JPS63303826A - Production of cluster type distributed index optical element - Google Patents
Production of cluster type distributed index optical elementInfo
- Publication number
- JPS63303826A JPS63303826A JP62134839A JP13483987A JPS63303826A JP S63303826 A JPS63303826 A JP S63303826A JP 62134839 A JP62134839 A JP 62134839A JP 13483987 A JP13483987 A JP 13483987A JP S63303826 A JPS63303826 A JP S63303826A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- optical element
- glass rod
- glass
- collective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000011521 glass Substances 0.000 claims abstract description 81
- 238000009826 distribution Methods 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 150000002500 ions Chemical class 0.000 claims abstract description 10
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 25
- 239000006096 absorbing agent Substances 0.000 claims description 23
- 238000003825 pressing Methods 0.000 claims 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 abstract 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 abstract 2
- 235000010333 potassium nitrate Nutrition 0.000 abstract 1
- YTQVHRVITVLIRD-UHFFFAOYSA-L thallium sulfate Chemical compound [Tl+].[Tl+].[O-]S([O-])(=O)=O YTQVHRVITVLIRD-UHFFFAOYSA-L 0.000 abstract 1
- 229910000374 thallium(I) sulfate Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- 238000005342 ion exchange Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/028—Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/50—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、屈折率分布を有するガラス棒材を複数本束ね
て固定した集合型屈折率分布光学素子の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a collective type gradient index optical element in which a plurality of glass rods having a refractive index distribution are bundled and fixed.
(従来の技術〕
近年、マイクロオブティクスの発展に併い、集合型屈折
率分布光学素子が注目を集め、複写機用あるいはファク
シミリ用レンズアレイ等に多く用いられるようになって
きた。(Prior Art) In recent years, with the development of micro-optics, collective gradient index optical elements have attracted attention and have come to be widely used in lens arrays for copying machines and facsimile machines.
集合型屈折率分布光学素子の構成要素であるガラス棒材
に屈折率分布を形成する方法としては、ガラス中のイオ
ン交換による形成方法(特公昭47−816 )などが
代表的な方法である。A typical method for forming a refractive index distribution in a glass rod, which is a component of a collective type gradient index optical element, is a method of forming the refractive index by ion exchange in glass (Japanese Patent Publication No. 47-816).
以下、この方法を説明する。This method will be explained below.
このイオン交換処理においては、通常TI” 。In this ion exchange treatment, TI" is usually used.
C8“、 Li”などの屈折率を高める効果のあるイオ
ンと、Na’、に+などの屈折率を低下させる効果のあ
るイオンとが交換される。例えば、断面が円形のガラス
棒材をイオン交換処理して断面の中心から半径方向に向
けて屈折率分布を有する光学素子を作製する場合、それ
に、集光作用(凸レンズ作用)を持たせるためには、T
I” 、Cs“、 Li”等を含むガラス棒材をNa”
、K”等を含む溶融塩に浸漬して、ガラス棒材中のTl
ゝ、 Csゝ、Li+等と溶融塩中のNa′″、r等を
交換し、ガラス棒材の中心軸から周辺に向けて屈折率が
減少するようにする。またその逆に、光学素子に発散作
用(凹レンズ作用)を持たせるためには、Na”、K”
等を含むガラス棒材を、Tl’ 、 Cs” 、 Li
”等を含む溶融塩に浸漬して、ガラス棒材中のNa“、
に4等と、溶融塩中のTI” 、 Cs” 、 Li”
等を交換し、ガラス棒材の中心軸から周辺に向けて屈折
率が増加するようにする。Ions having the effect of increasing the refractive index such as C8" and Li" are exchanged with ions having the effect of decreasing the refractive index such as Na' and Ni+. For example, when producing an optical element that has a refractive index distribution in the radial direction from the center of the cross section by ion exchange treatment of a glass rod with a circular cross section, in order to give it a light condensing effect (convex lens effect), is, T
Glass rod material containing “I”, Cs”, Li” etc.
, K'', etc., to remove Tl in the glass rod.
By exchanging Na''', r, etc. in the molten salt with Cs, Li+, etc., the refractive index decreases from the central axis of the glass rod toward the periphery. In order to have a diverging effect (concave lens effect), Na", K"
Glass rods containing Tl', Cs'', Li
Na” in the glass rod material by immersing it in molten salt containing “Na”, etc.
4 etc., and TI”, Cs”, Li” in the molten salt.
etc., so that the refractive index increases from the central axis of the glass rod toward the periphery.
