[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63310626A - Heat exchanger for steam power plant - Google Patents

Heat exchanger for steam power plant

Info

Publication number
JPS63310626A
JPS63310626A JP62143831A JP14383187A JPS63310626A JP S63310626 A JPS63310626 A JP S63310626A JP 62143831 A JP62143831 A JP 62143831A JP 14383187 A JP14383187 A JP 14383187A JP S63310626 A JPS63310626 A JP S63310626A
Authority
JP
Japan
Prior art keywords
catalyst layer
heat exchanger
tube group
flow
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62143831A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
隆 小林
Isao Tsuruta
鶴田 魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP62143831A priority Critical patent/JPS63310626A/en
Publication of JPS63310626A publication Critical patent/JPS63310626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain the same rectifying effect as obtained when a rectifying lattice is used, and to reduce the drift loss in a gas turbine, etc., by disposing an injection lattice injecting a reducing agent to the rear part of pipe cluster provided to the front part of a denitrating catalyst layer. CONSTITUTION:The denitrating catalyst layer 11 is formed in plural pipe clusters constituting a heat exchanging part, and the injection lattice 12 injecting the reducing agent into exhaust gas or burned gas entering the denitrating catalyst layer 11 is provided in the upstream side of the denitrating catalyst layer 11. And, the injection lattice 12 is furnished between the denitrating catalyst layer 11 and the pipe clusters 2, 3 with a specified distance from the rear part of the pipe clusters. As a result, the pipe cluster of its own functions as a rectifying mechanism to reduce the drift loss in a gas turbine, etc.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はカスタービンの排ガスあるいは燃焼ガス等に含
まれる窒素酸化物を低減するための脱硝触媒層を組込ん
だ蒸気動力装置用熱交換器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a steam power system incorporating a denitrification catalyst layer for reducing nitrogen oxides contained in the exhaust gas or combustion gas of a cast turbine. It relates to a heat exchanger for equipment.

(従来の技術) 一般に、排熱回収熱交換器は複合発電プラントにおける
蒸気動力装置(蒸気タービンおよび復水装置からなる)
のための蒸気を生成する目的から使用される。この排熱
回収熱交換器ではガスタービンから放出される排ガス中
に多量の窒素酸化物(NOx>をアンモニア等の還元剤
を用いて無害な窒素に還元することが同時に行なわれ、
この目的から排熱回収熱交換器には脱硝装置か設けられ
るのが普通である。この種の脱硝プロレスには乾式と湿
式とがあり、乾式が好んで使用される。
(Prior art) Generally, an exhaust heat recovery heat exchanger is used in a steam power plant (consisting of a steam turbine and a condensing device) in a combined cycle power plant.
used for the purpose of producing steam for This exhaust heat recovery heat exchanger simultaneously reduces a large amount of nitrogen oxides (NOx) in the exhaust gas released from the gas turbine to harmless nitrogen using a reducing agent such as ammonia.
For this purpose, the exhaust heat recovery heat exchanger is usually equipped with a denitrification device. There are two types of denitration wrestling: dry and wet, with the dry method being preferred.

乾式プロセスのうち排熱回収熱交換器で用いられるのは
乾式接触還元法と呼ばれるものである。この方法はアン
モニア等を還元剤として使用し、排ガス温度か250〜
450′Cの領域に設置した触媒によってNOxを窒素
と蒸気とに還元分解する方式のものでおる。ちなみに、
湿式プロセスは吸収液に硫酸塩等を用い、この吸収液内
でNOxを酸化還元させるものである。この2種類の脱
硝プロセスにはそれぞれ長短があり、場合に応じて使い
分けることになる。
Among the dry processes, the one used in the exhaust heat recovery heat exchanger is called the dry catalytic reduction method. This method uses ammonia etc. as a reducing agent, and the exhaust gas temperature is 250~250℃.
This system uses a catalyst installed in the 450'C range to reduce and decompose NOx into nitrogen and steam. By the way,
The wet process uses a sulfate or the like as an absorption liquid, and oxidizes and reduces NOx within this absorption liquid. These two types of denitrification processes each have their advantages and disadvantages, and should be used depending on the situation.

