[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63314759A - Organic electrolyte cell using metal oxide composite material as positive electrode - Google Patents

Organic electrolyte cell using metal oxide composite material as positive electrode

Info

Publication number
JPS63314759A
JPS63314759A JP62149182A JP14918287A JPS63314759A JP S63314759 A JPS63314759 A JP S63314759A JP 62149182 A JP62149182 A JP 62149182A JP 14918287 A JP14918287 A JP 14918287A JP S63314759 A JPS63314759 A JP S63314759A
Authority
JP
Japan
Prior art keywords
organic electrolyte
insoluble
electrolyte battery
metal oxide
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62149182A
Other languages
Japanese (ja)
Other versions
JP2616774B2 (en
Inventor
Shizukuni Yada
静邦 矢田
Takuji Osaki
拓司 大崎
Hajime Kinoshita
肇 木下
Hisashi Satake
久史 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62149182A priority Critical patent/JP2616774B2/en
Publication of JPS63314759A publication Critical patent/JPS63314759A/en
Application granted granted Critical
Publication of JP2616774B2 publication Critical patent/JP2616774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a secondary cell with a large capacity and little capacity reduction at the quick charge and discharge by using a composite material of a specific insoluble and infusible material and a metal oxide as a positive electrode active material. CONSTITUTION:A composite material of a metal oxide and an insoluble and infusible material which is the heat-treated material of aromatic condensation polymer which is a condensed material of an aromatic hydrocarbon compound with phenol hydroxyl group and aldehyde and has the polyacen skeleton structure with the atom ratio between the hydrogen atom/carbon atom of 0.05-0.5 and has the specific surface area value by the BET method of at least 600m<2>/g is used as the active material of a positive electrode 1. A nonproton organic solvent solution 4 of a compound capable of generating ions doped with the positive electrode active material by electrolysis is used as an electrolyte 4. The electrochemical doping of a doping agent and the electrochemical undoping on the composite material of the positive electrode active material are utilized to obtain the cell function.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機電解質電池に関する。更に詳しくは半導体
の性能を有する不溶不融性物質と金属酸化物との複合物
を正極活物質とし、そしてドーピングされうるイオンを
生成しうる化合物を非プロトン性有機溶媒に溶解した溶
液を電解液とする有機電解質電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to organic electrolyte batteries. More specifically, the positive electrode active material is a composite of an insoluble infusible substance with semiconductor properties and a metal oxide, and the electrolyte is a solution in which a compound capable of producing ions that can be doped is dissolved in an aprotic organic solvent. The present invention relates to an organic electrolyte battery.

[従来の技術] 近年、電子機器の小形化、薄形化或は軽量化は、目覚ま
しく、それに伴い電源となる電池の小形化、薄形化、軽
量化の要望が大きい。小形で性能のよい電池として現在
は酸化銀電池が多用されており、又薄形化された乾電池
や、小形軽けな高性能電池としてリチウム合金が開発さ
れ実用化されている。
[Prior Art] In recent years, electronic devices have become increasingly smaller, thinner, and lighter, and there is a strong demand for smaller, thinner, and lighter batteries that serve as power sources. Currently, silver oxide batteries are widely used as small, high-performance batteries, and lithium alloys have been developed and put into practical use as thin dry batteries and small, lightweight, high-performance batteries.

しかし、これらの電池は一次電池であるため充放電を繰
り返して長時間使用することはできない。
However, since these batteries are primary batteries, they cannot be used for long periods of time by being repeatedly charged and discharged.

一方、高性能な二次電池としてニッケルーカドミウム電
池が実用化されているが、小形化、薄形化、軽量化とい
う点で未だ不満足である。
On the other hand, although nickel-cadmium batteries have been put into practical use as high-performance secondary batteries, they are still unsatisfactory in terms of miniaturization, thinness, and weight reduction.

又、大容量の二次電池として従来より鉛蓄電池が種々の
産業分野で用いられているが、この電池の最大の欠点は
重いことである。これは電極として過酸化鉛及び鉛を用
いているため宿命的なものである。近年、電気自動車用
電池として該電池の軽量化及び性能改善が試みられたが
実用するに至らなかった。しかし蓄電池として大容量で
且つ軒昂な二次電池に対する要望は強いものがある。
Furthermore, lead-acid batteries have conventionally been used as large-capacity secondary batteries in various industrial fields, but the biggest drawback of these batteries is that they are heavy. This is fateful since lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a secondary battery that has a large capacity and is of great use as a storage battery.

以上のように現在実用化されている電池は、夫々一長一
短が有りそれぞれ用途に応じて使い分けされているが、
電池の小形化、薄形化、或は軽は化に対するニーズは大
ぎい。このようなニーズに応える電池として、近時、有
機半導体である薄膜状ポリアセチレンに電子供与物質又
は電子受容・1ノ[物質をドーピングしたものを電極活
物質として用いる電池が研究され提案されている。該電
池は二次電池として高性能で且つ薄形化、軽1化の可能
性を有しているが、大きな欠点がある。それは、有機半
導体であるポリアセチレンが極めて不安定な物質であり
、空気中の酸素により容易に酸化を受け、又熱により変
質することである。従って電池製造1ま不活性ガス雰囲
気で行なわなければならず、又ポリアレヂレンを電極に
適した形状に製造する事にも制約を受ける。
As mentioned above, the batteries that are currently in practical use each have their advantages and disadvantages, and are used differently depending on the purpose.
There is a great need for smaller, thinner, and lighter batteries. As a battery that meets these needs, a battery that uses a thin film of polyacetylene, which is an organic semiconductor, doped with an electron-donating substance or an electron-accepting substance as an electrode active material has recently been researched and proposed. Although this battery has high performance as a secondary battery and has the potential to be made thinner and lighter, it has a major drawback. The reason is that polyacetylene, which is an organic semiconductor, is an extremely unstable substance, easily oxidized by oxygen in the air, and deteriorated by heat. Therefore, the battery manufacturing step 1 must be carried out in an inert gas atmosphere, and there are also restrictions on manufacturing polyethylene into a shape suitable for electrodes.

又、本出願人は先に有機半導体の一種であるポリアレン
系骨格構造を含有する不溶不融性基体に電子供り性物貿
又は電子受容性物質をドーピングしたものを電極活物質
として用いる二次電池を提案している(特開昭60−1
70163号)。該電池は高性能で薄形化、軽量化の可
能性も有しており、電極活物質の酸化安定性も高く、さ
らにその成形も容易であるなど将来有望な二次電池であ
る。ところが該電池の実用化を進めるにはいくつかの課
題が残されていた。これらの課題の中で最も重要なのは
電池の容量の向上である。
In addition, the applicant has previously developed a secondary electrode active material in which an insoluble and infusible substrate containing a polyarene skeleton structure, which is a type of organic semiconductor, is doped with an electron-accepting substance or an electron-accepting substance. proposes a battery (Unexamined Japanese Patent Publication No. 60-1
No. 70163). This battery has high performance, has the possibility of being made thinner and lighter, has a high oxidation stability of the electrode active material, and can be easily molded, making it a promising secondary battery. However, several issues remain to be solved in order to put this battery into practical use. The most important of these challenges is improving battery capacity.

ところで正極材としてv205等の金RM化物が知られ
ており、該金属酸化物を正極に用いた二次電池が研究さ
れてきた。しかし、該金属酸化物を正極材として用いた
電池においては、急速充放電を行った時に容量の低下が
著しく、実用的でない。
By the way, gold RM compounds such as V205 are known as positive electrode materials, and secondary batteries using such metal oxides as positive electrodes have been studied. However, in batteries using such metal oxides as positive electrode materials, the capacity decreases significantly when rapid charging and discharging is performed, making them impractical.

[発明が解決しようとする問題点] 既存の電池の上述の諸問題に鑑み、本発明は、容量が大
ぎく、特に急速充放電において容量の低下の少い有機電
解質電池を提供することを目的とする。
[Problems to be Solved by the Invention] In view of the above-mentioned problems of existing batteries, an object of the present invention is to provide an organic electrolyte battery that has a large capacity and exhibits little capacity loss, especially during rapid charging and discharging. shall be.