こうしたイオン交換処理に用いられる溶融塩としては、
N5NO3、KNOs 、 LICI、 T12 S0
4 。The molten salt used in such ion exchange treatment is
N5NO3, KNOs, LICI, T12 S0
4.
[:5N03等がある。[:5N03 etc.
以下、例えば上述のような方法により形成された屈折率
分布を有するガラス棒材を用いる集合型屈折率分布光学
素子の一例としてレンズアレイの従来の製造方法を説明
する。Hereinafter, a conventional method for manufacturing a lens array will be described as an example of a collective type gradient index optical element using a glass rod having a refractive index distribution formed by the method described above.
まず、フレアー防止のため、屈折率分布を有するガラス
棒材の外周側面をエツチングなどにより粗くし、光吸収
体を側面全体に塗布する。この吸収体としては通常黒色
塗料等が用いられる。First, in order to prevent flare, the outer peripheral side surface of a glass rod material having a refractive index distribution is made rough by etching or the like, and a light absorber is applied to the entire side surface. As this absorber, black paint or the like is usually used.
次に第1図に示すように、このガラス棒材1をスペーサ
ー2と板材3により挟み接着固定することによりレンズ
アレイが製造される。このレンズアレイは、正立等倍系
レンズとして例えば複写機やファクシミリなどの光学系
に使用される。Next, as shown in FIG. 1, a lens array is manufactured by sandwiching and adhesively fixing this glass rod material 1 between a spacer 2 and a plate material 3. This lens array is used as an erecting equal-magnification lens in optical systems such as copying machines and facsimile machines.
(発明が解決しようとする問題点)
先に述べたような従来の技術では、例えば直径1■程度
の細いガラス棒材を、光軸方向をそろえ、隙間無く高精
度に多数配列接着固定することは非常に手間がかかり、
歩留りが悪いという問題点がある。(Problem to be Solved by the Invention) In the conventional technology as described above, for example, a large number of thin glass rods with a diameter of about 1 cm are aligned in the optical axis direction and arranged and adhesively fixed in large numbers with high precision without gaps. is very time consuming and
There is a problem of poor yield.
さらに、そのような直径の小さなガラス棒材は折損し易
いので製造の各工程において、その取扱いに慎重を要し
コスト高になるという問題点がある。Furthermore, since such a small diameter glass rod is easily broken, it requires careful handling in each manufacturing process, resulting in high costs.
また、従来の技術では直径の小さなガラス棒材の半径方
向に屈折率の差が大きな分布を形成することが困難であ
るという問題点もある。例えば、先に述べたようなガラ
ス棒材中のイオンと溶融塩中のイオンとを交換して、そ
のガラス棒材中に屈折率分布を形成する方法においては
、そのガラス棒材の直径が小さい場合は、溶融塩中のイ
オンが短時間でガラス棒材の中心軸に達するので、その
中心軸付近と表面付近の屈折率の差の小さな分布しか形
成できない。Another problem with conventional techniques is that it is difficult to form a distribution with a large difference in refractive index in the radial direction of a glass rod having a small diameter. For example, in the method described above in which ions in the glass rod are exchanged with ions in the molten salt to form a refractive index distribution in the glass rod, the diameter of the glass rod is small. In this case, the ions in the molten salt reach the central axis of the glass rod in a short time, so only a distribution with a small difference in refractive index near the central axis and near the surface can be formed.
本発明は上記間層点に鑑み成されたものであり、その目
的は、直径が小さく、半径方向に屈折率の差が大きな分
布を有するガラス棒材により構成される、共役長が短く
コンパクトな集合型屈折率分布光学素子の容易な製造方
法を提供することにある。The present invention was made in view of the above-mentioned interlayer points, and its purpose is to provide a compact glass rod with a short conjugate length, which is made of a glass rod material with a small diameter and a large distribution of refractive index differences in the radial direction. An object of the present invention is to provide an easy method for manufacturing a collective gradient index optical element.
(問題点を解決するための手段)
本発明の上記目的は、屈折率分布を有するガラス棒材を
束ねて固定した集合型屈折率分布光学素子の製造方法に
おいて、屈折率分布を有するガラス棒材の複数本を束ね
た状態で加熱延伸し、該ガラス棒材同士を融着する工程
を含むことを特徴とする集合型屈折率分布光学素子の製
造方法により達成される。(Means for Solving the Problems) The above-mentioned object of the present invention is to provide a method for manufacturing a collective type gradient index optical element in which glass rods having a refractive index distribution are bundled and fixed. This is achieved by a method for manufacturing a collective gradient index optical element, which includes the steps of heating and stretching a plurality of glass rods in a bundle and fusing the glass rods together.
