[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6333705A - Production of refractive index distribution type plastic optical fiber - Google Patents

Production of refractive index distribution type plastic optical fiber

Info

Publication number
JPS6333705A
JPS6333705A JP61177149A JP17714986A JPS6333705A JP S6333705 A JPS6333705 A JP S6333705A JP 61177149 A JP61177149 A JP 61177149A JP 17714986 A JP17714986 A JP 17714986A JP S6333705 A JPS6333705 A JP S6333705A
Authority
JP
Japan
Prior art keywords
core
pmma
optical fiber
beams
center part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61177149A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kaneko
金子 保宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61177149A priority Critical patent/JPS6333705A/en
Publication of JPS6333705A publication Critical patent/JPS6333705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To continuously produce a GI type optical fiber made of a thermoplastic resin such as polymethyl methacrylate (PMMA) by condensing the laser light of a YAG laser from the direction of the side face to the center part of a core, which is produced by continuous extrusion and consists of the thermoplastic resin, to optically process the core. CONSTITUTION:The emitted beams of the YAG laser is divided into 16 by the combination of a beam splitter and a total reflection mirror after being expanded through a beam expander, and one of divided beams is used for power monitor, and every three beams of 15 beams of the rest are gathered into one irradiation unit. Individual irradiation units are condensed on the center part of the core at the angles of 120 deg. in a plane perpendicular to the PMMA core, and each beam 3 has the energy linearly concentrated in the lengthwise direction of the center part of a core 1 by a cylindrical lens 2. Thirty irradiation units are arranged on a PMMA extrusion line, and the PMMA core is extruded, and pulses of the YAG laser are projected at intervals of a certain length. Thus, the refractive index in the center part is made higher than that in the peripheral part to obtain the GI type plastic optical fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、押出法により連続製造されて来るポリメチル
メタクリレート(以下PMMAと略す)等の熱可塑性樹
脂の芯線に対して側面方向からYAGレーザーのレーザ
ー光を照射処理する事により1該PMMA芯線の内部に
レーザー光の熱歪効果に起因する芯線動径方向に屈折率
分布な生せしめる事により、イオン交換等の化学的拡散
作用を用いずに屈折率分布型プラスチック光ファイバを
製造する事を可能にするものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to a core wire of a thermoplastic resin such as polymethyl methacrylate (hereinafter abbreviated as PMMA), which is continuously produced by an extrusion method, and is exposed to a YAG laser from a side direction. By irradiating the PMMA core with a laser beam, a refractive index distribution is created in the core wire radial direction due to the thermal strain effect of the laser beam, thereby eliminating the need for chemical diffusion effects such as ion exchange. This makes it possible to manufacture graded index plastic optical fibers.

〔従来の技術〕[Conventional technology]

光通信用の光ファイバとしてはコアークラド間の屈折率
分布が不連続な階段上となるステップインデクス型(以
下SI型と記す)と、光ファイバの中心軸から外周方向
にかげて略々放物線状の屈折率分布を有するグレーテツ
ドインデクス型(以下GI型と記す)とに大別される。
Optical fibers for optical communication are of the step-index type (hereinafter referred to as SI type), in which the refractive index distribution between the core and cladding is on a discontinuous staircase, and in the step-index type (hereinafter referred to as SI type), where the refractive index distribution between the core and the cladding is discontinuous, and the other is the step-index type (hereinafter referred to as SI type), in which the refractive index distribution between the core and the cladding is discontinuous, and the optical fiber has a substantially parabolic shape extending from the central axis to the outer circumference. It is roughly classified into a graded index type (hereinafter referred to as GI type) having a refractive index distribution.