本発明のさらに他の目的は小形化、薄形化あるいは軽量
化が可能でありそして製造も容易である経済的な二次電
池である有機電解質電池を提供することにある。
Still another object of the present invention is to provide an organic electrolyte battery that is an economical secondary battery that can be made smaller, thinner, lighter, and easier to manufacture.

本発明のさらに他の目的は起電圧が高く、内部抵抗が小
さく、しかも長期に亘って充電、放電が可能な二次電池
を提供するにある。
Still another object of the present invention is to provide a secondary battery that has a high electromotive voltage, a low internal resistance, and can be charged and discharged over a long period of time.

本発明のざらに他の目的および利点は、以下の説明から
明らかとなろう。
Other objects and advantages of the invention will become apparent from the following description.

[問題点を解決するための手段] 本発明者は、特定の不溶不融性物質と金属酸化物との複
合物を正極活物質として用いることにより、容量が大き
く、特に急速充放電において容量低下の少い二次電池が
得られことを見い出した。
[Means for Solving the Problems] The present inventor has proposed that by using a composite of a specific insoluble and infusible substance and a metal oxide as a positive electrode active material, the capacity can be increased and the capacity can be reduced especially during rapid charging and discharging. It has been found that a secondary battery with a small amount of energy can be obtained.

該電池の容量は、不溶不融性物質単独または金属酸化物
単独より成る正極活物質を用いる場合よりも顕著に大ぎ
い。
The capacity of the battery is significantly greater than when using a positive electrode active material consisting of an insoluble and infusible substance alone or a metal oxide alone.

すなわら本発明は、 (A)(a)フェノール性水酸基を有する芳香族炭化水
素化合物とアルデヒド類との縮合物である芳香族系縮合
ポリマーの熱処理物であって、水素原子/炭素原子の原
子比がO,OS〜0.5であるボリアセン系骨格構造を
有しBET法による比表面積値が少くとも600TIi
/gである不溶不融性物質と (b)金属酸化物 との複合物を正極活物質とし (B)電解により該正極活物質にドーピングされうるイ
オンを生成しうる化合物の非プロトン性有機溶媒溶液を
電解液とする ことを特徴とする有機電解質電池である。
In other words, the present invention provides (A) (a) a heat-treated product of an aromatic condensation polymer which is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde; It has a boriacene skeleton structure with an atomic ratio of O, OS ~ 0.5, and has a specific surface area value of at least 600TIi by the BET method.
/g and (b) a composite of a metal oxide as a positive electrode active material, and (B) an aprotic organic solvent of a compound that can generate ions that can be doped into the positive electrode active material by electrolysis. This is an organic electrolyte battery characterized by using a solution as an electrolyte.

本発明における芳香族系縮合ポリマーとは、フェノール
性水酸基を有する芳香族炭化水素化合物とアルデヒド類
との縮合物である。芳香族炭化水素化合物としては、例
えばフェノール、クレゾール、キシレノールのごときい
わゆるフェノール類が好適であるが、これらに限られな
い。例えば下記式 (ここで、Xおよびyはそれぞれ独立に、0.1又は2
である。) で表されるメチレンビスフェノール類であることができ
、或はヒドロキシビフェニル類、ヒドロキシナフタレン
類であることもできる。これらの内、実用的にはフェノ
ール類、特にフェノールが好適である。
The aromatic condensation polymer in the present invention is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol, and xylenol are suitable, but are not limited thereto. For example, the following formula (where X and y are each independently 0.1 or 2
It is. ), or may also be hydroxybiphenyls or hydroxynaphthalenes. Among these, phenols, particularly phenol, are preferred from a practical standpoint.

本発明における芳香族系縮合ポリマーとしでは、上記の
フェノール性水M基を有する芳香族炭化水素化合物の1
部をフェノール性水M基を右さない芳香族炭化水素化合
物例えばキシレン、トルエン、アニリン等で置換した変
性芳香族系ポリマー、例えばフェノールとキシレンとホ
ルムアルデヒドとの縮合物である変性芳香族系ポリマー
を用いることもでき、また、メラミン、尿素で置換した
変性芳香族系ポリマーを用いることもできる。
As the aromatic condensation polymer in the present invention, one of the above-mentioned aromatic hydrocarbon compounds having a phenolic water M group is used.
A modified aromatic polymer in which the phenolic water group is substituted with an aromatic hydrocarbon compound such as xylene, toluene, aniline, etc., such as a modified aromatic polymer that is a condensation product of phenol, xylene, and formaldehyde. Alternatively, a modified aromatic polymer substituted with melamine or urea can also be used.

アルデヒドとしては、ホルムアルデヒド、アセ1−アル
デヒド、フルノラール等を使用することができ、ホルム
アルデヒドが好適である。フェノールアルデヒド縮合物
としては、ノボラック型又はレゾール型或はそれらの複
合物のいずれであってもよい。ベルパールR(商標:鐘
紡株式会社製)として市販されている球状フェノール樹
脂(球径100μ以下程度)を用いることもできる。
As the aldehyde, formaldehyde, ace1-aldehyde, furnral, etc. can be used, and formaldehyde is preferred. The phenolaldehyde condensate may be a novolac type, a resol type, or a composite thereof. A spherical phenol resin (spherical diameter of about 100 μm or less) commercially available as Bell Pearl R (trademark: manufactured by Kanebo Co., Ltd.) can also be used.

本発明にお【ノる不溶不融性物質は、上記の如き芳香族
系ポリマーの熱処理物であり、例えば次のようにして製
造することができる。
The insoluble and infusible substance according to the present invention is a heat-treated product of the aromatic polymer as described above, and can be produced, for example, as follows.

前記した芳香族系縮合ポリマーに塩化亜鉛、リン酸ナト
リウム、水酸化カリウムあるいは硫化カリウム等の無機
物を混入する。混入方法としては芳香族系綜合ポリマー
をメタノール、アゼトン或は水等の溶媒に溶解さけた後
、上記した無機物を添加し、十分に混合すればよい。又
、芳香族系縮合ポリマーがノボラックのように溶融性の
ものであれば加熱状態下で混合してもよい。芳香族系縮
合ポリマーと前記した無機物の混合比は混じあわせるポ
リマーと無機物の種類及び形状によって異なるが、重量
化で10/1〜1/7が好ましい。
An inorganic substance such as zinc chloride, sodium phosphate, potassium hydroxide or potassium sulfide is mixed into the aromatic condensation polymer described above. As for the mixing method, the aromatic integrated polymer may be dissolved in a solvent such as methanol, azetone, or water, and then the above-mentioned inorganic substance may be added and thoroughly mixed. Further, if the aromatic condensation polymer is meltable such as novolak, it may be mixed under heating. The mixing ratio of the aromatic condensation polymer and the above-mentioned inorganic substance varies depending on the type and shape of the polymer and inorganic substance to be mixed, but is preferably 10/1 to 1/7 in terms of weight.

次に該混合物をフィルム状、板状、繊維状、’l’li
状、粒状又はそれらの混合の形に硬化する。その成形方
法は繊維状体であれば紡糸することにより、又フィルム
状体ではアプリケーターを使用して、又板状体であれば
金型を使ってプレス成形する。
Next, the mixture is formed into a film, plate, fiber, 'l'li.
It hardens into solid, granular, or a mixture thereof. The molding method is by spinning if it is a fibrous material, by using an applicator if it is a film material, or by press molding using a mold if it is a plate material.

次に50〜180℃で2〜60分間加熱するか、あるい
は硬化剤と触媒の存在下、50〜150’Cの温度で2
〜90分加熱することにより、硬化が可能である。
Then heat for 2-60 minutes at 50-180'C or 2-60 minutes at a temperature of 50-150'C in the presence of a curing agent and catalyst.
Curing is possible by heating for ~90 minutes.

