[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6330292B2 - - Google Patents

Info

Publication number
JPS6330292B2
JPS6330292B2 JP56180706A JP18070681A JPS6330292B2 JP S6330292 B2 JPS6330292 B2 JP S6330292B2 JP 56180706 A JP56180706 A JP 56180706A JP 18070681 A JP18070681 A JP 18070681A JP S6330292 B2 JPS6330292 B2 JP S6330292B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
alkylbenzene
silica gel
chloroalkylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56180706A
Other languages
Japanese (ja)
Other versions
JPS5883638A (en
Inventor
Jitsuo Kiji
Hisatoshi Konishi
Tamon Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Chemical Industry Co Ltd
Original Assignee
Ihara Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Chemical Industry Co Ltd filed Critical Ihara Chemical Industry Co Ltd
Priority to JP56180706A priority Critical patent/JPS5883638A/en
Publication of JPS5883638A publication Critical patent/JPS5883638A/en
Publication of JPS6330292B2 publication Critical patent/JPS6330292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、選択性よくアルキルベンゼンのp―
位の核塩素化物を製造する方法に関するものであ
る。 アルキルベンゼンの核塩素化物は、医薬、農薬
をはじめ各種有機合成化学の原料として有用であ
り、特にp―クロロアルキルベンゼン、例えばp
―クロロトルエンの需要が多い。 従来、アルキルベンゼン核塩素化物の製造法と
して塩化アンチモン、塩化第二鉄、塩化アルミニ
ウム等のルイス酸を触媒としてアルキルベンゼン
を塩素ガスで塩素化する方法が一般的な方法とし
て知られている。 しかしながら、この方法はo―クロロアルキル
ベンゼンが主として生成し、さらにm―クロル
体、多塩素置換体等も副生し、40%以上の選択率
でp―クロロアルキルベンゼンを製造することは
できなかつた。 そこで、p―クロロアルキルベンゼンを選択性
よく製造するために種々の方法が開発された。 例えば、ルイス酸と硫黄化合物またはセレン化
合物を触媒として用いる方法においてはp―クロ
ロアルキルベンゼンが45〜52%の選択率で得られ
(特公昭50―34009号公報、米国特許第4031144号
公報等)、ルイス酸とチアンスレン化合物を触媒
として用いる方法においてはp―クロロアルキル
ベンゼンが55〜60%の選択率で得られ(特開昭52
―19630号公報、米国特許第4031147号公報等)、
ルイス酸とフエノキサチン化合物を触媒として用
いる方法においてはp―クロロアルキルベンゼン
が50〜64%の選択率で得られている(特開昭56―
5139号公報、特開昭56―110630号公報)。 しかしながら、これらの方法もp―クロロアル
キルベンゼンの選択的な製造法としては充分に満
足できるものではなく、さらに高い選択率のp―
クロロアルキルベンゼンの製造法の提供が希求さ
れている。 本発明者らは、このような現状に鑑み、シリカ
ゲル等の無機担体表面を反応場とする有機合成反
応が温和な条件下で選択性よく進行することに着
目し、選択性よくアルキルベンゼンのp―位の核
塩素化物を製造する方法を提供すべく鋭意研究を
重ねた結果、意外にもシリカゲルをニトロベンズ
アミドで化学修飾したものを触媒として用いるこ
とにより従来の方法に比べ優れた選択率でp―ク
ロロアルキルベンゼンが製造できることを見出
し、この知見に基づいて本発明を完成するに至つ
た。 すなわち、本発明は、触媒の存在下アルキルベ
ンゼンを塩素化しアルキルベンゼン核塩素化物を
製造する方法において、一般式 (式中、Aはシリカゲルを表し、Rはアルキル基
を表し、nは1または2の整数を表す。) で示される化学修飾シリカゲルを触媒として用い
ることを特徴とするアルキルベンゼン核塩素化物
の製造法である。 本発明の方法において用いられる前記一般式
()で示される化学修飾シリカゲルは、カラム
クロマト用シリカゲルにベンゼン等の不活性溶媒
中3―(N―アルキル)アミノプロピルトリエト
キシシランを反応させ一般式 A≡SiCH2CH2CH2NHR () (式中、AおよびRは前記と同一の意味を表す。) で示される化学修飾シリカゲルを得、次いでこれ
にベンゼン等の不活性溶媒中脱塩酸剤の存在下、
一般式 (式中、Xはハロゲン原子を表し、nは前記と同
一の意味を表す。) で示されるニトロ安息香酸ハライドを反応させる
ことによつて得られる。 本発明の方法において用いる前記一般式()
で示される化学修飾シリカゲルとしては、例えば
Rがメチル基、エチル基、プロピル基等のアルキ
ル基、nが1または2すなわちモノニトロまたは
ジニトロのものがあげられるが、特にRがメチル
基であり、nが2の2,4―ジニトロのものが好
適である。 また、本発明の方法により塩素化されるアルキ
ルベンゼンとしては、各種の直鎖および分岐鎖ア
ルキルでモノ置換されたベンゼンをあげることが
できるが、特にアルキル基の炭素数が1〜5のも
のが好ましい。 本発明の方法によりアルキルベンゼンの塩素化
を行うには、アルキルベンゼン1モル当り前記一
般式()で示される化学修飾シリカゲルを20〜
2000g好ましくは100〜500gの割合で存在させ反
応混合物の沸点以下の温度で塩素化剤を導入す
る。温度があまり高い場合には、多塩素化物の生
成量が多くなり、p―塩素化物の収率が減り好ま
しくない。一方、マイナス数10℃以下の低温でも
反応は行え、p―塩素化物の選択率は高くなる
が、反応速度が遅くなり経済的でないので、通常
は0〜80℃の温度で、工業的には20〜70℃の温度
で行うのが適切である。この際の塩素化剤として
は塩化チオニル、次亜塩素酸塩などの慣用されて
いる塩素化剤を用いるこができるが、特に好まし
いのは塩素ガスである。この塩素ガスを用いる場
合には、減圧、加圧のいずれでもよいが通常は常
圧で行う。 また、本発明の方法においては塩素化反応の際
に溶媒を特に使用する必要はないが、反応を円滑
に行う目的で四塩化炭素、塩化メチレン、クロロ
ホルム、ベンゼン等の不活性溶媒を用いてもよ
い。 本発明の方法によれば、アルキルベンゼンのo
―位の塩素化を抑えてp―位を選択的に効率よく
塩素化でき、かつm―クロロ体および多塩素化物
の生成が極めて少ないので、p―クロロトルエン
等のp―クロロアルキルベンゼンを製造するのに
適しており、その効果は極めて高いものである。 以下、実施例により本発明の方法を具体的に説
明する。 実施例 1 かきまぜ機、温度計、還流冷却管および滴下ロ
ートを備えた30ml反応フラスコにクメン0.6g
(5m mol)および触媒(1)〔前記一般式()に
おいてR=CH3、n=2、置換位置2,4―位の
もの〕0.5gを仕込み、撹拌下30℃で四塩化炭素
15mlに塩素0.35g(5m mol)を溶解した溶液を
滴下した後30℃で1時間反応させた。反応終了
後、触媒を除去し、炭酸水素ナトリウムで洗浄、
乾燥後、ガスクロマトグラフで分析した結果生成
モノクロロクメンの生成比は4―クロロクメン/
2―クロロクメン比(p/o)=4.82であつた。 比較例 1 (特開昭56―5139号公報記載の方法) かきまぜ機、温度計、ガス吹込み管、還流コン
デンサーを付した1一四つ口フラスコ中に、ク
メン480g、三塩化アンチモン2g及びフエノキ
サチン2gをとり、かきまぜながら、ウオーター
バスで約50℃に加温し、温度が一定になつた後、
塩素ガスを300ml/minの速度で導入し、ウオー
ターバスで反応温度を50〜55℃に保持する。塩素
ガスを5時間導入して反応を停止し、反応液をガ
スクロマトグラフ法で分析した結果、生成モノク
ロロクメンの組成は、4―クロロクメン/2―ク
ロロクメン比(p/o)=1.76であつた。 実施例 2 実施例1の触媒(1)を触媒(2)〔前記一般式()
においてR=CH3、n=2、置換位置3,5―位
のもの〕に代えた以外は実施例1と同様の条件で
反応を行なつた。ガスクロマトグラフで分析した
結果、反応液組成は4―クロロクメン/2―クロ
ロクメン比(p/o)=4.38であつた。 実施例 3〜6 実施例1のクメンに代えて各種のアルキルベン
ゼンを用いた以外は実施例1と同様の条件で反応
を行なつた。 このようにして得られた各種のクロロアルキル