上記したように乾式接触還元法による触媒の最適反応温
度は250〜450°Cである。排熱回収熱交換器の場
合の脱硝触媒層の位置は上記反応温度から次のように決
められる。Vなわち、第9図に示されるように排熱回収
熱交換器は胴1内に過熱器2、高圧蒸発器3、高圧節炭
器4、低圧蒸発器5および低圧節炭器6の5つの熱交換
部を有し排ガスは約500’(:の温度で胴1内に導か
れ、過熱器2から低圧節炭器6にかけて流れる間にそれ
ぞれ給水おるいは蒸気と熱交換し、約100’Cに温度
降下して器外に排出される。したがって、5つの熱交換
部のいずれかが脱硝触媒の最適反応温度域内におること
から、5つの熱交換部の間の空間7.8.9.10の温
度を検討して、それぞれの温度に適した触媒が選択され
て最も好ましいとされる場所に脱硝触媒層11が形成さ
れる。
As mentioned above, the optimum reaction temperature of the catalyst in the dry catalytic reduction method is 250 to 450°C. In the case of an exhaust heat recovery heat exchanger, the position of the denitrification catalyst layer is determined from the above reaction temperature as follows. That is, as shown in FIG. 9, the exhaust heat recovery heat exchanger has five components in the shell 1: a superheater 2, a high-pressure evaporator 3, a high-pressure economizer 4, a low-pressure evaporator 5, and a low-pressure economizer 6. Exhaust gas is introduced into the shell 1 at a temperature of approximately 500' (: 'C and is discharged outside the vessel. Therefore, since any of the five heat exchange parts is within the optimum reaction temperature range of the denitrification catalyst, the space between the five heat exchange parts 7.8. 9.10, a catalyst suitable for each temperature is selected, and the denitrification catalyst layer 11 is formed at the most preferable location.

一方、アンモニア等の還元剤は脱硝触rS層11の上流
側に注入されねばならない。これは還元剤がNOXを含
む排ガスの流れのすみずみまで拡散され、均一な濃度分
布になったところで脱硝触媒と接触させるようにするた
めであり、脱硝触媒層11から一定距離離れた上流側に
還元剤を注入するための注入格子12が設置される。通
常、この注入格子12は第1Q図(a)、(b)に示さ
れるように互いに平行に置かれた複数の注入管13をこ
れと直交する位置に配置される支持ビーム14で固定し
て全体か格子状に形成される。ざらに、注入格子12の
上流側には整流格子15が設けられる。これは注入格子
12に向かう排ガスの偏流が大きくなると、還元剤の注
入に偏りが生じ、均一な濃度分布が得られなくなるため
、琲ガスの流れを整流格子15を通して整流に変えるよ
うにしたものである。
On the other hand, a reducing agent such as ammonia must be injected upstream of the denitrification catalyst rS layer 11. This is to ensure that the reducing agent is diffused to every corner of the flow of exhaust gas containing NOX and brought into contact with the denitrification catalyst once the concentration distribution is uniform. An injection grid 12 is installed for injecting the reducing agent. Normally, this injection grid 12 is constructed by fixing a plurality of injection tubes 13 placed parallel to each other with a support beam 14 placed perpendicular to the injection tubes 13, as shown in FIGS. 1Q (a) and (b). It is formed as a whole or in the form of a grid. Roughly speaking, a rectifying grid 15 is provided upstream of the injection grid 12. This is because if the flow of exhaust gas toward the injection grid 12 becomes large, the injection of the reducing agent becomes uneven, making it impossible to obtain a uniform concentration distribution, so the flow of the gas is changed to rectification through the rectification grid 15. be.

(発明が解決しようとする問題点) 上述した乾式接触還元法による脱硝プロセスで還元剤の
均一な濃度分布を得ようとする場合、特に排カスの流れ
を整流に変える整流格子15の働きを無視することはで
きない。一般に、排ガスの流れはガスタービンの運転状
態、排気ダクトの形状等により流れか乱され、偏流が生
じている。
(Problems to be Solved by the Invention) When trying to obtain a uniform concentration distribution of the reducing agent in the denitrification process using the dry catalytic reduction method described above, the function of the rectifying grid 15 that rectifies the flow of waste gas is especially ignored. I can't. Generally, the flow of exhaust gas is disturbed by the operating conditions of the gas turbine, the shape of the exhaust duct, etc., resulting in uneven flow.