また、不溶不融性物質に平均孔径0.03〜10μmの
多数の連通孔を持たせることを望む場合には、例えば次
の様にして硬化成形体を製造すれば良い。
Moreover, if it is desired that the insoluble and infusible substance has a large number of communicating pores with an average pore diameter of 0.03 to 10 μm, a cured molded body may be produced, for example, in the following manner.

前記した芳香族縮合ポリマーの初期縮合物を準備し、こ
の初期縮合物と無機塩とを含む水溶液を調製し、この水
溶液を適当な型に流し込み、次いで水分の蒸発を抑止し
つつ該水溶液を加熱して該型内で例えば板状、フィルム
状あるいは円筒状等の形態に硬化する。
Prepare the initial condensate of the aromatic condensation polymer described above, prepare an aqueous solution containing this initial condensate and an inorganic salt, pour this aqueous solution into a suitable mold, and then heat the aqueous solution while suppressing water evaporation. Then, it is cured in the mold into a plate-like, film-like, or cylindrical shape, for example.

無機塩は、初期縮合物の例えば2.5〜10重d倍の量
で用いることができる。下限より少ない量では連通孔を
有する多孔体が得難く、また上限より多い量では最終的
に得られる物質の密度が低下する傾向が大きくなり望ま
しくない。初期縮合物と無機塩の水溶液は、使用する無
機塩の種類によっても異なるが例えば無機塩の0.1〜
1小量侶の水を用いて調整することができる。
The inorganic salt can be used in an amount of, for example, 2.5 to 10 times the weight of the initial condensate. If the amount is less than the lower limit, it will be difficult to obtain a porous body having communicating pores, and if the amount is more than the upper limit, the density of the final material will tend to decrease, which is not desirable. The aqueous solution of the initial condensate and inorganic salt varies depending on the type of inorganic salt used, but for example, the aqueous solution of the inorganic salt
It can be adjusted using 1 small amount of water.

かくして得られた硬化体は、次いで非酸化性雰囲気中で
350〜800℃の温度、好ましくは350〜700℃
の温度、特に好ましくは400〜600℃の温度まで加
熱される。
The thus obtained cured product is then heated in a non-oxidizing atmosphere at a temperature of 350 to 800°C, preferably 350 to 700°C.
, particularly preferably to a temperature of 400 to 600°C.

熱処理の際の好ましい昇温速度は、使用する芳香族系縮
合ポリマー、又はその硬化処理の程度おるいはその形状
等によって多少相違するが、一般に室温から300℃程
度の温度までは比較的大きな昇温速度とすることが可能
であり、例えば100°C/時間の速度とすることも可
能である。300 ’C以上の温度になると、該芳香族
系縮合ポリマーの熱分解が開始し、水燕気、水素、メタ
ン、−酸化炭素の如きガスが発生し始めるため、充分に
遅い速度で昇温せしめるのが有利である。
The preferred temperature increase rate during heat treatment varies somewhat depending on the aromatic condensation polymer used, the degree of curing treatment, its shape, etc., but in general, a relatively large temperature increase from room temperature to about 300°C is required. A temperature rate of, for example, 100°C/hour is also possible. When the temperature reaches 300'C or more, the aromatic condensation polymer starts to thermally decompose and gases such as water, hydrogen, methane, and carbon oxide begin to be generated, so the temperature should be raised at a sufficiently slow rate. is advantageous.

芳香族系縮合ポリマーのかかる熱処理は、非酸化性雰囲
気下において行なわれる。非酸化性雰囲気は、例えば窒
素、アルゴン、ヘリウム、ネAン、二酸化炭素雰囲気、
又は真空であり、窒素が好ましく用いられる。かかる非
酸化性雰囲気は静1−シていても流動していてもさしつ
かえない。
Such heat treatment of the aromatic condensation polymer is carried out under a non-oxidizing atmosphere. Non-oxidizing atmospheres include, for example, nitrogen, argon, helium, neon, carbon dioxide atmosphere,
or vacuum, with nitrogen being preferably used. Such a non-oxidizing atmosphere may be static or fluid.

得られた熱処理体を水あるいは希塩酸等によって充分に
洗浄することによって、熱処理体中に含まれる無機塩を
除去することができ、その後これを乾燥すると比表面積
の大きな、また場合によっては連通孔の発達した不溶不
融性物質を得ることができる。
By thoroughly washing the obtained heat-treated body with water or dilute hydrochloric acid, the inorganic salts contained in the heat-treated body can be removed. After that, drying this heat-treated body will remove the inorganic salts that have a large specific surface area and, in some cases, the communication pores. A developed insoluble and infusible substance can be obtained.

該不溶不融性物質は水素原子/炭素原子の原子数比(以
下ト1/C比という)が0.5〜0.05、好ましくは
0.35〜0.05のポリアセン系骨格構造を有し、且
つ場合によっては平均孔径10μm以下の連通孔、例え
ば平均孔径0.03〜10μmの連通孔を持つ不溶不融
性物質が得られる。
The insoluble and infusible substance has a polyacene skeleton structure with an atomic ratio of hydrogen atoms/carbon atoms (hereinafter referred to as 1/C ratio) of 0.5 to 0.05, preferably 0.35 to 0.05. However, in some cases, an insoluble and infusible material having communicating pores with an average pore diameter of 10 μm or less, for example, an average pore diameter of 0.03 to 10 μm, can be obtained.

X線回折(CUKα)によれば、メイン・ピークの位置
は2θで表わして20.5〜23.5°の間に存在し、
また該メイン・ピークの他に41〜46°の間にブロー
ドな他のピークが存在する。また、赤外線吸収スペクト
ルによれば、D(=D2900〜294゜/D 156
0〜1640)の吸光度比は通常0.5以下、好ましく
は0.3以下である。
According to X-ray diffraction (CUKα), the main peak position exists between 20.5 and 23.5° expressed in 2θ,
In addition to the main peak, there are other broad peaks between 41° and 46°. Also, according to the infrared absorption spectrum, D(=D2900~294°/D156
The absorbance ratio of 0 to 1640) is usually 0.5 or less, preferably 0.3 or less.

プなわら、上記不溶不融性物質は、ポリアセン系のベン
ゼンの多環構造がポリアセン系分子間に均−且つ適度f
発達したものであると理解される。
In other words, the above-mentioned insoluble and infusible substance has a polycyclic structure of polyacene-based benzene that is uniformly and moderately distributed between polyacene-based molecules.
It is understood that it is a developed thing.

1−1 / C比が0.5を越える場合は該物質と金属
酸化物の複合物を電極として用いた二次電池の充放電の
電荷効率が悪くなり好ましくない。水素原子/炭素原子
の原子比が0.05未満の場合にも充放電の電荷効率に
若干の問題が生じるため好ましくない。即ち水素原子/
炭素原子の原子比が0.05〜0.5の不溶不融性物質
を用いた場合好ましい電池特性を示すものである。又、
該ポリアセン系骨格構造を含有する不溶不融性物質のB
 E T法による比表面積値は無機塩を使用して製造し
ているため極めて大きな値となり、600尻/g以上で
あるものが特に好ましい。600m2/g未満の場合に
は、該物質と金属酸化物の複合物を正極活物質とした二
次電池の充電時における充電電圧を高くする必要が生じ
るためエネルギー効率等が低下し、又電解液の劣化をさ
そうため好ましくない。該ポリアセン系骨格構造を含有
する不溶不融性物質はBET法による比表面積値が60
0尻/9以上と大きな値を有するため酸素ガス等が侵入
し劣化しやすいと考えられるが、現実には空気中に長時
間放置しても電気伝導度等の物性に変化はなく、酸化安
定性に優れているものである。
If the 1-1/C ratio exceeds 0.5, the charge efficiency of charging and discharging a secondary battery using a composite of the substance and a metal oxide as an electrode will deteriorate, which is not preferable. A hydrogen atom/carbon atom atomic ratio of less than 0.05 is also undesirable because it causes some problems in charging and discharging charge efficiency. That is, hydrogen atom/
When an insoluble and infusible substance having an atomic ratio of carbon atoms of 0.05 to 0.5 is used, preferable battery characteristics are exhibited. or,
B of the insoluble and infusible substance containing the polyacene skeleton structure
The specific surface area value determined by the ET method is extremely large because it is produced using an inorganic salt, and those having a specific surface area of 600 butts/g or more are particularly preferred. If it is less than 600 m2/g, it will be necessary to increase the charging voltage when charging a secondary battery using a composite of the substance and metal oxide as a positive electrode active material, resulting in a decrease in energy efficiency, etc. This is undesirable as it may cause deterioration. The insoluble and infusible material containing the polyacene skeleton structure has a specific surface area value of 60 according to the BET method.
Because it has a large value of 0/9 or more, it is thought that oxygen gas etc. can enter and deteriorate easily, but in reality, there is no change in physical properties such as electrical conductivity even if it is left in the air for a long time, and it is stable due to oxidation. It has excellent characteristics.