このうち、光通信目的としては伝送時のモード分散が少
くて伝送帯域を広くとれるGI型の方が優れている。こ
のGI型光ファイバの製法としては、石英系ファイバに
おいては気相軸付は法等の技術が確率されており、既に
商品化もされている。
Among these, the GI type is better for optical communication purposes because it has less mode dispersion during transmission and can provide a wider transmission band. As a manufacturing method for this GI type optical fiber, techniques such as the vapor phase shafting method have been established for silica fiber, and have already been commercialized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、プラスチック光ファイバにおいてはその
製造法が母材法を主とする石英系光ファイバとは基本的
に異なる押出法が基幹であ遺 るため、石英系光ファイバと同等の技術を適用する事は
できない。そのため現在のところ、プラスチック光ファ
イバのタイプとしてはSIWに限られており、GI型ラ
プラスチック光フアイバ製造されていない。
However, the manufacturing method for plastic optical fibers is basically an extrusion method, which is fundamentally different from that for silica-based optical fibers, which mainly use a base material method, so it is not possible to apply the same technology as for silica-based optical fibers. Can not. Therefore, at present, the type of plastic optical fiber is limited to SIW, and GI type plastic optical fiber is not manufactured.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、YAGレーザーによるPMMA等の熱可塑性
樹脂の熱歪効果を応用する事によりPMMA等熱可塑性
樹脂製のGII光ファイバを連続製造しうる事を見出し
、本発明を完成したものである。
The present invention was completed based on the discovery that it is possible to continuously manufacture GII optical fibers made of thermoplastic resin such as PMMA by applying the thermal strain effect of thermoplastic resin such as PMMA using a YAG laser.

本発明のGI型ラプラスチック光フアイバ、次の如くし
て製造することができる。例えば、PMMA芯線(直径
1 tx )にYAGレーザーのパルス光を照射する事
によって屈折率分布型光ファイバを製造する方法を図面
により説明する。
The GI type plastic optical fiber of the present invention can be manufactured as follows. For example, a method for manufacturing a gradient index optical fiber by irradiating a PMMA core wire (diameter 1 tx) with pulsed light from a YAG laser will be explained with reference to the drawings.

第1図(a)は本発明のGII光ファイバの製造工程を
示す平面図であり、同図(blはその側面図である。
FIG. 1(a) is a plan view showing the manufacturing process of the GII optical fiber of the present invention, and FIG. 1(a) is a side view thereof.

YAGレーザ−(東芝製、LAY−603屋)の出射ビ
ームをビームエキスパンダを通して径10mのガウス分
布量ビームに拡大した後、ビームスプリンタと全反射ミ
ラーの組合せで16分割し、うち1ビームをパワーモニ
タ用とし、残りの15ビームを3ビームずつにまとめて
1照射部位とする。個々の1照射部位は第1図に示す様
に、3本のビームが該PMMA芯線と垂直な平面内で互
いに120° の角度を成して芯線中心部に集光する様
に設定し、更に各ビーム(3)は芯線への集光直前に置
かれたシリンドリカルレンズ(2)によって芯線(1)
の中心部長手方向に線状にエネルギーが集中する様にす
る。
After expanding the emitted beam of a YAG laser (LAY-603, manufactured by Toshiba) into a Gaussian distributed beam with a diameter of 10 m through a beam expander, it is divided into 16 beams using a combination of a beam splinter and a total reflection mirror, and one beam is divided into 16 beams with a power This will be used for monitoring, and the remaining 15 beams will be grouped into 3 beams each to form one irradiation site. As shown in Figure 1, each irradiation site is set so that the three beams form an angle of 120° to each other in a plane perpendicular to the PMMA core and are focused on the center of the core. Each beam (3) is focused on the core wire (1) by a cylindrical lens (2) placed just before focusing on the core wire.
The energy is concentrated linearly in the longitudinal direction of the center.

また、線状に集中されたエネルギー分布は、そのままで
は芯線長手方向に対してはガウス分布様の不均一分布で
あるため、シリンドリカルレンズの配置を第1図(b)
に示す様に互いに半分ずつ照射部位が重なる様に配列し
、エネルギー照射分布が略々均一となる様にする。
In addition, since the linearly concentrated energy distribution is a Gaussian-like non-uniform distribution in the longitudinal direction of the core wire, the arrangement of the cylindrical lenses is as shown in Figure 1 (b).
As shown in the figure, the irradiation parts are arranged so that half of them overlap each other, so that the energy irradiation distribution is approximately uniform.