本発明で処理するガラス棒材には、それ自身が折損し難
く、取り扱い易く、所望の屈折率分布を有し、以下に説
明する加熱延伸によって所望とする直径の棒状光学素子
を得るのに必要な程度の太さのものが用いられる。例え
ば、直径が1會■〜5msのものが好ましい。The glass rod material processed in the present invention is difficult to break, is easy to handle, has a desired refractive index distribution, and is necessary for obtaining a rod-shaped optical element with a desired diameter by heating and stretching as described below. A thickness of about 100% is used. For example, one having a diameter of 1 mm to 5 ms is preferable.
上述のようなガラス棒材を束ねて加熱延伸すると、その
中心軸付近と表面付近の屈折率の差は変化しないが、直
径は細くなったガラス棒材の束として融着することがで
きる。このような束は、例えば共役長が短く、コンパク
トなレンズアレイ等に好適な集合型屈折率分布光学素子
である。When glass rods as described above are bundled and heated and stretched, the difference in refractive index near the central axis and near the surface does not change, but the glass rods can be fused together as a bundle with a reduced diameter. Such a bundle, for example, has a short conjugate length and is a collective gradient index optical element suitable for a compact lens array.
上述のような製造方法において、多数のガラス−棒材を
束ねて加熱延伸すれば、製造される集合型屈折率分布光
学素子はガラス棒の集合体特有の強度を有し、折損し難
く、またその集合体自身を光軸方向をそろえて隙間なく
高精度に多数配列することが容易な程度の太さとするこ
ともできるので、その集合体をさらに束ねて、接着、加
熱圧着あるいは加熱延伸することにより、大面積の集合
型屈折率分布光学素子を製造することもできる。In the manufacturing method as described above, if a large number of glass rods are bundled and heated and stretched, the manufactured aggregate type gradient index optical element has the strength unique to an aggregate of glass rods, is difficult to break, and is The aggregate itself can be made thick enough to easily align the optical axis direction and arrange a large number of them with high precision without gaps, so the aggregate can be further bundled and bonded, heat-pressed, or heat-stretched. Accordingly, it is also possible to manufacture a large-area collective type gradient index optical element.
以下、本発明の方法を図面を参照しつつ更に詳細に説明
する。Hereinafter, the method of the present invention will be explained in more detail with reference to the drawings.
第2図は本発明の方法の一例を示す模式図である。屈折
率分布を有する19本の太いガラス棒材4aを正六角形
状に束ね、その集合体5aを加熱炉6で加熱しつつ、引
張りローラー7で延伸することにより屈折率分布を有す
る細いガラス棒材4bにより構成される正六角形状の集
合型屈折率分布光学素子5bが製造される。この方法に
おいて、太いガラス棒材4aと加熱延伸後の細いガラス
棒材4bとの中心軸付近と表面付近の屈折率の差の大き
さは、はとんど変化しない。FIG. 2 is a schematic diagram showing an example of the method of the present invention. Nineteen thick glass rods 4a having a refractive index distribution are bundled into a regular hexagonal shape, and the aggregate 5a is heated in a heating furnace 6 and stretched by a tension roller 7 to produce a thin glass rod having a refractive index distribution. 4b, a regular hexagonal aggregated refractive index gradient optical element 5b is manufactured. In this method, the difference in refractive index between the thick glass rod 4a and the heated and drawn thin glass rod 4b near the central axis and near the surface hardly changes.
第3図は上述のようにして製造される屈折率分布を有す
る細いガラス棒材4bにより構成される正六角形状の集
合型屈折率分布光学素子5bの断面図である。これを任
意の長さに切断し、両端面を研磨してレンズアレイ、マ
ルチファイバーレンズ等として使用することができる。FIG. 3 is a sectional view of a regular hexagonal aggregated refractive index distribution optical element 5b made of thin glass rods 4b having a refractive index distribution manufactured as described above. This can be cut to any length and polished on both end faces to be used as a lens array, multi-fiber lens, etc.
次に、本発明により製造される集合型屈折率分布光学素
子にフレアーの防止が必要な場合の一例として、ガラス
棒材の周囲に光吸収体を設ける方法を説明する。Next, a method of providing a light absorber around a glass rod material will be described as an example of a case where prevention of flare is required in the collective type gradient index optical element manufactured according to the present invention.
