JPS6333705A - Production of refractive index distribution type plastic optical fiber - Google Patents
Production of refractive index distribution type plastic optical fiberInfo
- Publication number
- JPS6333705A JPS6333705A JP61177149A JP17714986A JPS6333705A JP S6333705 A JPS6333705 A JP S6333705A JP 61177149 A JP61177149 A JP 61177149A JP 17714986 A JP17714986 A JP 17714986A JP S6333705 A JPS6333705 A JP S6333705A
- Authority
- JP
- Japan
- Prior art keywords
- core
- pmma
- optical fiber
- beams
- center part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013308 plastic optical fiber Substances 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000009826 distribution Methods 0.000 title description 8
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000001125 extrusion Methods 0.000 claims abstract description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 abstract description 10
- 239000004926 polymethyl methacrylate Substances 0.000 abstract description 10
- 239000013307 optical fiber Substances 0.000 abstract description 9
- 230000002093 peripheral effect Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005253 cladding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 206010041662 Splinter Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、押出法により連続製造されて来るポリメチル
メタクリレート(以下PMMAと略す)等の熱可塑性樹
脂の芯線に対して側面方向からYAGレーザーのレーザ
ー光を照射処理する事により1該PMMA芯線の内部に
レーザー光の熱歪効果に起因する芯線動径方向に屈折率
分布な生せしめる事により、イオン交換等の化学的拡散
作用を用いずに屈折率分布型プラスチック光ファイバを
製造する事を可能にするものである。Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a core wire of a thermoplastic resin such as polymethyl methacrylate (hereinafter abbreviated as PMMA), which is continuously produced by an extrusion method, and is exposed to a YAG laser from a side direction. By irradiating the PMMA core with a laser beam, a refractive index distribution is created in the core wire radial direction due to the thermal strain effect of the laser beam, thereby eliminating the need for chemical diffusion effects such as ion exchange. This makes it possible to manufacture graded index plastic optical fibers.
光通信用の光ファイバとしてはコアークラド間の屈折率
分布が不連続な階段上となるステップインデクス型(以
下SI型と記す)と、光ファイバの中心軸から外周方向
にかげて略々放物線状の屈折率分布を有するグレーテツ
ドインデクス型(以下GI型と記す)とに大別される。Optical fibers for optical communication are of the step-index type (hereinafter referred to as SI type), in which the refractive index distribution between the core and cladding is on a discontinuous staircase, and in the step-index type (hereinafter referred to as SI type), where the refractive index distribution between the core and the cladding is discontinuous, and the other is the step-index type (hereinafter referred to as SI type), in which the refractive index distribution between the core and the cladding is discontinuous, and the optical fiber has a substantially parabolic shape extending from the central axis to the outer circumference. It is roughly classified into a graded index type (hereinafter referred to as GI type) having a refractive index distribution.
このうち、光通信目的としては伝送時のモード分散が少
くて伝送帯域を広くとれるGI型の方が優れている。こ
のGI型光ファイバの製法としては、石英系ファイバに
おいては気相軸付は法等の技術が確率されており、既に
商品化もされている。Among these, the GI type is better for optical communication purposes because it has less mode dispersion during transmission and can provide a wider transmission band. As a manufacturing method for this GI type optical fiber, techniques such as the vapor phase shafting method have been established for silica fiber, and have already been commercialized.
しかしながら、プラスチック光ファイバにおいてはその
製造法が母材法を主とする石英系光ファイバとは基本的
に異なる押出法が基幹であ遺
るため、石英系光ファイバと同等の技術を適用する事は
できない。そのため現在のところ、プラスチック光ファ
イバのタイプとしてはSIWに限られており、GI型ラ
プラスチック光フアイバ製造されていない。However, the manufacturing method for plastic optical fibers is basically an extrusion method, which is fundamentally different from that for silica-based optical fibers, which mainly use a base material method, so it is not possible to apply the same technology as for silica-based optical fibers. Can not. Therefore, at present, the type of plastic optical fiber is limited to SIW, and GI type plastic optical fiber is not manufactured.