本発明における金属酸化物としては、リチウムイオンの
インターカレーション、又はディンターカレーション可
能なものを用いる。特に遷移金属酸化物が好ましい。尚
、本発明におけるドーピングとは、該インターカレーシ
ョン機構をも含意する。遷移金属酸化物としてはバナジ
ウム、クロム、マンガン、モリブデン、銅、ビスマスの
ごとき金属の酸化物を用いることができる。たとえば、
V2O5、V6O13、Cr3O8が挙げられる。
The metal oxide used in the present invention is one capable of intercalating or diintercalating lithium ions. Particularly preferred are transition metal oxides. Note that doping in the present invention also includes the intercalation mechanism. As the transition metal oxide, oxides of metals such as vanadium, chromium, manganese, molybdenum, copper, and bismuth can be used. for example,
Examples include V2O5, V6O13, and Cr3O8.

また、AgCr o3 、B I 2 Pb 203、
Cu 2 V207等の二種以上の金属の複合された酸
化物を用いることもできる。該金属酸化物は、結晶質状
態であっても、あるいは加熱処理等により非晶質状態に
したものであってもよい。
In addition, AgCr o3, B I 2 Pb 203,
A composite oxide of two or more metals such as Cu 2 V207 can also be used. The metal oxide may be in a crystalline state or may be made into an amorphous state by heat treatment or the like.

本発明における不溶不融性物質と金属酸化物との複合物
は例えば、これらの粉末を用いて次のようにして得られ
る。
The composite of an insoluble and infusible substance and a metal oxide in the present invention can be obtained, for example, using these powders in the following manner.

前述の方法で製造された不溶不融性物質は粉末状で得ら
れるものをそのまま使用しても良く、又は成形体の形で
得られるものをミル等を用いて粉末状に砕いても良い。
The insoluble and infusible substance produced by the above-mentioned method may be used as it is in powder form, or may be obtained in the form of a molded body and crushed into powder using a mill or the like.

特に多数の連通孔を有する不溶不融性物質の例えば粒状
、板状の様な成形体を粉末状に砕いたものを用いること
が望ましい。該粉末を用いた場合、これと金属酸化物と
の複合物を正極活物質に用いる二次電池において、電解
液が十分に正極の内部まで入ることによりドーパントが
スムーズに正極活物質にドーピングあるいはアンドーピ
シグされるため急速充放電可能となる。不溶不融性物質
の粉末の平均粒径は100μmを越えなければ特に問題
はないが、後に述べる複合物の成形体の成形の容易さ、
成形体の強度を考慮すると30μm以下にすることが望
ましい。
In particular, it is desirable to use a molded body of an insoluble and infusible material, such as a granular or plate-shaped body having a large number of communicating holes, crushed into powder. When this powder is used, in a secondary battery that uses a composite of this powder and a metal oxide as a positive electrode active material, the electrolyte sufficiently enters the inside of the positive electrode, so that the dopant can be smoothly doped or undoped into the positive electrode active material. This enables rapid charging and discharging. There is no particular problem with the average particle size of the powder of the insoluble and infusible substance as long as it does not exceed 100 μm, but the ease of molding of the composite body described later,
Considering the strength of the molded body, it is desirable that the thickness be 30 μm or less.

また、金属酸化物の粉末についてもドーピングの効率化
及び成形を考慮すると30μm以下にすることが望まし
い。
Further, it is desirable that the metal oxide powder has a thickness of 30 μm or less in consideration of doping efficiency and molding.

上記2種の粉末を十分に混合することにより複合物を得
ることができる。複合比は該複合物を正極活物質に用い
た二次電池の使用用途にもよるが、不溶不融性物質/金
属酸化物の重量圧が9515〜15/85であることが
望ましい。9515を越えて金属酸化物を減らした場合
、複合することによる高容量化の効果が小さくなり、ま
た、15/85より下に金属酸化物が増えた場合には急
速充放電特性が失われてしまうため好ましくない。この
比は90/10〜30/ 70であることが好ましい。
A composite can be obtained by sufficiently mixing the above two types of powders. Although the composite ratio depends on the usage of a secondary battery using the composite as a positive electrode active material, it is desirable that the weight pressure of insoluble and infusible material/metal oxide is 9515 to 15/85. If the metal oxide is reduced beyond 9515, the effect of increasing the capacity due to compounding will be reduced, and if the metal oxide is increased below 15/85, the rapid charge/discharge characteristics will be lost. It is not desirable because it is stored away. Preferably, this ratio is between 90/10 and 30/70.

該複合物を正極として用いる場合、一般に板状、フィル
ム状、円筒状等の形状に成形することが望ましい。成形
は、加圧、焼結など適宜の手段により行うことができる
。成形された該複合物において電気伝導度が10−53
/cm以上、さらに好ましくは1O−3S/cm以上あ
ることが望ましく、成形時に導電剤を加える場合もある
。導電剤の種類は特に限定されず、金属ニッケル等の金
属粉末でもよいが、例えば活性炭、カーボンブラック、
アセチレンブラック、黒鉛等の炭素系のものが特に好ま
しい。混合比は不溶不融性物質の電気伝導度、該複合物
の複合比等によって異なるが、複合物総重量に対して4
0〜2%加えるのが適当である。
When the composite is used as a positive electrode, it is generally desirable to form it into a plate, film, cylinder, or the like. Molding can be performed by appropriate means such as pressurization and sintering. The molded composite has an electrical conductivity of 10-53.
/cm or more, more preferably 10-3S/cm or more, and a conductive agent may be added at the time of molding. The type of conductive agent is not particularly limited, and may be metal powder such as metal nickel, but examples include activated carbon, carbon black,
Carbon-based materials such as acetylene black and graphite are particularly preferred. The mixing ratio varies depending on the electrical conductivity of the insoluble and infusible substance, the composite ratio of the composite, etc., but it is 4% based on the total weight of the composite.
It is appropriate to add 0 to 2%.

加圧成形の場合にバインダーを加えることが好ましいこ
ともある。バインダーの種類は後で述べる本発明におけ
る電解液に不溶のものであれば特に限定されないが、例
えばSBR等のゴム系バインダー、ポリ四フッ化エチレ
ン等のフッ素系樹脂、ポリプロピレン、ポリエチレン等
の熱可塑性樹脂が好ましく、その混合比は複合物総重量
に対し20%以下が望ましい。
It may be preferable to add a binder during pressure molding. The type of binder is not particularly limited as long as it is insoluble in the electrolytic solution in the present invention described later, but examples include rubber binders such as SBR, fluororesins such as polytetrafluoroethylene, and thermoplastics such as polypropylene and polyethylene. Resins are preferred, and their mixing ratio is preferably 20% or less based on the total weight of the composite.