この偏流を整流格子15により整流に変えることは大抵
の場合可能であり、かかる整流格子15の動きに疑問が
持たれることはまずない。
In most cases, it is possible to convert this drift into rectification using the rectifier grating 15, and there is almost no question about the movement of the rectifier grating 15.

しかしながら、整流格子15のために排ガスの流れか熱
交換部の千萌で一時的に停滞し、ドリフト損失の発生が
避けられなくなってガスタービンの出力が低下するとい
う問題がある。
However, there is a problem in that the flow of exhaust gas is temporarily stagnated in the heat exchanger section due to the rectifying grid 15, and the occurrence of drift loss becomes unavoidable, resulting in a decrease in the output of the gas turbine.

本発明の目的は整流格子を用いた場合と同等の整流効果
が1qられ、しかもドリフ1〜損失の発生する機会を持
たない新規な整流機構を備えた蒸気動力装置用熱交換器
を提供しようとするものである[発明の構成] (問題点を解決するための手段) 本発明による蒸気動力装置用熱交換器は、注入格子が脱
硝触媒層よりも前に置かれる管群の後方に、該管群との
間に一定の距離を置いて配置されていることを特徴とす
るものである。
The purpose of the present invention is to provide a heat exchanger for a steam power plant that has a novel rectification mechanism that has a rectification effect equivalent to that of using a rectifier grid and has no chance of causing drift or loss. [Structure of the Invention] (Means for Solving the Problems) The heat exchanger for a steam power plant according to the present invention has an injection grid located at the rear of the tube group placed before the denitration catalyst layer. It is characterized by being placed at a certain distance from the tube group.

(作用) 以下、本発明が成立する根拠を明らかにするために実機
モデルを用いて行なわれた実験結果について説明する。
(Function) Hereinafter, the results of an experiment conducted using an actual machine model will be explained in order to clarify the basis on which the present invention is established.

すなわら、第4図(a)、(b>は実験用に準備された
管群の構成を示すもので、図中符号16は螺線状に形成
されたフィンをその外周部分に備えた伝熱管を表わし、
この伝熱管16が図に示されるように千鳥状に配列され
て段数を8段とする管群が構成されている。この管群に
対して矢印への方向から空気を流して管群後方の速度分
布を測定する。
In other words, FIGS. 4(a) and 4(b) show the configuration of a group of tubes prepared for the experiment, and the reference numeral 16 in the figure is provided with spiral-shaped fins on the outer periphery. represents a heat exchanger tube,
As shown in the figure, the heat transfer tubes 16 are arranged in a staggered manner to form a tube group with eight stages. Air is caused to flow through this tube group from the direction indicated by the arrow, and the velocity distribution behind the tube group is measured.

ところで、上記段数は管群内の流れについて次のような
考察に基づいてきめられている。一般に、管群に流入し
た空気は伝熱管16の表面に衝突して流れFl、F2の
ように乱れた流れとなるが、その後整定して流れF3の
ように規則正しい流れになる。この規則正しい流れが得
られる段数が8段である。すなわち、管群の各段におけ
る熱伝達は当該領域における流れの状態に対応している
と見ることができ、第5図に示されるように熱伝達につ
いて観察した結果から流れの状態を考察することが可能
でおる。この図から熱伝達は8段目以降では飽和値にほ
ぼ等しくなっていることが明らかであり、これ以降では
規則正しい流れになるものと予想され、段数を8段とす
るものである。
By the way, the above-mentioned number of stages is determined based on the following considerations regarding the flow within the tube group. Generally, the air that has flowed into the tube group collides with the surface of the heat exchanger tubes 16 and becomes turbulent flows such as flows Fl and F2, but then settles down and becomes a regular flow such as flow F3. The number of stages that can obtain this regular flow is eight. In other words, it can be seen that the heat transfer at each stage of the tube group corresponds to the flow state in that region, and the flow state can be considered from the results of observing heat transfer as shown in Figure 5. It is possible. It is clear from this figure that the heat transfer is approximately equal to the saturation value after the 8th stage, and it is expected that the flow will be regular from this point onwards, so the number of stages is set to 8.