本発明は、YAGレーザーによるPMMA等の熱可塑性
樹脂の熱歪効果を応用する事によりPMMA等熱可塑性
樹脂製のGII光ファイバを連続製造しうる事を見出し
、本発明を完成したものである。The present invention was completed based on the discovery that it is possible to continuously manufacture GII optical fibers made of thermoplastic resin such as PMMA by applying the thermal strain effect of thermoplastic resin such as PMMA using a YAG laser.
本発明のGI型ラプラスチック光フアイバ、次の如くし
て製造することができる。例えば、PMMA芯線(直径
1 tx )にYAGレーザーのパルス光を照射する事
によって屈折率分布型光ファイバを製造する方法を図面
により説明する。The GI type plastic optical fiber of the present invention can be manufactured as follows. For example, a method for manufacturing a gradient index optical fiber by irradiating a PMMA core wire (diameter 1 tx) with pulsed light from a YAG laser will be explained with reference to the drawings.
第1図(a)は本発明のGII光ファイバの製造工程を
示す平面図であり、同図(blはその側面図である。FIG. 1(a) is a plan view showing the manufacturing process of the GII optical fiber of the present invention, and FIG. 1(a) is a side view thereof.
YAGレーザ−(東芝製、LAY−603屋)の出射ビ
ームをビームエキスパンダを通して径10mのガウス分
布量ビームに拡大した後、ビームスプリンタと全反射ミ
ラーの組合せで16分割し、うち1ビームをパワーモニ
タ用とし、残りの15ビームを3ビームずつにまとめて
1照射部位とする。個々の1照射部位は第1図に示す様
に、3本のビームが該PMMA芯線と垂直な平面内で互
いに120° の角度を成して芯線中心部に集光する様
に設定し、更に各ビーム(3)は芯線への集光直前に置
かれたシリンドリカルレンズ(2)によって芯線(1)
の中心部長手方向に線状にエネルギーが集中する様にす
る。After expanding the emitted beam of a YAG laser (LAY-603, manufactured by Toshiba) into a Gaussian distributed beam with a diameter of 10 m through a beam expander, it is divided into 16 beams using a combination of a beam splinter and a total reflection mirror, and one beam is divided into 16 beams with a power This will be used for monitoring, and the remaining 15 beams will be grouped into 3 beams each to form one irradiation site. As shown in Figure 1, each irradiation site is set so that the three beams form an angle of 120° to each other in a plane perpendicular to the PMMA core and are focused on the center of the core. Each beam (3) is focused on the core wire (1) by a cylindrical lens (2) placed just before focusing on the core wire.
The energy is concentrated linearly in the longitudinal direction of the center.
また、線状に集中されたエネルギー分布は、そのままで
は芯線長手方向に対してはガウス分布様の不均一分布で
あるため、シリンドリカルレンズの配置を第1図(b)
に示す様に互いに半分ずつ照射部位が重なる様に配列し
、エネルギー照射分布が略々均一となる様にする。In addition, since the linearly concentrated energy distribution is a Gaussian-like non-uniform distribution in the longitudinal direction of the core wire, the arrangement of the cylindrical lenses is as shown in Figure 1 (b).
As shown in the figure, the irradiation parts are arranged so that half of them overlap each other, so that the energy irradiation distribution is approximately uniform.
この様な照射単位をPMMA押出ライン上に計30単位
配置し、該PMMA芯線な毎秒5nの速度で押し出して
YAGレーザーのノくルス(パルス幅9 m5ec )
を0.5秒間隔で照射する事により、該芯線の各部
位は計30回のノくルスを0.5秒間隔で受ける事にな
り、結果として中心部の屈折率が周囲に比して0.1%
程度上昇し、GI型ラプラスチック光フアイバ製造でき
た。A total of 30 such irradiation units were placed on the PMMA extrusion line, and the PMMA core wire was extruded at a speed of 5 n/sec to generate a YAG laser beam (pulse width 9 m5ec).
By irradiating at 0.5 second intervals, each part of the core wire receives a total of 30 pulses at 0.5 second intervals, and as a result, the refractive index of the center increases compared to the surrounding area. 0.1%
The degree of improvement improved, and we were able to manufacture GI type plastic optical fiber.
