a partial cross-section taken along the line XI-XI in Fig. 10. It is a diagram. 1... Capacity control compressor, 2... Condenser, 3...
... Capillary tube, 4 ... Evaporator, 8 ... Crankshaft, 9 ... Rotor, 10 ... Cylinder, 11 ... Blade, 12 ... Inlet, 13 ...
...Discharge port, 14... Upper bearing plate, 15... Lower bearing plate, 16... Contact point, 17... Plunger, 1
8...Bypass hole, 19...Bypass pipe, 20...
... Plunger small diameter part, 21 ... Pressure introduction pipe, 22
... Spring, 23 ... Compression chamber, 24 ... Upper stopper, 25 ... Plunger insertion hole, 26 ... Four-way valve, 27 ... Indoor heat exchanger, 28 ... Outdoor heat exchanger, 29 ... Control pipe , 30...Liquid injection hole, 31...Liquid injection passage, 32...
...Small diameter, 33...Liquid injection passage, M...
…motor.
Claims (1)
えられ圧縮途中の冷媒ガスを吸入側へバイパスさ
せる容量制御弁を備えるとゝもに、圧縮中の冷媒
ガス中に液冷媒をインジエクシヨンする液インジ
エクシヨン孔を備えた圧縮機、四方弁、室内熱交
換器、絞り機構、室外熱交換器からなるヒートポ
ンプ式空気調和機において、前記液インジエクシ
ヨン孔と前記制御用圧力導入管とを連通する通路
を設けるとゝもに前記圧力導入管を一端が前記室
内熱交換器と絞り機構との間の冷媒回路に接続さ
れた制御管に接続し、前記四方弁の切替えによる
暖房時、前記制御管及び制御用圧力導入管を介し
て導入される高圧液冷媒で前記容量制御弁をフル
ロード位置に切替えるとゝもに同液冷媒を前記通
路及び液インジエクシヨン孔を経てインジエクシ
ヨンし、冷房時、前記制御管及び圧力導入管を介
して導入される低圧冷媒で前記容量制御弁をアン
ロード位置に切替えることを特徴とするヒートポ
ンプ式空気調和機。 It is equipped with a capacity control valve that bypasses the refrigerant gas in the middle of compression to the suction side, which is switched by the pressure introduced into the control pressure introduction pipe, and has a liquid injection hole that injects liquid refrigerant into the refrigerant gas that is being compressed. In a heat pump air conditioner comprising a compressor, a four-way valve, an indoor heat exchanger, a throttling mechanism, and an outdoor heat exchanger, a passage connecting the liquid injection hole and the control pressure introduction pipe is provided. The pressure introduction pipe is connected to a control pipe whose one end is connected to a refrigerant circuit between the indoor heat exchanger and the throttling mechanism, and when heating by switching the four-way valve, the control pipe and the control pressure introduction pipe are connected. When the capacity control valve is switched to the full load position with high pressure liquid refrigerant introduced through A heat pump type air conditioner characterized in that the capacity control valve is switched to an unload position by low pressure refrigerant introduced through the heat pump type air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981059162U JPS6333093Y2 (en) | 1981-04-23 | 1981-04-23 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981059162U JPS6333093Y2 (en) | 1981-04-23 | 1981-04-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57172367U JPS57172367U (en) | 1982-10-29 |
JPS6333093Y2 true JPS6333093Y2 (en) | 1988-09-05 |
Family
ID=29855536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981059162U Expired JPS6333093Y2 (en) | 1981-04-23 | 1981-04-23 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6333093Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6460173B1 (en) * | 2017-07-27 | 2019-01-30 | 株式会社富士通ゼネラル | Rotary compressor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5659908B2 (en) * | 2011-03-29 | 2015-01-28 | 株式会社富士通ゼネラル | Heat pump equipment |
JP5659909B2 (en) * | 2011-03-29 | 2015-01-28 | 株式会社富士通ゼネラル | Heat pump equipment |
JP2018179353A (en) * | 2017-04-07 | 2018-11-15 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and rotary compressor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54125559A (en) * | 1978-03-24 | 1979-09-29 | Toshiba Corp | Cooling apparatus |
-
1981
- 1981-04-23 JP JP1981059162U patent/JPS6333093Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54125559A (en) * | 1978-03-24 | 1979-09-29 | Toshiba Corp | Cooling apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6460173B1 (en) * | 2017-07-27 | 2019-01-30 | 株式会社富士通ゼネラル | Rotary compressor |
WO2019021550A1 (en) * | 2017-07-27 | 2019-01-31 | 株式会社富士通ゼネラル | Rotary compressor |
JP2019027330A (en) * | 2017-07-27 | 2019-02-21 | 株式会社富士通ゼネラル | Rotary Compressor |
US11225971B2 (en) | 2017-07-27 | 2022-01-18 | Fujitsu General Limited | Rotary compressor |
Also Published As
Publication number | Publication date |
---|---|
JPS57172367U (en) | 1982-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8037702B2 (en) | Multistage compressor | |
KR930002429B1 (en) | Refrigerating cycle apparatus | |
US7931453B2 (en) | Capacity variable device for rotary compressor and driving method of air conditioner having the same | |
EP2587187A1 (en) | Refrigeration cycle apparatus | |
CN102597524A (en) | Heat pump device, two-stage compressor, and method of operating heat pump device | |
US4262492A (en) | Airconditioner | |
JPH02230995A (en) | Compressor for heat pump and operating method thereof | |
WO2015131313A1 (en) | Two-stage rotary compressor and refrigerating circulation device having same | |
CN201363276Y (en) | Double-cylinder type two-stage compression rotary compressor | |
JPS6333093Y2 (en) | ||
EP2716999A1 (en) | Refrigeration cycle device | |
JPS61213556A (en) | Method of starting compression type refrigerator | |
CN112412790B (en) | Rotary compressor and refrigeration cycle device | |
JP2001065888A (en) | Carbon dioxide refrigerating machine | |
JPS5926199Y2 (en) | Heat pump air conditioner | |
JPS5896195A (en) | Rotary compressor | |
JPS6051616B2 (en) | Refrigeration equipment | |
KR101128797B1 (en) | Control method for air conditioner | |
JPS59211784A (en) | Continuously controlled screw type air conditioner | |
JPS6059498B2 (en) | Refrigeration equipment capacity control method | |
JPS609438Y2 (en) | compressor | |
JPS6036841Y2 (en) | Heat pump air conditioning system | |
JPS5818138Y2 (en) | refrigeration cycle | |
JPH0610565B2 (en) | Heat pump refrigeration cycle | |
JPH026983B2 (en) |