ベンゼンの4―クロロアルキルベンゼン/2―ク
ロロアルキルベンゼン比(p/o)を第1表に示
す。
The present invention provides p-
The present invention relates to a method for producing a nuclear chloride. Nuclear chlorinated products of alkylbenzenes are useful as raw materials for various organic synthetic chemicals including medicines and agricultural chemicals, and in particular p-chloroalkylbenzenes, such as p-
-There is a high demand for chlorotoluene. BACKGROUND ART Conventionally, as a general method for producing an alkylbenzene nuclear chloride, a method is known in which alkylbenzene is chlorinated with chlorine gas using a Lewis acid such as antimony chloride, ferric chloride, or aluminum chloride as a catalyst. However, in this method, o-chloroalkylbenzene is mainly produced, and m-chloro derivatives, polychlorinated products, etc. are also produced as by-products, and p-chloroalkylbenzene cannot be produced with a selectivity of 40% or more. Therefore, various methods have been developed to produce p-chloroalkylbenzene with good selectivity. For example, in a method using a Lewis acid and a sulfur compound or a selenium compound as a catalyst, p-chloroalkylbenzene can be obtained with a selectivity of 45 to 52% (Japanese Patent Publication No. 50-34009, U.S. Pat. No. 4,031,144, etc.); In the method using a Lewis acid and a thianthrene compound as a catalyst, p-chloroalkylbenzene can be obtained with a selectivity of 55 to 60% (Japanese Patent Application Laid-Open No. 1989-1999).
-19630 publication, U.S. Patent No. 4031147 publication, etc.),
In a method using a Lewis acid and a phenoxatine compound as a catalyst, p-chloroalkylbenzene can be obtained with a selectivity of 50 to 64% (Japanese Patent Application Laid-open No. 1983-1999).
5139, JP-A-56-110630). However, these methods are not fully satisfactory as methods for selectively producing p-chloroalkylbenzene, and even higher selectivity p-
It is desired to provide a method for producing chloroalkylbenzene. In view of the current situation, the present inventors focused on the fact that organic synthesis reactions using the surface of an inorganic carrier such as silica gel as a reaction site proceed with good selectivity under mild conditions, and the p- As a result of extensive research to provide a method for producing p-nuclear chlorides, it was unexpectedly possible to use silica gel chemically modified with nitrobenzamide as a catalyst to achieve superior selectivity compared to conventional methods. It was discovered that chloroalkylbenzene can be produced, and the present invention was completed based on this knowledge. That is, the present invention provides a method for producing an alkylbenzene nuclear chloride by chlorinating alkylbenzene in the presence of a catalyst. (In the formula, A represents silica gel, R represents an alkyl group, and n represents an integer of 1 or 2.) A method for producing an alkylbenzene nuclear chloride characterized by using a chemically modified silica gel represented by the following as a catalyst: It is. The chemically modified silica gel represented by the general formula () used in the method of the present invention can be obtained by reacting silica gel for column chromatography with 3-(N-alkyl)aminopropyltriethoxysilane in an inert solvent such as benzene. A chemically modified silica gel represented by ≡SiCH 2 CH 2 CH 2 NHR () (in the formula, A and R represent the same meanings as above) is obtained, and then a dehydrochlorination agent is added to this in an inert solvent such as benzene. In the presence of
general formula (In the formula, X represents a halogen atom, and n represents the same meaning as above.) It can be obtained by reacting a nitrobenzoic acid halide represented by the following. The general formula () used in the method of the present invention
Examples of the chemically modified silica gel represented by R include those in which R is an alkyl group such as a methyl group, ethyl group, or propyl group, and n is 1 or 2, that is, mononitro or dinitro, but in particular, R is a methyl group, and n 2,4-dinitro with 2 is preferred. Furthermore, as the alkylbenzene to be chlorinated by the method of the present invention, benzene monosubstituted with various straight-chain and branched-chain alkyl groups can be mentioned, but those in which the alkyl group has 1 to 5 carbon atoms are particularly preferred. . In order to chlorinate alkylbenzene by the method of the present invention, 20 to 20 to