第1図は本発明のGI型ラプラスチックレンズ作るため
の工程図である。
l2IWの浄書(内宮;二1更なし〕
手続補装置(方式)
昭和61年10月73日FIG. 1 is a process diagram for making a GI type plastic lens of the present invention. I2IW engraving (Naiku; 21st edition) Supplementary procedural device (method) October 73, 1985
Claims (1)
部に側面方向からYAGレーザーのレーザー光を集光し
、芯線を光学的に処理する事を特徴とする屈折率分布型
プラスチック光ファイバの製法。A method for manufacturing a gradient index plastic optical fiber, which is characterized by focusing laser light from a YAG laser from the side toward the center of a core wire of thermoplastic resin manufactured by a continuous extrusion method, and optically processing the core wire. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61177149A JPS6333705A (en) | 1986-07-28 | 1986-07-28 | Production of refractive index distribution type plastic optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61177149A JPS6333705A (en) | 1986-07-28 | 1986-07-28 | Production of refractive index distribution type plastic optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6333705A true JPS6333705A (en) | 1988-02-13 |
Family
ID=16026048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61177149A Pending JPS6333705A (en) | 1986-07-28 | 1986-07-28 | Production of refractive index distribution type plastic optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6333705A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999059803A1 (en) * | 1998-05-20 | 1999-11-25 | Deutsche Telekom Ag | Method for producing gradient index refraction index profiles in polymer optical fibres |
WO2005006037A1 (en) * | 2003-07-11 | 2005-01-20 | Fuji Photo Film Co., Ltd. | Plastic optical fibers and processes for producing them |
-
1986
- 1986-07-28 JP JP61177149A patent/JPS6333705A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999059803A1 (en) * | 1998-05-20 | 1999-11-25 | Deutsche Telekom Ag | Method for producing gradient index refraction index profiles in polymer optical fibres |
US6527985B1 (en) | 1998-05-20 | 2003-03-04 | Deutsche Telekom Ag | Method for producing gradient index refraction index profiles in polymer optical fibers |
WO2005006037A1 (en) * | 2003-07-11 | 2005-01-20 | Fuji Photo Film Co., Ltd. | Plastic optical fibers and processes for producing them |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5256851A (en) | Microlenses for coupling optical fibers to elliptical light beams | |
US4799755A (en) | Laser materials processing with a lensless fiber optic output coupler | |
US6822190B2 (en) | Optical fiber or waveguide lens | |
US5633967A (en) | Waveguide fiber optical coupler | |
CA2012696A1 (en) | Method and apparatus for fabricating microlenses on optical fibers | |
JP2019506359A (en) | Optical fiber processing method and system | |
JPS6333705A (en) | Production of refractive index distribution type plastic optical fiber | |
JP3224106B2 (en) | Optical fiber for laser input | |
CN115718372A (en) | Side pump signal beam combiner for realizing flat-top light beam and preparation method thereof | |
JPH0258006A (en) | Multicore type optical coupling component | |
JP7177180B2 (en) | Method for manufacturing light-transmitting part, and manufacturing system for light-transmitting part | |
JPS6340694A (en) | Forming method for laser light | |
JPS6316893A (en) | Ring mode forming device | |
JP4303010B2 (en) | Laser processing apparatus and processing method using the same | |
JPS63157123A (en) | Linear beam optical system | |
JP2004264843A (en) | Optical fiber with optical function element, and method and device for manufacturing same | |
JPS5825888A (en) | Laser working device | |
KR100296386B1 (en) | Method and apparatus for transforming laser beam profile and method for processing optical fiber grating | |
JPS6398607A (en) | Optical waveguide and its manufacture | |
JP2000275570A (en) | Beam mode converting optical system | |
JPH05288968A (en) | Optical fiber for laser input | |
CN115846900A (en) | Optical path system, cutting head and device for generating a high-power laser beam | |
JPS6382216U (en) | ||
JPS5829447Y2 (en) | Shuukousouchi | |
JP3950129B2 (en) | Laser heating device |