第4図および第5図は、フレアーを防止した集合型屈折
率分布光学素子を示す断面図である。FIGS. 4 and 5 are cross-sectional views showing a collective gradient index optical element that prevents flare.
集合型屈折率分布光学素子9は、その側面をガラス製光
吸収体8に覆われたガラス棒材4aを、19本正六角形
状に束ねて加熱延伸したものであり、十分に細いガラス
棒材4bとそれを覆う吸収体8により構成されている。The aggregated refractive index gradient optical element 9 is made by heating and stretching 19 glass rods 4a whose sides are covered with a glass light absorber 8 into a regular hexagonal shape, and is a sufficiently thin glass rod. 4b and an absorber 8 covering it.
集合型屈折率分布光学素子11は、ガラス棒材4aを1
9本正六角形状に束ねながら、そのすべての間隙にIS
A吸収吸収体l膜置して加熱延伸したものであり、十分
に細いガラス棒材4bとISA吸収吸収体l膜り構成さ
れている。The collective type gradient index optical element 11 includes one glass rod 4a.
While bundling 9 pieces into a regular hexagonal shape, IS is installed in all the gaps.
It is made by placing one film of A absorbent material and heating and stretching it, and consists of a sufficiently thin glass rod 4b and one film of ISA absorbent material.
次に、本発明により製造される集合型屈折率分布光学素
子の耐久性、耐熱性および研磨加工性をより向上させる
ための手段の一つとして、ガラス製第2光吸収体を用い
る方法を説明する。Next, a method of using a second light absorber made of glass will be explained as one means for further improving the durability, heat resistance, and polishing workability of the aggregated graded index optical element manufactured according to the present invention. do.
第6図は、ガラス製第2光吸収体を用いる一例を示す断
面図である。屈折率分布を有する太いガラス棒材4aの
側面は、ガラス製光吸収体8に覆われ、さらにその上か
ら軟化点の低いガラス製第2光吸収体12aに覆われて
おり、これが19本正六角形状に束ねられ集合体13a
を形成している。FIG. 6 is a sectional view showing an example of using a second light absorber made of glass. The side surface of the thick glass rod material 4a having a refractive index distribution is covered with a glass light absorber 8, which is further covered with a second glass light absorber 12a having a low softening point, which consists of 19 straight glass rods. Aggregate 13a bundled into a hexagonal shape
is formed.
第7図は、このような集合体を加熱延伸して製造した集
合型屈折率分布光学素子を示す断面図である。この集合
型屈折率分布光学素子13bは、加熱延伸により細くな
った光吸収体8に覆われたガラス棒材4bと、加熱延伸
により流動し、隙間を充填したガラス製第2光吸収体層
12bとで構成される。このような集合型屈折率分布光
学素子は、耐久性、耐熱性および研磨加工性において優
れている。FIG. 7 is a sectional view showing an aggregate type gradient index optical element manufactured by heating and stretching such an aggregate. This aggregated refractive index distribution optical element 13b consists of a glass bar 4b covered with a light absorber 8 that has been made thinner by heating and stretching, and a second glass light absorber layer 12b that has flowed by heating and stretching and filled the gap. It consists of Such a collective gradient index optical element is excellent in durability, heat resistance, and polishing workability.
さらに、以上述べたような各集合型屈折率分布光学素子
5b19.11.13bは折損し難く取扱いが容易な程
度の太さを有するので、これらを別個に多数本束ね、接
着固定、加熱圧着あるいは加熱延伸することにより固定
し、大面積の集合型屈折率分布光学素子を製造すること
もできる。Furthermore, each of the collective type gradient index optical elements 5b19, 11, and 13b described above has a thickness that is difficult to break and easy to handle. It is also possible to manufacture a large-area aggregated refractive index gradient optical element by fixing it by heating and stretching.
第8図は上述のようにして製造される大面積の集合型屈
折率分布光学素子14の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a large-area collective type gradient index optical element 14 manufactured as described above.
また、上述のような工程の前に集合型屈折率分布光学素
子5b、9.11.13bの周囲に軟化点の低い第2光
吸収体を設ければ、隙間が充填され、優れた耐久性、耐
熱性および研磨加工性を有する大面積の屈折率分布光学
素子が製造できる。In addition, if a second light absorber with a low softening point is provided around the collective gradient index optical elements 5b and 9.11.13b before the above-mentioned process, the gaps will be filled and excellent durability will be achieved. , a large-area gradient index optical element having heat resistance and polishing workability can be manufactured.