管群外の流れを実験により調べた結果は、第6図ないし
第8図に示される。
The results of an experimental investigation of the flow outside the tube group are shown in FIGS. 6 to 8.

以下、この試験結果を詳しく説明する。The test results will be explained in detail below.

第6図において、符号17は管群の入口で故意につくら
れた乱れた空気の流速を示す折れ線を示しており、管群
の上端部(第4図(b)符号X参照)にて測定された値
に基づくものである。この入口速度分布を示す折れ線1
7か測定点18a、18b、18c、18dの各点で変
化する様子がそれぞれの流速を示す折れ線19.20.
21.22で表わされているここで、測定点18dは管
群の8段に相当する距離(第4図(b)の符号L)に8
2定され、以下測定点18aはこれの1/4.18Cは
3/4の点にそれぞれ設定されている。測定点18bは
2/4よりも若干前方、正確には7716の点に設定さ
れている。また、横軸のV/Vavcは測定点にお(プ
る速度Vを測定箇所における平均流速v aveで除し
た無次元速度比を表わしている。
In Fig. 6, reference numeral 17 indicates a polygonal line indicating the flow velocity of turbulent air intentionally created at the inlet of the tube group, and it is measured at the upper end of the tube group (see code X in Fig. 4 (b)). It is based on the value given. Line 1 showing this inlet velocity distribution
The changes at each measurement point 18a, 18b, 18c, and 18d indicate the respective flow velocities.
Here, the measurement point 18d is located at a distance corresponding to 8 stages of the tube group (symbol L in Fig. 4(b)).
Hereinafter, the measurement point 18a is set at 1/4 of this, and 18C is set at 3/4 of this. The measurement point 18b is set slightly ahead of 2/4, or more precisely at point 7716. Further, V/Vavc on the horizontal axis represents a dimensionless velocity ratio obtained by dividing the velocity V at the measurement point by the average flow velocity v ave at the measurement point.

管群の最後列の伝熱管16を通った空気の流れは測定点
18aでは折れ線19に示されるように規則正しい凹凸
の速度分布でおる。すなわち、伝熱管16の隙間23.
24.25に対応する点の速度は空気の流れが伝熱管」
6によって遮られないために他の測定点よりも速くなっ
ている。これに対し、伝熱管]6の位置と重なるところ
では空気の流れが伝熱管16との衝突で乱され、他の測
定点よりも遅くなっている。
The air flow passing through the last row of heat transfer tubes 16 in the tube group has a regular uneven velocity distribution at the measurement point 18a, as shown by the polygonal line 19. That is, the gap 23 between the heat exchanger tubes 16.
24. The velocity of the point corresponding to 25 is that the air flow is a heat transfer tube.
Because it is not obstructed by 6, it is faster than other measurement points. On the other hand, the air flow at the position overlapping with the heat exchanger tube 6 is disturbed by the collision with the heat exchanger tube 16, and is slower than at other measurement points.

ざらに、測定点18bのところまで空気の流れが進むと
、空気の流れの幅方向の混合が始まるために折れ線20
て示されるように凹凸が緩和して比較的平坦な速度分布
となるが、まだ多少の凹凸が見られる。測定点18Gの
位置では折れ線21のように凹凸の名残りが消失してか
なり平坦な速度分布となり、測定点18dすなわち、管
群8段相当距離では折れ線22のようにほぼ速度分布の
平坦化は完了したと見られる。
Roughly speaking, when the air flow advances to the measurement point 18b, the air flow begins to mix in the width direction, so the polygonal line 20
As shown in Figure 1, the unevenness is relaxed and the velocity distribution becomes relatively flat, but some unevenness is still visible. At the position of measurement point 18G, the remnants of unevenness disappear as shown by polygonal line 21, resulting in a fairly flat velocity distribution, and at measurement point 18d, that is, a distance equivalent to 8 stages of the tube group, the flattening of the velocity distribution is almost completed as shown by polygonal line 22. It appears that he did.