上記の様な不溶不融性物質粉末、全屈酸化物粉末、及び
場合により更に導電剤、バインダーを加えた混合物を板
状、フィルム状、円筒状等に成形する。成形法としては
、例えば混合物を金型に入れ室温あるいは必要に応じて
加熱下で加圧成形すれば良い。また該混合物を適当な溶
媒、例えば水、メタノール、DMF、四塩化炭素等の比
較的沸点の低い溶媒と混練して、ペースト状にし、後で
)ホベる集電体上に塗付あるいは加圧上接着させ、その
後に適当な方法で乾燥させ、正極として用いることもで
きる。さらには後で述べる電解液と共に該混合物をアル
ゴンガス等の水を含まない雰囲気下で混練後、後で述べ
る集電体上に塗付必るいは加圧上接着させ、そのまま正
極として用いることもできる。
A mixture of the above-mentioned insoluble and infusible material powder, total oxide powder, and optionally a conductive agent and a binder is formed into a plate, film, cylinder, or the like. As for the molding method, for example, the mixture may be placed in a mold and pressure molded at room temperature or under heating if necessary. In addition, the mixture is kneaded with a suitable solvent such as water, methanol, DMF, carbon tetrachloride, etc. with a relatively low boiling point to form a paste, which is then applied (later) onto a hoovering current collector or under pressure. It can also be used as a positive electrode by adhering the top layer and then drying it by an appropriate method. Furthermore, after kneading the mixture together with an electrolytic solution, which will be described later, in a water-free atmosphere such as argon gas, it may be applied or adhered to a current collector under pressure, and used as it is as a positive electrode. can.

かくして得られた正極は空気中に長時間放置しても電気
伝導度等の物性に変化はなく、酸化安定性に優れている
。また、耐熱性、耐薬品性に優れているため電極材とし
て用い、電池を構成する場合電極の劣化の問題が生じな
い。
The thus obtained positive electrode has excellent oxidation stability, with no change in physical properties such as electrical conductivity even when left in air for a long time. In addition, since it has excellent heat resistance and chemical resistance, when it is used as an electrode material to construct a battery, there is no problem of electrode deterioration.

本発明の有機電解質電池において電解により正極活物質
にドーピングされうるイオンを生成しうる化合物として
は、例えばL +  I 、L i Cf1O4、L!
 BF4 、L! AS F6 、L! PF6、L!
 B (C21−15>4 、Li B (C6H5)
4又はL! HF2等が挙げられる。
Examples of compounds that can generate ions that can be doped into the positive electrode active material by electrolysis in the organic electrolyte battery of the present invention include L + I, L i Cf1O4, L!
BF4, L! AS F6, L! PF6, L!
B (C21-15>4, Li B (C6H5)
4 or L! Examples include HF2.

前記化合物を溶解する溶媒としては非プロトン性有機溶
媒が用いられる。例えばエチレンカーボネイト、プロピ
レンカーボネイト、γ−ブブーロラクトン、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルホキ
シド、アセートニトリル、ジメトキシエタン、テトラヒ
ドロフラン、ジオキソラン、スルホラン又はこれらの混
合物が挙げられる。これらのうちから電解質として用い
られる前記化合物の溶解性、電池性能等を考慮して選択
される。
An aprotic organic solvent is used as the solvent for dissolving the compound. Examples include ethylene carbonate, propylene carbonate, γ-buburolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, sulfolane, or mixtures thereof. It is selected from these in consideration of the solubility of the compound used as an electrolyte, battery performance, etc.

電解液中の前期化合物の濃度は、電解液による内部抵抗
を小さくするため少くとも0.1モル/g以上とするの
が望ましく、通常0.2〜1.5モル/ρとするのがよ
り好ましい。
The concentration of the former compound in the electrolytic solution is preferably at least 0.1 mol/g or more in order to reduce the internal resistance caused by the electrolytic solution, and usually 0.2 to 1.5 mol/ρ is more preferable. preferable.

本発明の電池の電池作用は正極活物質として用いる不溶
不融性物質と金属酸化物との複合物へのドーピング剤の
電気化学的ドーピングと電気化学的アンド−ピングを利
用するものである。
The battery action of the battery of the present invention utilizes electrochemical doping and electrochemical and-doping of a doping agent to a composite of an insoluble infusible material and a metal oxide used as a positive electrode active material.

本発明に係る電池の負極にはアルカリ金属又はアルカリ
土類金属を用いる場合が最も実用的であるが、上記した
不溶不融性物質を用いることもできる。
Although it is most practical to use an alkali metal or an alkaline earth metal for the negative electrode of the battery according to the present invention, the above-mentioned insoluble and infusible substances can also be used.

アルカリ金属およびアルカリ土類金属としては、例えば
セシウム、ルビジウム、カリウム、ナトリウム、リチウ
ム、バリウム、ストロンチウム、カルシウムがあげられ
る。これらのうちリチウムが最も好ましい。これらの金
属は単独であるいは合金として用いることもできる。
Examples of alkali metals and alkaline earth metals include cesium, rubidium, potassium, sodium, lithium, barium, strontium, and calcium. Of these, lithium is most preferred. These metals can be used alone or as an alloy.

電池内に配置される前述の複合物よりなる電極の形状、
大きさは目的とする電池の種類により任意に選ぶことが
できるが、電池反応は電極表面上の電気化学的反応であ
るため電極は可能な限り表面積を大ぎくする事が有利で
ある。
the shape of the electrode made of the above-mentioned composite placed in the battery;
The size can be arbitrarily selected depending on the type of battery intended, but since the battery reaction is an electrochemical reaction on the surface of the electrode, it is advantageous to make the surface area of the electrode as large as possible.

電池外部に電流を取り出すための集電体としてはドーピ
ング剤及び電解液に対し耐蝕性の導電物質、例えば炭素
、白金、ニッケル、ステンレス等を用いることが出来る
As a current collector for extracting current to the outside of the battery, a conductive material resistant to corrosion by the doping agent and electrolyte, such as carbon, platinum, nickel, stainless steel, etc., can be used.

次に図により本発明の実tM態様を説明する。第1図は
本発明に係る電池の基本構成図である。
Next, the actual tM aspect of the present invention will be explained with reference to the drawings. FIG. 1 is a basic configuration diagram of a battery according to the present invention.

第1図において、1は正極であり、フィルム状、或は板
状等である複合物の成形体であり、2は負極であり、同
様にフィルム状或は板状等であるアルカリ金属、アルカ
リ土類金属あるいはこれら゛の金属と他の金属との合金
、又は不溶不融性物質等である。3.3′は各電極から
外部に電流を取り出したり、電気化学的ドーピング、即
ち充電するために電流を供給するための集電体であり、
各電極及び外部端子7.7′に電圧降下を生じないよう
に接続されている。4は電解液であり、ドーピングされ
うるイオンを生成しうる前述の化合物が非プロトン性有
機溶媒に溶解されている。電解液は通常液状であるが漏
液を防止するためゲル状又は固体状にして用いることも
できる。5は正負両極の接触を阻止する一事及び電解液
を保持する事を目的として配置されたセパレータである
。該セパレータは電解液或はドーピング剤やアルカリ金
属等の電極活物質に対し耐久性のある連通気孔を有する
電子伝導性のない多孔体であり、通常ガラス繊維、ポリ
エチレン或はポリプロピレン等からなる布、不織布或は
多孔体が用いられる。セパレータの厚さは電池の内部抵
抗を小さくするため薄い方が好ましいが、電解液の保持
母、流通性、強度等を勘案して決定される。正負極及び
セパレータは電池ケース6内に実用上問題が生じないよ
うに固定される。電極の形状、大きざ等は目的とする電
池の形状、性能により適宜状められる。例えば薄形電池
を製造するには電極はフィルム状が適し、大容母電池を
製造するにはフィルム状或は板状等の電極を多数枚正負
両極を交互に積層することにより達成できる。
In FIG. 1, 1 is a positive electrode, which is a composite molded product in the form of a film or a plate, and 2 is a negative electrode, which is also a film or plate shaped composite material. These include earth metals, alloys of these metals with other metals, and insoluble and infusible substances. 3.3' is a current collector for extracting current from each electrode to the outside or supplying current for electrochemical doping, that is, charging;
Each electrode and external terminal 7, 7' are connected so as not to cause a voltage drop. 4 is an electrolytic solution in which the above-mentioned compound capable of producing ions that can be doped is dissolved in an aprotic organic solvent. The electrolyte is usually in liquid form, but it can also be used in gel or solid form to prevent leakage. Reference numeral 5 denotes a separator arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte. The separator is a non-electron conductive porous body with continuous pores that is resistant to electrolytes, doping agents, and electrode active materials such as alkali metals, and is usually made of cloth made of glass fiber, polyethylene, polypropylene, etc. Nonwoven fabric or porous material is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into account the electrolyte retention capacity, flowability, strength, etc. The positive and negative electrodes and the separator are fixed within the battery case 6 so as not to cause any practical problems. The shape, size, etc. of the electrode are determined as appropriate depending on the shape and performance of the intended battery. For example, film-shaped electrodes are suitable for producing thin batteries, and production of large-capacity mother batteries can be achieved by alternately stacking a large number of film-shaped or plate-shaped electrodes with both positive and negative electrodes.