The chlorinating agent is introduced at a temperature below the boiling point of the reaction mixture in a proportion of 2000 g, preferably from 100 to 500 g. If the temperature is too high, the amount of polychlorinated products produced increases and the yield of p-chlorinated products decreases, which is not preferable. On the other hand, the reaction can be carried out at a low temperature of minus several tens of degrees Celsius or lower, and the selectivity of p-chlorinated products is high, but the reaction rate is slow and uneconomical, so it is usually carried out at a temperature of 0 to 80 degrees Celsius, and is not suitable for industrial use. It is suitable to carry out at a temperature of 20-70 °C. As the chlorinating agent in this case, commonly used chlorinating agents such as thionyl chloride and hypochlorite can be used, but chlorine gas is particularly preferred. When using this chlorine gas, either reduced pressure or increased pressure may be used, but it is usually carried out at normal pressure. In addition, in the method of the present invention, it is not necessary to use a solvent during the chlorination reaction, but inert solvents such as carbon tetrachloride, methylene chloride, chloroform, benzene, etc. may be used to facilitate the reaction. good. According to the method of the present invention, alkylbenzene o
It is possible to selectively and efficiently chlorinate the p-position by suppressing the chlorination at the - position, and the production of m-chloro and polychlorinated products is extremely small, so p-chloroalkylbenzenes such as p-chlorotoluene can be produced. It is suitable for this purpose and its effectiveness is extremely high. Hereinafter, the method of the present invention will be specifically explained with reference to Examples. Example 1 0.6 g of cumene in a 30 ml reaction flask equipped with a stirrer, thermometer, reflux condenser and addition funnel.
(5 mmol) and catalyst (1) [in the above general formula (), R=CH 3 , n=2, substitution position 2,4-position] were charged, and carbon tetrachloride was added at 30°C with stirring.
A solution of 0.35 g (5 mmol) of chlorine dissolved in 15 ml was added dropwise, and the mixture was reacted at 30° C. for 1 hour. After the reaction is complete, remove the catalyst and wash with sodium hydrogen carbonate.
After drying, gas chromatography analysis revealed that the production ratio of monochlorocumene was 4-chlorocumene/
The 2-chlorocumene ratio (p/o) was 4.82. Comparative Example 1 (method described in JP-A No. 56-5139) 480 g of cumene, 2 g of antimony trichloride, and phenoxatin were placed in a four-necked flask equipped with a stirrer, a thermometer, a gas blowing tube, and a reflux condenser. Take 2g and heat it in a water bath to about 50℃ while stirring. After the temperature becomes constant,
Chlorine gas is introduced at a rate of 300 ml/min, and the reaction temperature is maintained at 50-55°C with a water bath. The reaction was stopped by introducing chlorine gas for 5 hours, and the reaction solution was analyzed by gas chromatography. As a result, the composition of the monochlorocumene produced was 4-chlorocumene/2-chlorocumene ratio (p/o) = 1.76. Example 2 Catalyst (1) of Example 1 was converted to catalyst (2) [the general formula ()
The reaction was carried out under the same conditions as in Example 1, except that R=CH 3 , n=2, and the substitution position was 3,5-position]. As a result of analysis by gas chromatography, the composition of the reaction solution was 4-chlorocumene/2-chlorocumene ratio (p/o) = 4.38. Examples 3 to 6 Reactions were carried out under the same conditions as in Example 1, except that various alkylbenzenes were used in place of cumene. Table 1 shows the 4-chloroalkylbenzene/2-chloroalkylbenzene ratio (p/o) of the various chloroalkylbenzenes thus obtained.