第7図および第8図は管群の中央部および下端部(第4
図(b)符号YおよびZ参照)における結果でおる。図
から明らかなように第6図の結果と殆ど同一でおり、空
気の速度弁イ5は測定点18dにて何れも平坦化が完了
していることがわかる。
Figures 7 and 8 show the central part and lower end (fourth part) of the tube group.
This is the result in Figure (b) (see symbols Y and Z). As is clear from the figure, the results are almost the same as those in FIG. 6, and it can be seen that the air velocity valve A5 has completely flattened at the measuring point 18d.

以上の実験結果から管群自身が整流薇構を備えているこ
とか検証され、従来の整流格子の代替手段として機能さ
せることが可能である。したがって注入格子を、脱硝触
rR層よりも前に工堪ブられる管群の後方の適切な位置
に置く限り、整流格子は全く不要でおる。すなわち、こ
の位置は上jホの実験を根拠に、管群8段相当距離を最
小とする。整流格子に代わる管群の整流機構はドリフト
損失を軽減するのに役立ち、これによりガスタービンの
出力が増加する。
From the above experimental results, it has been verified that the tube group itself is equipped with a rectifier structure, and it is possible to function as an alternative to the conventional rectifier grid. Therefore, as long as the injection grid is placed in an appropriate position behind the tube bank to be worked before the denitrification contact RR layer, no rectification grid is required. That is, this position minimizes the distance equivalent to 8 stages of the tube group based on the experiment described above. A tube bank flow straightener instead of a flow straightener grid helps reduce drift losses, thereby increasing gas turbine power output.

(第1実施例) 第1図は排熱回収熱交換器に適用した例を示している。(First example) FIG. 1 shows an example of application to an exhaust heat recovery heat exchanger.

ここで、注入格子12は高圧蒸発器3の下流側に設けら
れるが、その位置は第2図に示される高圧蒸発器3の管
群最後尾から管群8段に相当する距離(第4図(b)の
距離L)離れたところでおる。
Here, the injection grid 12 is provided on the downstream side of the high-pressure evaporator 3, and its position is at a distance corresponding to the 8th stage of the tube group from the end of the tube group of the high-pressure evaporator 3 shown in FIG. (b) is at a distance L) far away.

本実施例では管群最後尾から管群8段に相当する距離離
れた位置に注入格子12が配置されるが、この位置は高
圧蒸発器3の管群段数が8段以上あるために最後尾を出
る排ガスの流れは既にafu目から先で規則正しくなっ
ており、注入格子12の手前で排カスの流れが整流に変
えられる。
In this embodiment, the injection grid 12 is arranged at a distance corresponding to 8 stages of the tube group from the end of the tube group. The flow of exhaust gas leaving the afu has already become regular after the afu, and the flow of exhaust gas is changed into a rectified flow before the injection grid 12.

(第2実施例) 本発明の第2の適用例は第3図に示される燃焼ホイラの
排気煙道25に脱硝触媒層26を形成する場合のもので
ある。ここで、脱硝触媒層26は節炭器27.28の下
流側に設置されるが、これは触媒の最適反応温度が25
0〜450°Cであることを考慮したものであることは
いうまでもない。本実施例における注入格子29は過熱
器30および再熱器31を構成する管群の最後尾から管
群8段に相当する距離離して設置されている。
(Second Embodiment) A second application example of the present invention is a case where a denitrification catalyst layer 26 is formed in the exhaust flue 25 of a combustion wheeler shown in FIG. Here, the denitrification catalyst layer 26 is installed downstream of the economizer 27, 28, but this is because the optimum reaction temperature of the catalyst is 25.
Needless to say, this takes into account the temperature range of 0 to 450°C. The injection grid 29 in this embodiment is installed at a distance corresponding to eight stages of the tube group from the last end of the tube group constituting the superheater 30 and the reheater 31.

本実施例の慴成においても再熱器31の管群段数が8段
以上あるために最後尾を出る燃焼ガスの流れは既に8段
目から先で規則正しい流れになっており、整流格子を用
いた場合と同等の整流効果を1ワることが可能である。
In the present embodiment, since the number of stages of the tube group in the reheater 31 is eight or more, the flow of combustion gas exiting the last stage is already a regular flow from the eighth stage onward, and a rectifying grid is used. It is possible to reduce the rectification effect by 1 w, which is equivalent to the case where the

なお、管群段数が8段に満たない場合の本発明の適用の
仕方は次のようになる。すなわち、管群1段から数えて
仮想の8段の位置を決め、そこから8段に相当する距離
前した位置を注入格子の設置場所とする。このようにす
れば第1および第2実施例と同様の位置に注入格子がく
るために第1および第2実施例と同様の効果を1?るこ
とかできる。
The method of applying the present invention when the number of tube group stages is less than 8 is as follows. That is, the position of virtual 8 stages counting from the 1st stage of the tube group is determined, and the position corresponding to the 8 stages ahead is set as the installation location of the injection grid. In this way, since the injection grating is placed in the same position as in the first and second embodiments, the same effects as in the first and second embodiments can be obtained. I can do that.

[発明の効果] 以上説明したように本発明は還元剤を注入する注入格子
を脱硝触媒層よりも前に設けられた管群の後方に配置す
るようにしているので、管群自身が整流機構として機能
し、ガスタービン等におけるドリフト損失が軽減される
という優れた効果を奏する。
[Effects of the Invention] As explained above, in the present invention, the injection grid for injecting the reducing agent is arranged behind the tube group provided before the denitration catalyst layer, so the tube group itself has a flow rectification mechanism. It has the excellent effect of reducing drift loss in gas turbines and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1実施例に係る排熱回
収熱交換器の構成図および注入格子の配置図、第3図は
本発明の第2実施例に係る燃焼ボイラの構成図、第4図
(a)、(b)は本発明の実験に用いられた熱交換器管
群の平面図および立面図、第5図は管群段数と熱伝達係
数と関係を示す線図、第6図、第7図および第8図は空
気の速度分布を示す状態図、第9図は従来の排熱回収熱
交換器を示す構成図、第10図(a>(b)は従来の注
入格子の一例を示す正面図および側面図である。 1・・・・・・・・・胴 2・・・・・・・・・過熱器 3・・・・・・・・・高圧蒸発器 4・・・・・・・・・高圧節炭器 5・・・・・・・・・低圧蒸発器 6・・・・・−・・・低圧節炭器 11.26・・・脱硝触媒層 12.2つ・・・注入格子 16・・・・・・・・・伝熱管 17.19.2Q、21.22 ・・・・・・空気流速を示す折れ線 18a、18b、18c、18 d ・・・測定点27
.28・・・節炭器 31・・−・・・・・・再熱器 出願人      東京電力株式会社 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図 第2図 第3図 第4図 1t暦役散l 第5図 ■/■C 第6図 第7図 第8図 第9図 (al (b) 第10図
1 and 2 are a configuration diagram of an exhaust heat recovery heat exchanger and an arrangement diagram of an injection grid according to a first embodiment of the present invention, and FIG. 3 is a configuration diagram of a combustion boiler according to a second embodiment of the present invention. 4(a) and (b) are a plan view and an elevation view of the heat exchanger tube group used in the experiment of the present invention, and FIG. 5 is a line showing the relationship between the number of stages of the tube group and the heat transfer coefficient. Fig. 6, Fig. 7, and Fig. 8 are state diagrams showing air velocity distribution, Fig. 9 is a configuration diagram showing a conventional exhaust heat recovery heat exchanger, and Fig. 10 (a>(b) 1 is a front view and a side view showing an example of a conventional injection grid. 1...Channel 2...Superheater 3...High pressure Evaporator 4...High pressure economizer 5...Low pressure evaporator 6...Low pressure economizer 11.26...Denitrification Catalyst layer 12.2... Injection grid 16... Heat exchanger tubes 17.19.2Q, 21.22... Broken lines 18a, 18b, 18c, 18 indicating air flow velocity d...Measurement point 27
.. 28...Coal economizer 31...Reheater Applicant: Tokyo Electric Power Co., Ltd. Applicant: Toshiba Corporation Representative Patent Attorney: Satoshi Suyama - Figure 1 Figure 2 Figure 3 Figure 4 Figure 1t Calendar Yakusanl Figure 5 ■/■C Figure 6 Figure 7 Figure 8 Figure 9 (al (b) Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)熱交換部を構成する複数の管群中に脱硝触媒層を
形成すると共に、この脱硝触媒層の上流側には該脱硝触
媒層に向かう排ガスあるいは燃焼ガスに対して還元剤を
注入する注入格子を設けてなる熱交換器において、前記
注入格子は前記脱硝触媒層よりも前に置かれる管群の後
方に、該管群との間に一定の距離を置いて配置されてい
ることを特徴とする蒸気動力装置用熱交換器。
(1) A denitrification catalyst layer is formed in a plurality of tube groups constituting the heat exchange section, and a reducing agent is injected into the upstream side of the denitrification catalyst layer for the exhaust gas or combustion gas heading toward the denitrification catalyst layer. In a heat exchanger provided with an injection grid, the injection grid is arranged behind a group of tubes placed before the denitrification catalyst layer, with a certain distance between the group of tubes. Features of heat exchanger for steam power equipment.
(2)注入格子が管群の最後尾から少なくとも管群8段
に相当する距離を置いて配置されていることを特徴とす
る特許請求の範囲第1項記載の蒸気動力装置用熱交換器
(2) The heat exchanger for a steam power plant according to claim 1, wherein the injection grid is arranged at a distance corresponding to at least eight stages of the tube group from the end of the tube group.
JP62143831A 1987-06-09 1987-06-09 Heat exchanger for steam power plant Pending JPS63310626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143831A JPS63310626A (en) 1987-06-09 1987-06-09 Heat exchanger for steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143831A JPS63310626A (en) 1987-06-09 1987-06-09 Heat exchanger for steam power plant

Publications (1)

Publication Number Publication Date
JPS63310626A true JPS63310626A (en) 1988-12-19

Family

ID=15347960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143831A Pending JPS63310626A (en) 1987-06-09 1987-06-09 Heat exchanger for steam power plant

Country Status (1)

Country Link
JP (1) JPS63310626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924246A (en) * 1995-07-13 1997-01-28 Mitsubishi Heavy Ind Ltd Ammonia injection device in denitration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924246A (en) * 1995-07-13 1997-01-28 Mitsubishi Heavy Ind Ltd Ammonia injection device in denitration device

Similar Documents

Publication Publication Date Title
JP2637119B2 (en) DeNOx reaction equipment
US5555718A (en) Method and apparatus for injecting reactant for catalytic reduction in a gas turbine combined cycle system
US9400102B2 (en) Heat exchanger including flow regulating plates
KR100279334B1 (en) Heat exchanger with fin tube
CN1037290C (en) Combustion method and apparatus for reducing emission concentrations of NOX and CO
WO2004042280A1 (en) Exhaust gas treating apparatus
EP0915288A2 (en) Exhaust heat recovery boiler
US6887435B1 (en) Integrated air foil and ammonia injection grid for SCR systems
JPS63310626A (en) Heat exchanger for steam power plant
EP2325560B1 (en) Reheat boiler
JP3376511B2 (en) Ammonia gas injection device in denitration equipment
JP3112570B2 (en) Exhaust gas heating device for flue gas denitration equipment
CN106051803B (en) Smoke eliminator and the chain-grate boiler for being equipped with the device
JP2542003B2 (en) Denitration equipment
JP2005140370A (en) Exhaust heat recovery boiler
EP3628395B1 (en) Dinitrifcation apparatus for coal fired boiler
CN215311464U (en) SCR denitration device for high-temperature and high-dust flue gas of cement kiln
CN219682180U (en) SCR denitration system
JPH11347367A (en) Exhaust gas denitrifying apparatus
JP2003166711A (en) Fluid passage and flue gas control device
TWI755567B (en) Denitrification device
JP3573377B2 (en) Exhaust heat recovery boiler denitration equipment
TW202345958A (en) Denitration device
EP4047272A1 (en) Incineration plant for solid material
JPH0663358A (en) Denitrification reactor