例えば負極としてリチウムを用い、金属酸化物としてV
2O5、電解液としてL i CN 041モル/gプ
ロピレンカーボネート溶液を用いた場合電池組み立て後
の起電力は3.0〜3.5■である。
For example, lithium is used as the negative electrode and V is used as the metal oxide.
2O5 and a L i CN 041 mol/g propylene carbonate solution as the electrolyte, the electromotive force after battery assembly is 3.0 to 3.5 .

次に外部電源により電圧を印加してcu O4−イオン
を該正極活物質にドーピングすると、起電力は3.5〜
4.5■となる。また外部に電流を放出することにより
複合物より成る正極活物質にリチウムイオンをドーピン
グすると、起電力は1.0〜2.5■となるが、外部電
源により電圧を印加し、リチウムイオンをアンドーピン
グすると再び起電力は3.0〜3.5■となる。ドーピ
ング又はアンド−ピングは一定電流下でも一定電圧下で
も、又電流及び電圧の変化する条件下のいずれで行って
もよい。負極に不溶不融性物質を用いた場合、起電力は
約0.5Vであり、外部電源により電圧を印加して、両
極にドーピング剤をドーピングすることにより、1.0
〜3.5■の起電力となる。
Next, when a voltage is applied from an external power source to dope the positive electrode active material with cuO4- ions, the electromotive force is 3.5~
It becomes 4.5 ■. Furthermore, when a positive electrode active material made of a composite is doped with lithium ions by discharging a current to the outside, the electromotive force becomes 1.0 to 2.5μ, but when a voltage is applied from an external power source, lithium ions are When doped, the electromotive force becomes 3.0 to 3.5 ■ again. Doping or undoping may be performed under constant current, constant voltage, or varying current and voltage conditions. When an insoluble and infusible substance is used for the negative electrode, the electromotive force is approximately 0.5V, and by applying a voltage from an external power source and doping both electrodes with a doping agent, the electromotive force is approximately 1.0V.
The electromotive force is ~3.5■.

不溶不融性物質と金属酸化物の複合物を正極活物質とし
て用いる本発明の電池は充放電を繰り返し動作すること
のできる二次電池である。
The battery of the present invention, which uses a composite of an insoluble and infusible substance and a metal oxide as a positive electrode active material, is a secondary battery that can be repeatedly charged and discharged.

本発明の電池は高容量であり、特に急速充放電を行って
もその容量の減少が小さいことを特徴とする。さらに本
発明の電池は内部抵抗の小さく、繰り返し充放電の可能
な、長期にわたって電池性能の低下しない二次電池であ
る。
The battery of the present invention has a high capacity, and is characterized by a small decrease in capacity even when it is rapidly charged and discharged. Furthermore, the battery of the present invention is a secondary battery that has a low internal resistance, can be repeatedly charged and discharged, and does not deteriorate in battery performance over a long period of time.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1 (1)水溶性レゾール(約90%濃度)/塩化亜Kil
水を重量比で10/40/8の割合で混合した水溶液を
100 CItX 100αX0.5mの型に流し込み
、その上にガラス板を被せ水分が蒸発しない様にした状
態で100℃で1時間加熱して硬化し、前駆体を得た。
Example 1 (1) Water-soluble resol (approximately 90% concentration)/Silium chloride
An aqueous solution of water mixed in a weight ratio of 10/40/8 was poured into a mold of 100 CItX 100αX 0.5 m, and heated at 100°C for 1 hour with a glass plate placed over it to prevent moisture from evaporating. The mixture was cured to obtain a precursor.

該前駆体をシリコニット電気炉中に入れ窒素気流下で4
0℃/時間の速度で昇温しで、500℃まで熱処理を行
った。次に該熱処理物を希塩酸で洗った後、水洗し、そ
の後乾燥することによって板状の多孔性を得た。該多孔
体をディスクミルで粉砕し、平均粒径10μの不溶不融
性物質の粉末を得た。該粉末のB E 1−法による比
表面積値は2200m/9と極めて大きな値であった。
The precursor was placed in a siliconite electric furnace and heated under a nitrogen stream for 4 hours.
Heat treatment was performed by increasing the temperature at a rate of 0°C/hour to 500°C. Next, the heat-treated product was washed with dilute hydrochloric acid, then water, and then dried to obtain a plate-like porous structure. The porous body was pulverized with a disk mill to obtain a powder of an insoluble and infusible material with an average particle size of 10 μm. The powder had a specific surface area value of 2200 m/9, which was an extremely large value determined by the BE 1-method.

また元素分析を行ったところ、水素原子/炭素原子の原
子比は0.23であった。
Further, elemental analysis revealed that the atomic ratio of hydrogen atoms/carbon atoms was 0.23.

X線回折からのピークの形状はボリア廿ン系骨格構造に
基因するパターンであり、2θで20〜22°付近にブ
ロードなメインピークが存在し、また41〜46°付近
に小さなピークが確認された。
The shape of the peaks from X-ray diffraction is a pattern based on the boria skeleton structure, with a broad main peak around 20-22° at 2θ, and a small peak around 41-46°. Ta.

(2)市販のCr3O8をディスクミルにて粉砕し平均
粒径10μmである金属酸化物の粉末を得た。
(2) Commercially available Cr3O8 was ground in a disk mill to obtain metal oxide powder with an average particle size of 10 μm.

(3) (1)で17られた不溶不融性物質の粉末と、
(2)で得られた金属酸化物の粉末を第1表に示した所
定の割合で混合し、さらに該混合物に対して201 f
f1%のカーボンブラック及び10重量%のポリ四フッ
化エチレンパウダーを加え、十分に混練した後、200
Kg/cIltの圧力で室温上加圧成形を行い、厚さ約
300μmのフィルムを17だ。
(3) Powder of the insoluble and infusible substance specified in (1),
The metal oxide powder obtained in (2) was mixed at the predetermined ratio shown in Table 1, and the mixture was further mixed with 201 f
After adding 1% carbon black and 10% by weight polytetrafluoroethylene powder and thoroughly kneading,
Pressure molding was carried out at room temperature at a pressure of Kg/cIlt to form a film with a thickness of about 300 μm.

(4)次に充分に脱水したプロピレンカーボネイトにL
iCJO4を溶解させた1、0モル/ρの溶液を電解液
とし、リチ「クム金屈を負極とし、上記した成形フィル
ムを正極とした電池を第1図の様に組んだ。集電体とし
てはステンレスメツシュを用い、セパレーターとしては
ガラス繊維からなるフェルトを用いた。
(4) Next, add L to sufficiently dehydrated propylene carbonate.
A battery was assembled as shown in Figure 1, using a 1.0 mol/ρ solution of iCJO4 as an electrolyte, Lichi's Kumu Kinku as a negative electrode, and the above-mentioned molded film as a positive electrode.As a current collector. A stainless steel mesh was used, and felt made of glass fiber was used as a separator.

(5)次にこの電池に外部より電圧を印2JII して
、定電流で(1104−イオンを該成形体フィルムにド
ーピングした。この時の電流値は、下記の式より鋒出し
た値(m八)である。
(5) Next, a voltage was applied externally to this battery, and the molded film was doped with (1104- ions) at a constant current.The current value at this time was the value (m 8).