以上、本発明を正六角形状の集合型屈折率分布光学素子
の製造方法により説明したが、次に、その他の形状のも
のの製造方法の具体例を挙げて説明する。The present invention has been described above using a method for manufacturing a regular hexagonal aggregated refractive index gradient optical element.Next, specific examples of methods for manufacturing other shapes will be described.
まず、一定の曲げ半径の範囲内での曲げに対して回復性
を有するような可撓性を有するシート状の集合型屈折率
分布光学素子の製造方法の具体例について述べる。First, a specific example of a method for manufacturing a sheet-like collective graded refractive index optical element that is flexible enough to recover from bending within a certain bending radius will be described.
第9図は、ガラス棒材をくさび形状に配列した集合体か
ら可撓性を有するシート状の集合型屈折率分布光学素子
を製造する方法を示す模式図である。FIG. 9 is a schematic diagram showing a method for manufacturing a flexible sheet-like aggregated refractive index gradient optical element from an aggregate of glass rods arranged in a wedge shape.
9木の光吸収体8に覆われたガラス棒材4aをくさび状
に配列して集合体15aを形成し、それを加熱炉6で加
熱しつつ巻取ドラム16により延伸し、くさび形状の集
合型屈折率分布光学素子15bを形成しつつ巻取ドラム
16に巻取る。なお、巻取ドラム16の半径は、巻き取
られたくさび形状集合型屈折率分布光学素子15bが、
その直線性を回復できる範囲内の半径であることが好ま
しい。Glass rods 4a covered with light absorbers 8 made of wood are arranged in a wedge shape to form an aggregate 15a, which is heated in a heating furnace 6 and stretched by a winding drum 16 to form a wedge-shaped aggregate. It is wound onto a winding drum 16 while forming a molded refractive index gradient optical element 15b. Note that the radius of the winding drum 16 is such that the wound wedge-shaped aggregated refractive index gradient optical element 15b is
It is preferable that the radius is within a range that allows recovery of the linearity.
第1θ図は、上述のようにして製造されるくさび形状の
集合型屈折率分布光学素子の断面図である。この集合型
屈折率分布光学素子15bは、9木の加熱延伸により十
分に細くなった吸収体8で覆われたガラス棒材4bから
成る。FIG. 1θ is a cross-sectional view of a wedge-shaped aggregated refractive index gradient optical element manufactured as described above. This collective type gradient index optical element 15b consists of a glass rod 4b covered with an absorber 8 which has been made sufficiently thin by heating and stretching the glass rod.
第11図は、上述のような製造方法における巻取ドラム
の断面図である。巻取ドラム16の表面にくさび形状の
集合型屈折率分布光学素子15t)が整列密着して巻取
られてシート状の集合体15cが形成されている。この
集合体は各々の集合体の凸部と凹部か組合フているので
、集合体15cの厚さ方向にずれは発生しない。この集
合体15cを接着剤で固定し、巻取ドラム16から外し
、所定の寸法に切断、研磨することにより、可撓性を有
するシート状の集合型屈折率分布光学素子が製造できる
。FIG. 11 is a sectional view of the winding drum in the manufacturing method as described above. Wedge-shaped aggregated refractive index gradient optical elements 15t) are aligned and tightly wound on the surface of the winding drum 16 to form a sheet-like aggregate 15c. Since the convex portions and concave portions of each aggregate are combined in this aggregate, no deviation occurs in the thickness direction of the aggregate 15c. By fixing this aggregate 15c with an adhesive, removing it from the winding drum 16, cutting it to a predetermined size, and polishing it, a flexible sheet-like aggregate type gradient index optical element can be manufactured.
また、このようなシート状の集合型屈折率分布光学素子
を複数枚積層し、接着固定、加熱圧着あるいは加熱延伸
などにより固定し、大面積の集合型屈折率分布光学素子
を製造することもできる。Furthermore, it is also possible to manufacture a large-area aggregated refractive index gradient optical element by laminating a plurality of such sheet-like aggregated refractive index gradient optical elements and fixing them by adhesive fixation, heat compression bonding, heat stretching, etc. .
次に、棒状光学素子間に、レンズ効果の無い空隙部の存
在を無くした本発明の具体例を以下で述べる。Next, a specific example of the present invention will be described below in which the existence of a gap having no lens effect is eliminated between rod-shaped optical elements.
第12図は屈折率分布を有する太いガラス棒材の側面を
研削した正方形状の断面を有するガラス棒材17の断面
図である。FIG. 12 is a sectional view of a glass rod 17 having a square cross section, which is obtained by grinding the side surface of a thick glass rod having a refractive index distribution.
第13図は屈折率分布を有する太いガラス棒材の側面を
研削した正六角形状の断面を有するガラス棒材18の断
面図である。FIG. 13 is a sectional view of a glass rod 18 having a regular hexagonal cross section, which is obtained by grinding the side surface of a thick glass rod having a refractive index distribution.
このようなガラス棒材17.18の側面を光吸収体で覆
い、第2図あるいは第9図に示すような加熱延伸処理を
行なうことにより、空隙部の無い、集合型屈折率分布光
学素子および大面積の集合型屈折率分布光学素子が製造
できる。By covering the side surfaces of such glass rods 17 and 18 with light absorbers and subjecting them to heating and stretching treatment as shown in FIG. 2 or FIG. 9, collective type gradient index optical elements and A large-area collective gradient index optical element can be manufactured.
以上、本発明を種々の具体例に基づき説明した。The present invention has been described above based on various specific examples.
なお、本発明に用いるガラス棒材の屈折率分布がイオン
交換処理により形成されている場合は、そのイオン交換
処理時間を通常よりも若干短縮し、その後の加熱延伸工
程により、イオンが熱拡散して屈折率の最適分布を形成
する方、法を用いると良い。In addition, when the refractive index distribution of the glass rod material used in the present invention is formed by ion exchange treatment, the ion exchange treatment time is slightly shorter than usual, and the ions are thermally diffused by the subsequent heating and stretching process. It is preferable to use a method that creates an optimal distribution of refractive index.
また、本発明に用いる光吸収体は、既に屈折率分布を存
しているガラス棒材を覆うだけでなく、ガラス棒材を光
吸収体で覆ってから屈折率分布を形成しても良い。例え
ば、イオン交換処理により屈折率分布を形成する場合は
、光吸収体の熱膨張係数をガラス棒材外周部の熱膨張係
数よりも小さくすると、加熱延伸工程後、カシメ効果に
より、個々のガラス棒材の強度が向上し、集合型屈折率
分布光学素子の折損不良などが生じにくくなるという効
果がある。Moreover, the light absorber used in the present invention may not only cover a glass rod material that already has a refractive index distribution, but also may form a refractive index distribution after covering the glass rod material with the light absorber. For example, when forming a refractive index distribution by ion exchange treatment, if the coefficient of thermal expansion of the light absorber is made smaller than that of the outer periphery of the glass rod, after the heating and stretching process, the crimping effect will cause the individual glass rods to This has the effect of improving the strength of the material and making it difficult for the collective type gradient index optical element to suffer from breakage defects.
以上説明してきたように、本発明によれば直径が小さく
、半径方向に屈折率の差が大きな分布を有するガラス棒
材により構成される共役長の短いコンパクトな集合型屈
折率分布光学素子が容易に製造できる。さらには、必要
に応じてその隙間を第2光吸収体で充填したもの、可撓
性を有するシート状のもの、レンズ効果のない空隙部が
無いもの、あるいは大面積の集合型屈折率分布光学素子
などが容易に製造できる。As explained above, according to the present invention, a compact collective gradient index optical element with a short conjugate length made of a glass rod material having a small diameter and a large distribution of refractive index differences in the radial direction can be easily produced. can be manufactured. Furthermore, if necessary, the gap is filled with a second light absorber, a flexible sheet-like material, a lens-effect-free material with no voids, or a large-area aggregated refractive index distribution optical material. Elements etc. can be easily manufactured.
(実施例〕 以下、本発明を実施例により更に詳細に説明する。(Example〕 Hereinafter, the present invention will be explained in more detail with reference to Examples.
Li20を20モル%含む硼珪酸ガラスからなる直径3
mm、長さ100cmの円柱状部材を500℃に保たれ
た硝酸ナトリウムの溶融塩に100時間浸漬し、イオン
交換してその部材中に屈折率分布を形成した。Diameter 3 made of borosilicate glass containing 20 mol% Li20
A cylindrical member with a length of 100 cm and a length of 100 cm was immersed in a molten salt of sodium nitrate kept at 500° C. for 100 hours to perform ion exchange and form a refractive index distribution in the member.