【表】 実施例 7 実施例1の触媒(1)を触媒(3)〔前記一般式()
においてR=CH3、n=1、置換位置4―位のも
の〕に代えた以外は実施例1と同様の条件で反応
を行なつた。ガスクロマトグラフで分析した結
果、反応液組成は4―クロロクメン/2―クロロ
クメン比(p/o)=4.0であつた。 実施例 8 実施例1の触媒(1)を触媒(4)〔前記一般式()
においてR=C2H5、n=2、置換位置3,5―
位のもの〕に代え、クメンをトルエンに代えた以
外は実施例1と同様の条件で反応を行なつた。ガ
スクロマトグラフで分析した結果、反応液組成は
4―クロロトルエン/2―クロロトルエン比
(p/o)=1.60であつた。
[Table] Example 7 Catalyst (1) of Example 1 was converted to catalyst (3) [the above general formula ()
The reaction was carried out under the same conditions as in Example 1 except that R=CH 3 , n=1, and the substitution position was at the 4-position]. As a result of analysis by gas chromatography, the composition of the reaction solution was 4-chlorocumene/2-chlorocumene ratio (p/o) = 4.0. Example 8 Catalyst (1) of Example 1 was converted to catalyst (4) [the general formula ()
where R=C 2 H 5 , n=2, substitution position 3,5-
The reaction was carried out under the same conditions as in Example 1, except that cumene was replaced with toluene. As a result of analysis by gas chromatography, the composition of the reaction solution was 4-chlorotoluene/2-chlorotoluene ratio (p/o) = 1.60.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲の化学修飾シリカゲル
の構造の模式図である。第2図は実施例1におけ
る化学修飾シリカゲル触媒によるクメンと塩素の
反応の模式図である。
FIG. 1 is a schematic diagram of the structure of the chemically modified silica gel claimed in the claims. FIG. 2 is a schematic diagram of the reaction between cumene and chlorine using a chemically modified silica gel catalyst in Example 1.

Claims (1)

【特許請求の範囲】 1 触媒の存在下アルキルベンゼンを塩素化しア
ルキルベンゼン核塩素化物を製造する方法におい
て一般式 (式中、Aはシリカゲルを表し、Rはアルキル
基を表し、nは1または2の整数を表す。) で示される化学修飾シリカゲルを触媒として用い
ることを特徴とするアルキルベンゼン核塩素化物
の製造法。
[Claims] 1. In a method for producing an alkylbenzene nuclear chloride by chlorinating alkylbenzene in the presence of a catalyst, the general formula (In the formula, A represents silica gel, R represents an alkyl group, and n represents an integer of 1 or 2.) A method for producing an alkylbenzene nuclear chloride characterized by using a chemically modified silica gel represented by the following as a catalyst: .
JP56180706A 1981-11-11 1981-11-11 Preparation of nucleus-chlorinated alkylbenzene Granted JPS5883638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180706A JPS5883638A (en) 1981-11-11 1981-11-11 Preparation of nucleus-chlorinated alkylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180706A JPS5883638A (en) 1981-11-11 1981-11-11 Preparation of nucleus-chlorinated alkylbenzene

Publications (2)

Publication Number Publication Date
JPS5883638A JPS5883638A (en) 1983-05-19
JPS6330292B2 true JPS6330292B2 (en) 1988-06-17

Family

ID=16087884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180706A Granted JPS5883638A (en) 1981-11-11 1981-11-11 Preparation of nucleus-chlorinated alkylbenzene

Country Status (1)

Country Link
JP (1) JPS5883638A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056498A1 (en) * 1997-06-13 1998-12-17 California Institute Of Technology Porous silica having spatially organized organic functionalities

Also Published As

Publication number Publication date
JPS5883638A (en) 1983-05-19

Similar Documents

Publication Publication Date Title
JP4025313B2 (en) Method for preparing aryl pentafluoride
US5120883A (en) Catalytic process for producing CCl3 CF3
KR970015581A (en) Process for preparing substituted thiazole
JPS6330292B2 (en)
EP0163230B1 (en) Process for producing aromatic chlorine compounds
EP0450584B1 (en) Bromination method
US5872291A (en) Process for producing benzoyl chlorides
US3232947A (en) Preparation of fluorinated aryl halides
JP2544804B2 (en) Method for producing disulfide
JP3882855B2 (en) Method for producing alkylbenzoyl chloride
JPS6327054B2 (en)
US4183873A (en) Liquid phase fluorination process
JP3857369B2 (en) Method for producing chlorinated hydrocarbons
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
US4952719A (en) Process for the preparation of halo aromatic compounds
JPH0676343B2 (en) Novel method for producing fluorinated aromatic compounds
US4130594A (en) Liquid phase fluorination process
JP3783733B2 (en) Method for producing alkylbenzoyl chloride
JPH06184018A (en) Production of substituted cumyl chloride
JPH0153260B2 (en)
EP0752418B1 (en) Method for preparing 4-alkyl-2-hydroxy-3,5-dichlorobenzene sulphonic acids
JPH0322854B2 (en)
JP2658070B2 (en) Method for producing fluorine-containing alkane
JP3998075B2 (en) Demethylation of podophyllotoxin
JP2808695B2 (en) Preparation of thiophosgene