正極活物質重囲(Irtg) x − ドーピング終了時の開路電圧は4■であった。Positive electrode active material surrounding (Irtg) x - The open circuit voltage at the end of doping was 4■.

次に充電時と同じ電流値で放電し、電池電圧が2■にな
るまで放電を続けた。結果をまとめて第1表に示す。
Next, the battery was discharged at the same current value as during charging, and the discharge was continued until the battery voltage reached 2■. The results are summarized in Table 1.

第1表 ただし第1表で混合比とは不溶不融性物質と金属酸化物
の重量比を表わす。以上のような急速充放電にも拘らず
、高容量の二次電池が得られた。
Table 1 However, in Table 1, the mixing ratio represents the weight ratio of the insoluble and infusible substance to the metal oxide. Despite the rapid charging and discharging described above, a high capacity secondary battery was obtained.

比較例1 実施例1(1)と同様にして得られた不溶不融性物質の
粉末のみを用い実施例1(3)〜(5)と同様の方法に
て実験を行ったところ、得られた成形フィルムの電気伝
導度は3 X 1O−3S / ctrtであり、放電
に要した時間は0.75時間であった。
Comparative Example 1 An experiment was conducted in the same manner as in Examples 1 (3) to (5) using only the powder of the insoluble and infusible substance obtained in the same manner as in Example 1 (1). The electrical conductivity of the formed film was 3 x 1O-3S/ctrt, and the time required for discharge was 0.75 hours.

比較例2 実施例1(2)と同様にして得られた金属酸化物の粉末
のみを用い実施例1(3)〜(5)と同様の方法にて実
験を行なったところ得られた成形フィルムの電気伝導度
は5X10’S/cm、放電に要した時間は0.60時
間であった。
Comparative Example 2 A molded film obtained by conducting an experiment in the same manner as in Examples 1 (3) to (5) using only the metal oxide powder obtained in the same manner as in Example 1 (2). The electrical conductivity was 5×10'S/cm, and the time required for discharge was 0.60 hours.

実施例1、比較例1及び2より結果を第2図にまとめて
示す。第2図において横軸は複合物中の不溶不融性物質
の重量比であり、縦軸は放電で2Vになるまでの時間で
ある。正極活物質として、不溶不融性物質単独(比較例
1)及び金属酸化物単独(比較例2)を用いた場合に比
べて、本発明の複合物を用いた場合に容量が顕著に増大
したことが明らかである。
The results of Example 1 and Comparative Examples 1 and 2 are summarized in FIG. 2. In FIG. 2, the horizontal axis represents the weight ratio of the insoluble and infusible material in the composite, and the vertical axis represents the time required for the discharge to reach 2V. The capacity was significantly increased when the composite of the present invention was used as the positive electrode active material, compared to when an insoluble and infusible substance alone (Comparative Example 1) or a metal oxide alone (Comparative Example 2) was used. That is clear.

実施例2 実施例1(1)と同様の方法で得られた不溶不融性物質
の粉末と、V2O5をディスクミルにて粉砕して得られ
た平均粒径が10μm以下である金属酸化物の粉末を、
不溶不融性物質の粉末と金属酸化物の粉末の混合比が7
0/ 30である以外実施例1−(3)と同様にして成
形し、フィルム状電極を19だ。該フィルム状電極を用
い、電解質としてLi As F6を用いること以外実
施例1−(4)と同様にして電池を組んだ。
Example 2 A powder of an insoluble and infusible substance obtained in the same manner as in Example 1 (1) and a metal oxide with an average particle size of 10 μm or less obtained by pulverizing V2O5 in a disc mill. powder,
The mixing ratio of the insoluble and infusible substance powder to the metal oxide powder is 7.
A film-like electrode was formed in the same manner as in Example 1-(3) except that the thickness was 0/30. A battery was assembled using the film electrode in the same manner as in Example 1-(4) except that Li As F6 was used as the electrolyte.

該電池に外部より4Vの電圧を印加して1時間充電した
。次に該電池を実施例1(5)と同様の電流値及び該電
流値の115倍の電流値で放電し、電池電圧が2Vとな
るまで放電を続けた。その結果それぞれ放電に1.06
時間、6時間を要し、その容量比が0.88となった。
The battery was charged for 1 hour by applying a voltage of 4V from the outside. Next, the battery was discharged at the same current value as in Example 1 (5) and at a current value 115 times the current value, and the discharge was continued until the battery voltage reached 2V. As a result, each discharge is 1.06
It took 6 hours, and the capacity ratio was 0.88.

実施例3 正極に実施例2で用いたのと同じ複合物成形体を用い、
負極には比較例1における不溶不融性物質の粉末から作
ったフィルムを使用し、電解液としてL; [3F4の
1−しル/、l!プロピレンカーボネート溶解を使用し
て電池を構成し、充放電テストを行った。電池を組んだ
直後の電圧は0.5Vであった。次に外部電源により2
■の電圧を印加して約1時間正極及び負極にドーピング
した。電池の起電圧は当然のことながら2■であった。
Example 3 Using the same composite molded body as used in Example 2 for the positive electrode,
A film made from the powder of the insoluble and infusible substance in Comparative Example 1 was used for the negative electrode, and the electrolyte was L; Batteries were constructed using propylene carbonate dissolution and charge/discharge tests were conducted. The voltage immediately after the battery was assembled was 0.5V. Next, 2
A voltage (2) was applied to dope the positive and negative electrodes for about 1 hour. Naturally, the electromotive voltage of the battery was 2■.

次に実施例1(5)と同様にして定電流で放電したとこ
ろ、約0.8時間で電池の電圧はOになった。該電池を
2■とOVの間で充放電を100回行ったが、電池の性
能は劣化しなかった。
Next, when the battery was discharged at a constant current in the same manner as in Example 1 (5), the voltage of the battery reached O in about 0.8 hours. The battery was charged and discharged 100 times between 2 and OV, but the performance of the battery did not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電池の基本構成を示すものであり
、1は正極、2は負極、3.3′は東電体、4は電解液
、5はセパレーター、6は電池ケース、7,7′ は外
部端子を表わす。 第2図は本発明に係る電池及び比較のための電池におけ
る正極活物質中の不溶不融性物質の重量比と放電時間の
関係を示す。
FIG. 1 shows the basic configuration of a battery according to the present invention, where 1 is a positive electrode, 2 is a negative electrode, 3.3' is a Tokyo Electric body, 4 is an electrolyte, 5 is a separator, 6 is a battery case, 7, 7' represents an external terminal. FIG. 2 shows the relationship between the weight ratio of the insoluble and infusible material in the positive electrode active material and the discharge time in a battery according to the present invention and a comparative battery.

Claims (1)