次に、19本のその部材を第2図に示したように正六角
形状に束ね、640℃に保たれた電気炉で加熱し、3
mm7分で送りながら引張りローラーにより2700m
1/分で延伸した。すると各々の部材は直径約0.]I
I+m 、になり、互いに正六角形状に融着された。こ
のようにして得られた集合体を3m+s間隔で切断し、
更にその切断面を研磨してマルチファイバーズを製造し
た。Next, the 19 members were bundled into a regular hexagonal shape as shown in Figure 2, and heated in an electric furnace maintained at 640°C.
2700m by tension roller while feeding at 7 minutes
It was stretched at 1/min. Then each member has a diameter of approximately 0. ]I
I+m, and were fused to each other in a regular hexagonal shape. The aggregate thus obtained was cut at intervals of 3m+s,
Furthermore, the cut surface was polished to produce multi-fibers.
第1図は従来の集合型屈折率分布光学素子の製造方法を
示す図、第2図および第9図は本発明の加熱延伸工程の
一例を示す模式図、第3図、第4図、第5図、第7図お
よび第1O図は本発明により製造された集合型屈折率分
布光学素子の断面図、第6図は屈折率分布を有するガラ
ス棒材の集合体の断面図、第8図は大面積の集合型屈折
率分布光学素子の模式的断面図、第11図は集合型屈折
率分布光学素子を巻取ったドラムの断面図、第12図お
よび第13図は側面を研削されたガラス棒材の断面図で
ある。
1.4a、4b −−ガラス棒材、
2−−−−−−−−−−−−−スペーサー、3−−−−
板材、5a、13a、15a−一集合体、
5b、9,11,13b、15b −−一集合型屈折率
分布光学素子、
6−・−・−・−・・・・加熱炉、 7・−・−引
張ローラー8−−−−−−−−−−−光吸収体、 10
−−−− I S A吸収体12a、12b =−第2
光吸収体、
14−−−−−−−−−−大面積集合型屈折率分布光学
素子1B−−−−−−−一巻取ドラム、
17.18−−−−一研削されたガラス棒材。
も1図
4b
弔2図
第3図
蛸6図 銅7図
第8図
第9図FIG. 1 is a diagram showing a conventional method for manufacturing a collective type gradient index optical element, FIGS. 2 and 9 are schematic diagrams showing an example of the heating stretching process of the present invention, and FIGS. 5, 7 and 1O are cross-sectional views of an aggregate type gradient index optical element manufactured according to the present invention, FIG. 6 is a cross-sectional view of an aggregate of glass rods having a refractive index distribution, and FIG. 11 is a schematic cross-sectional view of a large-area collective-type gradient index optical element, FIG. 11 is a cross-sectional view of a drum winding up the collective-type gradient index optical element, and FIGS. 12 and 13 are those whose sides have been ground. It is a sectional view of a glass rod material. 1.4a, 4b --Glass rod material, 2---------Spacer, 3------
Plate materials, 5a, 13a, 15a--one assembly, 5b, 9, 11, 13b, 15b--one assembly type gradient index optical element, 6---Heating furnace, 7--・-Tension roller 8---------Light absorber, 10
--- ISA absorber 12a, 12b =-2nd
Light absorber, 14--------Large-area collective type gradient index optical element 1B--One winding drum, 17.18--One ground glass rod Material. Mo1 Figure 4b Funeral Figure 2 Figure 3 Octopus Figure 6 Copper Figure 7 Figure 8 Figure 9
Claims (5)
集合型屈折率分布光学素子の製造方法において、屈折率
分布を有するガラス棒材の複数本を束ねた状態で加熱延
伸し、該ガラス棒材同士を融着する工程を含むことを特
徴とする集合型屈折率分布光学素子の製造方法。(1) In a method for manufacturing a collective type gradient index optical element in which glass rods having a refractive index distribution are bundled and fixed, a plurality of glass rods having a refractive index distribution are bundled and stretched by heating. 1. A method for manufacturing a collective graded refractive index optical element, the method comprising the step of fusing rods together.
ス棒材を浸漬して該ガラス棒材中のイオンと該溶融塩中
のイオンとを交換して形成されたものである特許請求の
範囲第1項記載の集合型屈折率分布光学素子の製造方法
。(2) A patent in which the refractive index distribution of the glass rod is formed by immersing the glass rod in a molten salt and exchanging ions in the glass rod with ions in the molten salt. A method for manufacturing a collective graded index optical element according to claim 1.
らなる集合体の複数を、さらに束ねて接着する工程を含
む特許請求の範囲第1項または第2項記載の集合型屈折
率分布光学素子の製造方法。(3) Collective refractive index gradient optics according to claim 1 or 2, which includes the step of further bundling and bonding a plurality of aggregates made of a plurality of glass rod materials fused by the heating and stretching. Method of manufacturing elements.
らなる集合体の複数を、さらに束ねて加熱圧着する工程
を含む特許請求の範囲第1項または第2項記載の集合型
屈折率分布光学素子の製造方法。(4) Aggregated refractive index distribution according to claim 1 or 2, including the step of further bundling and heat-pressing a plurality of aggregates made of a plurality of glass rods fused by the heating and drawing. A method for manufacturing an optical element.
る特許請求の範囲第1項〜第4項のいずれかに記載の集
合型屈折率分布光学素子の製造方法。(5) The method for manufacturing a collective gradient index optical element according to any one of claims 1 to 4, wherein a light absorber is provided around the glass rod material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62134839A JPS63303826A (en) | 1987-06-01 | 1987-06-01 | Production of cluster type distributed index optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62134839A JPS63303826A (en) | 1987-06-01 | 1987-06-01 | Production of cluster type distributed index optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63303826A true JPS63303826A (en) | 1988-12-12 |
Family
ID=15137669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62134839A Pending JPS63303826A (en) | 1987-06-01 | 1987-06-01 | Production of cluster type distributed index optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63303826A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4694073B2 (en) * | 1999-11-10 | 2011-06-01 | 浜松ホトニクス株式会社 | Manufacturing method of optical lens |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5688849A (en) * | 1979-12-21 | 1981-07-18 | Nippon Sheet Glass Co Ltd | Ion exchange treatment of glass rod |
JPS5746207A (en) * | 1980-09-05 | 1982-03-16 | Nippon Telegr & Teleph Corp <Ntt> | Compound optical fiber |
JPS5969705A (en) * | 1982-10-15 | 1984-04-20 | Furukawa Electric Co Ltd:The | Production of bundle fiber |
-
1987
- 1987-06-01 JP JP62134839A patent/JPS63303826A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5688849A (en) * | 1979-12-21 | 1981-07-18 | Nippon Sheet Glass Co Ltd | Ion exchange treatment of glass rod |
JPS5746207A (en) * | 1980-09-05 | 1982-03-16 | Nippon Telegr & Teleph Corp <Ntt> | Compound optical fiber |
JPS5969705A (en) * | 1982-10-15 | 1984-04-20 | Furukawa Electric Co Ltd:The | Production of bundle fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4694073B2 (en) * | 1999-11-10 | 2011-06-01 | 浜松ホトニクス株式会社 | Manufacturing method of optical lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1233285B1 (en) | Manufacturing method of optical lens | |
JP2002196181A (en) | Optical fiber attached with lens function and its manufacturing method | |
US3830667A (en) | Method of making flexible fiberoptic bundles | |
US20050152044A1 (en) | Method for making micro-lens array | |
US20120219261A1 (en) | Multi-core optical fiber and method of producing the same | |
US3666587A (en) | Method of making a laminated light-conducting fiber material | |
US3574582A (en) | Method for making fiber optical image-conducting devices embodying stray light-absorbing means | |
JPS63303826A (en) | Production of cluster type distributed index optical element | |
JPH0389204A (en) | Mono-polarized mode optical fiber and manufacture thereof | |
JPH0310580B2 (en) | ||
JP3312420B2 (en) | Method of manufacturing gradient index rod lens array | |
JPS6365615B2 (en) | ||
JP2003227963A (en) | Ribbon optical fiber with rod lens and manufacturing method therefor | |
JPH0210093B2 (en) | ||
JPS5938711A (en) | Fixing method of optical fiber bundle | |
JP3142930B2 (en) | Image reading sensor | |
JPS598633A (en) | Preparation of microlens array | |
JPS5951502B2 (en) | Optical fiber manufacturing method | |
JPS6398607A (en) | Optical waveguide and its manufacture | |
JPH0582337B2 (en) | ||
JP2887411B2 (en) | Manufacturing method of fiber fusion type optical directional coupler | |
JP2002341171A (en) | Reinforcing member for optical fiber welded part | |
JPS6132644B2 (en) | ||
JPH04166802A (en) | Work method for light transmitter array | |
JPH0463362B2 (en) |