この様な照射単位をPMMA押出ライン上に計30単位
配置し、該PMMA芯線な毎秒5nの速度で押し出して
YAGレーザーのノくルス(パルス幅9 m5ec )
  を0.5秒間隔で照射する事により、該芯線の各部
位は計30回のノくルスを0.5秒間隔で受ける事にな
り、結果として中心部の屈折率が周囲に比して0.1%
程度上昇し、GI型ラプラスチック光フアイバ製造でき
た。
A total of 30 such irradiation units were placed on the PMMA extrusion line, and the PMMA core wire was extruded at a speed of 5 n/sec to generate a YAG laser beam (pulse width 9 m5ec).
By irradiating at 0.5 second intervals, each part of the core wire receives a total of 30 pulses at 0.5 second intervals, and as a result, the refractive index of the center increases compared to the surrounding area. 0.1%
The degree of improvement improved, and we were able to manufacture GI type plastic optical fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のGI型ラプラスチックレンズ作るため
の工程図である。 l2IWの浄書(内宮;二1更なし〕 手続補装置(方式) 昭和61年10月73日
FIG. 1 is a process diagram for making a GI type plastic lens of the present invention. I2IW engraving (Naiku; 21st edition) Supplementary procedural device (method) October 73, 1985

Claims (1)

【特許請求の範囲】[Claims] 連続押出法により製造される熱可塑性樹脂の芯線の中心
部に側面方向からYAGレーザーのレーザー光を集光し
、芯線を光学的に処理する事を特徴とする屈折率分布型
プラスチック光ファイバの製法。
A method for manufacturing a gradient index plastic optical fiber, which is characterized by focusing laser light from a YAG laser from the side toward the center of a core wire of thermoplastic resin manufactured by a continuous extrusion method, and optically processing the core wire. .
JP61177149A 1986-07-28 1986-07-28 Production of refractive index distribution type plastic optical fiber Pending JPS6333705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177149A JPS6333705A (en) 1986-07-28 1986-07-28 Production of refractive index distribution type plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177149A JPS6333705A (en) 1986-07-28 1986-07-28 Production of refractive index distribution type plastic optical fiber

Publications (1)

Publication Number Publication Date
JPS6333705A true JPS6333705A (en) 1988-02-13

Family

ID=16026048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177149A Pending JPS6333705A (en) 1986-07-28 1986-07-28 Production of refractive index distribution type plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS6333705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059803A1 (en) * 1998-05-20 1999-11-25 Deutsche Telekom Ag Method for producing gradient index refraction index profiles in polymer optical fibres
WO2005006037A1 (en) * 2003-07-11 2005-01-20 Fuji Photo Film Co., Ltd. Plastic optical fibers and processes for producing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059803A1 (en) * 1998-05-20 1999-11-25 Deutsche Telekom Ag Method for producing gradient index refraction index profiles in polymer optical fibres
US6527985B1 (en) 1998-05-20 2003-03-04 Deutsche Telekom Ag Method for producing gradient index refraction index profiles in polymer optical fibers
WO2005006037A1 (en) * 2003-07-11 2005-01-20 Fuji Photo Film Co., Ltd. Plastic optical fibers and processes for producing them

Similar Documents

Publication Publication Date Title
US5256851A (en) Microlenses for coupling optical fibers to elliptical light beams
US4799755A (en) Laser materials processing with a lensless fiber optic output coupler
US6822190B2 (en) Optical fiber or waveguide lens
US5633967A (en) Waveguide fiber optical coupler
CA2012696A1 (en) Method and apparatus for fabricating microlenses on optical fibers
JP2019506359A (en) Optical fiber processing method and system
JPS6333705A (en) Production of refractive index distribution type plastic optical fiber
JP3224106B2 (en) Optical fiber for laser input
CN115718372A (en) Side pump signal beam combiner for realizing flat-top light beam and preparation method thereof
JPH0258006A (en) Multicore type optical coupling component
JP7177180B2 (en) Method for manufacturing light-transmitting part, and manufacturing system for light-transmitting part
JPS6340694A (en) Forming method for laser light
JPS6316893A (en) Ring mode forming device
JP4303010B2 (en) Laser processing apparatus and processing method using the same
JPS63157123A (en) Linear beam optical system
JP2004264843A (en) Optical fiber with optical function element, and method and device for manufacturing same
JPS5825888A (en) Laser working device
KR100296386B1 (en) Method and apparatus for transforming laser beam profile and method for processing optical fiber grating
JPS6398607A (en) Optical waveguide and its manufacture
JP2000275570A (en) Beam mode converting optical system
JPH05288968A (en) Optical fiber for laser input
CN115846900A (en) Optical path system, cutting head and device for generating a high-power laser beam
JPS6382216U (en)
JPS5829447Y2 (en) Shuukousouchi
JP3950129B2 (en) Laser heating device