【特許請求の範囲】 1、(A)(a)フェノール性水酸基を有する芳香族炭
化水素化合物とアルデヒド類との縮合物である芳香族系
縮合ポリマーの熱処理物であって、水素原子/炭素原子
の原子数比が0.5〜0.05であるポリアセン系骨格
構造を有しかつBET法による比表面積値が少くとも6
00m^2/gである不溶不融性物質と (b)金属酸化物 との複合物を正極活物質とし (B)電解により該正極活物質にドーピングされうるイ
オンを生成しうる化合物の非プロトン性有機溶媒溶液を
電解液とすることを特徴とする有機電解質電池。 2、不溶不融性物質と金属酸化物との重量比が95:5
〜15:85である特許請求の範囲第1項に記載の有機
電解質電池。 3、不溶不融性物質と金属酸化物との複合物が、不溶不
融性物質粉末と金属酸化物粉末を複合させたものである
特許請求の範囲第1項に記載の有機電解質電池。 4、複合物が、不溶不融性物質の粉末と金属酸化物の粉
末及び導電剤及び任意的な結着剤を含む混合物をフィル
ム状、板状、円筒状に成形したものである特許請求の範
囲第3項に記載の有機電解質電池。 5、導電剤が活性炭、カーボンブラック、アセチレンブ
ラック、黒鉛又は金属粉末であり、かつその混合比が複
合物総重量に対して40〜2%である特許請求の範囲第
4項に記載の有機電解質電池。 6、金属酸化物が遷移金属酸化物である特許請求の範囲
第1項に記載の有機電解質電池。 7、遷移金属酸化物がバナジウム酸化物、クロム酸化物
及び/又はモリブデン酸化物である特許請求の範囲第6
項に記載の有機電解質電池。 8、遷移金属酸化物がV_2O_5、V_6O_1_3
、Cu_2V_2O_7及びCr_3O_8から選ばれ
る特許請求の範囲第7項記載の有機電解質電池。 9、芳香族系縮合ポリマーがフェノールとホルムアルデ
ヒドとの縮合物である特許請求の範囲第1項に記載の有
機電解質電池。 10、不溶不融性物質のBET法による比表面積値が8
00〜3000m^2/gである特許請求の範囲第1項
に記載の有機電解質電池。 11、不溶不融性物質が平均孔径0.03〜10μmの
多数の連通孔を持つ特許請求の範囲第1項に記載の有機
電解質電池。 12、不溶不融性物質の水素原子/炭素原子の原子数比
が0.5〜0.15である特許請求の範囲第1項記載の
有機電解質電池。 13、負極がアルカリ金属、これの合金、アルカリ土類
金属又はこれの合金から選ばれる特許請求の範囲第1項
記載の有機電解質電池。 14、負極がリチウム又はリチウム合金である特許請求
の範囲第13項記載の有機電解質電池。 15、負極がフェノール性水酸基を有する芳香族炭化水
素化合物とアルデヒド類との縮合物である芳香族系縮合
ポリマーの熱処理物であつて(a)水素原子/炭素原子
の原子数比が0.5〜0.05であるポリアセン系骨格
構造を有し(b)BET法による比表面積値が少くとも
600m^2/gであり、そして (c)平均孔径10μm以下の連通孔を持つ不溶不融性
物質である特許請求の範囲第1項に記載の有機電解質電
池。 16、電解によりドーピングされうるイオンを生成しう
る化合物がLiI、LiClO_4、LiBF_4、L
iAsF_6、LiPF_6、LiB(C_2H_5)
_4、LiB(C_H_6H_5)_4又はLiHF_
2である特許請求の範囲第1項に記載の有機電解質電池
。 17、非プロトン性有機溶媒がエチレンカーボネート、
プロピレンカーボネート、γ−ブチロラクトン、ジメチ
ルホルムアミド、ジメブルアセトアミド、ジメチルスル
ホキシド、アセトニトリル、ジメトキシエタン、テトラ
ヒドロフランン、ジオキソラン、スルホラン又はこれら
の混合物である特許請求の範囲第1項に記載の有機電解
質電池。
[Scope of Claims] 1. (A) (a) A heat-treated product of an aromatic condensation polymer which is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, which has hydrogen atoms/carbon atoms. has a polyacene skeleton structure with an atomic ratio of 0.5 to 0.05, and has a specific surface area value of at least 6 by the BET method.
00m^2/g and (b) a composite of a metal oxide as a positive electrode active material, and (B) an aproton of a compound that can generate ions that can be doped into the positive electrode active material by electrolysis. 1. An organic electrolyte battery characterized in that an electrolyte is an organic solvent solution. 2. Weight ratio of insoluble and infusible substance to metal oxide is 95:5
15:85. The organic electrolyte battery according to claim 1. 3. The organic electrolyte battery according to claim 1, wherein the composite of an insoluble and infusible substance and a metal oxide is a composite of an insoluble and infusible substance powder and a metal oxide powder. 4. A patent claim in which the composite is a mixture containing an insoluble and infusible substance powder, a metal oxide powder, a conductive agent, and an optional binder formed into a film, plate, or cylinder shape. The organic electrolyte battery according to scope 3. 5. The organic electrolyte according to claim 4, wherein the conductive agent is activated carbon, carbon black, acetylene black, graphite, or metal powder, and the mixing ratio thereof is 40 to 2% based on the total weight of the composite. battery. 6. The organic electrolyte battery according to claim 1, wherein the metal oxide is a transition metal oxide. 7. Claim 6, wherein the transition metal oxide is vanadium oxide, chromium oxide and/or molybdenum oxide
The organic electrolyte battery described in section. 8. Transition metal oxides are V_2O_5, V_6O_1_3
, Cu_2V_2O_7 and Cr_3O_8. The organic electrolyte battery according to claim 7. 9. The organic electrolyte battery according to claim 1, wherein the aromatic condensation polymer is a condensate of phenol and formaldehyde. 10. Specific surface area value of insoluble and infusible substance by BET method is 8
00 to 3000 m^2/g, the organic electrolyte battery according to claim 1. 11. The organic electrolyte battery according to claim 1, wherein the insoluble and infusible substance has a large number of communicating pores with an average pore diameter of 0.03 to 10 μm. 12. The organic electrolyte battery according to claim 1, wherein the insoluble and infusible substance has a hydrogen atom/carbon atom atomic ratio of 0.5 to 0.15. 13. The organic electrolyte battery according to claim 1, wherein the negative electrode is selected from alkali metals, alloys thereof, alkaline earth metals, and alloys thereof. 14. The organic electrolyte battery according to claim 13, wherein the negative electrode is lithium or a lithium alloy. 15. A heat-treated product of an aromatic condensation polymer in which the negative electrode is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, and (a) the atomic ratio of hydrogen atoms/carbon atoms is 0.5. ~0.05, (b) has a specific surface area value of at least 600 m^2/g by the BET method, and (c) is insoluble and infusible, having communicating pores with an average pore diameter of 10 μm or less. The organic electrolyte battery according to claim 1, which is a substance. 16. Compounds that can generate ions that can be doped by electrolysis are LiI, LiClO_4, LiBF_4, L
iAsF_6, LiPF_6, LiB(C_2H_5)
_4, LiB(C_H_6H_5)_4 or LiHF_
2. The organic electrolyte battery according to claim 1, which is 17, the aprotic organic solvent is ethylene carbonate,
The organic electrolyte battery according to claim 1, which is propylene carbonate, γ-butyrolactone, dimethylformamide, dimebracetamide, dimethyl sulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, sulfolane, or a mixture thereof.
JP62149182A 1987-06-17 1987-06-17 Organic electrolyte battery using metal oxide composite as positive electrode Expired - Fee Related JP2616774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149182A JP2616774B2 (en) 1987-06-17 1987-06-17 Organic electrolyte battery using metal oxide composite as positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149182A JP2616774B2 (en) 1987-06-17 1987-06-17 Organic electrolyte battery using metal oxide composite as positive electrode

Publications (2)

Publication Number Publication Date
JPS63314759A true JPS63314759A (en) 1988-12-22
JP2616774B2 JP2616774B2 (en) 1997-06-04

Family

ID=15469591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149182A Expired - Fee Related JP2616774B2 (en) 1987-06-17 1987-06-17 Organic electrolyte battery using metal oxide composite as positive electrode

Country Status (1)

Country Link
JP (1) JP2616774B2 (en)

Also Published As

Publication number Publication date
JP2616774B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPH0324024B2 (en)
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JP2574730B2 (en) Organic electrolyte battery
JPH0630260B2 (en) Organic electrolyte battery
JP2627033B2 (en) Manufacturing method of organic electrolyte battery
JP2614725B2 (en) Organic electrolyte battery with activated carbon metal sulfide composite as cathode
JP2968097B2 (en) Organic electrolyte battery
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode
JP2614724B2 (en) Organic electrolyte battery with metal sulfide composite as positive electrode
JP2556408B2 (en) Organic electrolyte battery
JP2556407B2 (en) Organic electrolyte battery
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2534490B2 (en) Organic electrolyte battery
JP2703696B2 (en) Organic electrolyte battery
JP2616775B2 (en) Organic electrolyte battery with ternary composite as cathode
JP2646461B2 (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JP2588404B2 (en) Organic electrolyte battery
JP2804779B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JPH0624160B2 (en) Organic electrolyte battery
JPS61225761A (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees