JPS63291833A - Method for cooling glass fiber - Google Patents
Method for cooling glass fiberInfo
- Publication number
- JPS63291833A JPS63291833A JP62128639A JP12863987A JPS63291833A JP S63291833 A JPS63291833 A JP S63291833A JP 62128639 A JP62128639 A JP 62128639A JP 12863987 A JP12863987 A JP 12863987A JP S63291833 A JPS63291833 A JP S63291833A
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- cooling
- liquid
- temperature
- liquid film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003365 glass fiber Substances 0.000 title claims abstract description 82
- 238000001816 cooling Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims description 21
- 239000007788 liquid Substances 0.000 claims abstract description 77
- 239000011347 resin Substances 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims abstract description 26
- 239000013307 optical fiber Substances 0.000 claims abstract description 11
- 238000009835 boiling Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 150000008282 halocarbons Chemical class 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 23
- 239000000835 fiber Substances 0.000 abstract 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 abstract 1
- 239000000110 cooling liquid Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 238000009529 body temperature measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012681 fiber drawing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
- C03B37/02718—Thermal treatment of the fibre during the drawing process, e.g. cooling
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/50—Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket
- C03B2205/52—Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket by direct contact with liquid coolant, e.g. as spray, mist
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は走行するガラスファイバを冷却する方法に関し
、とくに光伝送用ガラスファイバの製造に際し、ガラス
ファイバプリフォームを加熱・溶融して線引したガラス
ファイバに被覆用樹脂を塗布する前工程として、走行す
るガラスファイバを冷却する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for cooling a running glass fiber, and in particular, to a method for cooling a running glass fiber, in particular, when manufacturing a glass fiber for optical transmission, a glass fiber preform is heated and melted and drawn. The present invention relates to a method of cooling a traveling glass fiber as a pre-process of applying a coating resin to the glass fiber.
従来、この種の走行する線材、たとえば光ファイバの線
引被覆工程において、走行するガラスファイバに紫外線
硬化性樹脂などの溶液状樹脂を塗布する際、線材である
ガラスファイバを一定温度以下に冷却する必要がある(
たとえば、Appl、Opt。Conventionally, in the drawing and coating process of this type of running wire, such as optical fiber, when applying a solution resin such as an ultraviolet curable resin to the running glass fiber, the glass fiber that is the wire is cooled to a certain temperature or below. There is a need(
For example, Appl, Opt.
20 (2!l) p、4028.1981)。かかる
線材の冷却技術としては、たとえば気体によシ冷却する
方法が知られている(たとえば特開昭55−10470
号公報、特開昭61−72648号公報)。以下従来技
術1という。20 (2!l) p, 4028.1981). As a cooling technique for such a wire, for example, a method of cooling with gas is known (for example, disclosed in Japanese Patent Application Laid-open No. 10470/1983).
(Japanese Patent Application Laid-Open No. 61-72648). Hereinafter, this will be referred to as prior art 1.
また、他の方法として、液体によシ冷却する方法がある
。たとえば、被覆用として塗布する樹脂と同質、または
若干組成の異なる粘稠な樹脂をダイスに満たし、そのダ
イス中を走通して冷却する方法(たとえば特開昭57−
67045号公報。)、または低粘度の冷却液をダイス
に満たし、そのダイス中を走通して冷却する方法(たと
えば特開昭57−7836号公報。)である。以下従来
技術2という。Another method is to use liquid for cooling. For example, a method is used in which a die is filled with a viscous resin that is the same as the resin to be applied for coating or has a slightly different composition, and is passed through the die to cool it (for example,
Publication No. 67045. ), or a method in which a die is filled with a low viscosity cooling liquid and cooled by passing through the die (for example, Japanese Patent Laid-Open No. 7836/1983). Hereinafter, this will be referred to as prior art 2.
従来技術1、すなわち気体による冷却法は、気体の熱伝
導°度が小さいこと、比熱が小さいことから冷却の効率
が低く、冷却効果を上げるためには非常に大きいガス流
量を必要とするという問題がある。Conventional technology 1, that is, the cooling method using gas, has the problem that the cooling efficiency is low because the thermal conductivity of the gas is low and the specific heat is low, and a very large gas flow rate is required to increase the cooling effect. There is.
また従来技術2、すなわちダイス中の樹脂や冷却液によ
り冷却する方法は、冷却をしないで樹脂の塗布を行った
場合と同様、線引速度の僅かな変動や、線材のガラスフ
ァイバの僅かな温度変化で冷却用の樹脂や冷却液が塗布
されたシ、塗布されなかったりといった不連続な塗布が
生じ、このような不連続に被覆された被覆面上に、さら
に本来塗布すべき樹脂を塗布するため、下地の外径変動
の影響を受けて外観に異常を生じる場合が多い。In addition, conventional technology 2, that is, the method of cooling with resin or cooling liquid in the die, is similar to the case where resin is applied without cooling, due to slight fluctuations in the drawing speed and slight temperature fluctuations of the glass fiber of the wire material. This change causes discontinuous application of cooling resin or coolant, with some being applied and others not being applied, and the resin that should have been applied is further applied onto the discontinuously coated surface. Therefore, abnormalities in appearance often occur due to the influence of changes in the outer diameter of the base.
この原因は、紫外線硬化性樹脂などの溶液状樹脂を塗布
する際に、一般に線材の温度が一定の値より高いと被覆
状態が乱れるのと同様で、ガラスファイバの場合も塗布
したガラスファイバ表面の樹脂温度が上昇し、これに伴
ってガラスファイバ表面の樹脂の粘度が低下し、ガラス
ファイバ界面付近の樹脂流速分布が不均一になるためと
考えられる。The reason for this is similar to the way that when coating a solution resin such as an ultraviolet curable resin, the coating condition is generally disturbed if the temperature of the wire is higher than a certain value. This is considered to be because the resin temperature increases and the viscosity of the resin on the surface of the glass fiber decreases, causing the resin flow velocity distribution near the glass fiber interface to become non-uniform.
さらにガラスファイバ表面の温度の均一性が失われると
、樹脂の塗布状態が不均一化し、被覆に乱れが生じると
いう問題がある。Furthermore, if the temperature uniformity on the surface of the glass fiber is lost, there is a problem in that the resin coating becomes uneven and the coating becomes disordered.
本発明は、従来の問題点を解決するため、常に一定流速
で液膜流をガラスファイバに向かって噴出し、液膜を常
に一定量ガラスファイバと接触させることにより、走行
するガラスファイバを長手方向に均一に冷却することを
特徴としている。In order to solve the conventional problems, the present invention always jets a liquid film flow toward the glass fiber at a constant flow rate, and by always bringing the liquid film into contact with the glass fiber in a constant amount, the running glass fiber is moved in the longitudinal direction. It is characterized by uniform cooling.
本発明の液膜流による冷却法の作用は次のとおりである
。第3図にガラスファイバ周辺の空気の温度分布を熱電
対によシ実測した結果の一例を示す。第3図から明らか
なように、ガラスファイバの周囲には高温の空気の気膜
ができており、熱の不良導体である空気層によシ保護さ
れている。従来技術1で例示した、気体を用いた冷却法
では、この空気層による保温層の除去が難かしいため、
液体冷却に比して冷却効果が上がらなりものと考えられ
る。The effects of the cooling method using liquid film flow according to the present invention are as follows. Figure 3 shows an example of the results of actually measuring the temperature distribution of the air around the glass fiber using a thermocouple. As is clear from FIG. 3, a film of high-temperature air is formed around the glass fiber, and is protected by the air layer, which is a poor conductor of heat. In the cooling method using gas as exemplified in Prior Art 1, it is difficult to remove the heat insulating layer due to the air layer.
It is thought that the cooling effect is improved compared to liquid cooling.
本発明の冷却法は、ガラスファイバを、液膜を上下に走
通する構成であることから、加熱・熔融して線引された
ガラスファイバは、液膜を境にして、液膜走通前と、走
通後に完全に区割され、ガラスファイバが線引されて牽
引してきた高温の空気層は液膜によシ完全に遮断される
。Since the cooling method of the present invention is configured to run the glass fiber vertically through a liquid film, the glass fiber that has been heated, melted, and drawn is separated from the liquid film before passing through the liquid film. After running, it is completely divided, and the high-temperature air layer drawn by the glass fiber is completely blocked by the liquid film.
同様の効果は、細径の孔を有する板体でも実現すること
ができるが、ガラスファイバを通過させるため、孔径は
ガラスファイバ径より大きくな9、最も高温のガラスフ
ァイバ周囲付近の空気層が孔を通過してしまうので、液
膜に比して効果が小さい。A similar effect can be achieved with a plate having small diameter holes, but in order to allow the glass fiber to pass through, the hole diameter is larger than the glass fiber diameter9. , so the effect is smaller than that of a liquid film.
また液膜を利用する利点の一つとして、常に同じ温度の
液体によシ高温空気層を除いていることが掲げられる。One of the advantages of using a liquid film is that the high-temperature air layer is removed by a liquid that is always at the same temperature.
細径孔を有する板体などを用いた場合には、高温の空気
層と接触する孔は付近の板体の温度が経時的に上昇して
くることとなり問題である。これに対し液膜を利用する
と、常に同じ温度の液体が線材のガラスファイバを取り
囲むことになり、上述した細径孔の場合における孔付近
の板体温度の経時的上昇という問題は無い。When a plate having small diameter holes is used, the hole comes into contact with a high-temperature air layer, which causes the temperature of the nearby plate to rise over time, which is a problem. On the other hand, when a liquid film is used, a liquid of the same temperature always surrounds the glass fiber of the wire, and there is no problem of the temperature of the plate near the hole increasing over time as in the case of the small hole described above.
上述したように、本発明の液膜を通過させて冷却する方
法では、液膜を通過したガラスファイバは、液膜通過前
のガラスファイバ周囲の高温の空気層を除去され、液膜
通過後の室温または低温の空気あるいはガス層と接触す
ることになυ、均一な冷却が行われる。As mentioned above, in the method of cooling by passing through a liquid film of the present invention, the glass fiber that has passed through the liquid film has the high temperature air layer around the glass fiber before passing through the liquid film removed, and the high temperature air layer around the glass fiber after passing through the liquid film is removed. Uniform cooling is achieved through contact with air or gas layer at room temperature or low temperature.
さらに本発明の冷却法においては、液膜を構成する液体
の沸点をガラスファイバの温度より低くしておくことに
より、液体は速かに蒸発し、塗布するm脂中に含浸する
といった問題は生じない。Furthermore, in the cooling method of the present invention, by keeping the boiling point of the liquid constituting the liquid film lower than the temperature of the glass fiber, the liquid evaporates quickly, eliminating the problem of impregnation into the applied resin. do not have.
また本発明の冷却法によると、ガラスファイバ周囲が一
定温度の液膜によシ囲繞されているので、従来の液体冷
却のように、冷却用液体の不連続な接触により長手方向
へ不均一な温度状態が生じるといった問題も生ずること
なく、極めて安定かつ均一な温度にガラスファイバを冷
却することができる。以下図面にもとづき実施例につい
て説明する。Furthermore, according to the cooling method of the present invention, since the glass fiber is surrounded by a liquid film at a constant temperature, unlike conventional liquid cooling, discontinuous contact with the cooling liquid causes unevenness in the longitudinal direction. The glass fiber can be cooled to an extremely stable and uniform temperature without causing problems such as temperature fluctuations. Examples will be described below based on the drawings.
第1図は本発明に係る光フアイバ線引工程を説明する図
である。プリフォーム5は加熱炉6で加熱・熔融され、
所定径のガラスファイバ2に紡糸される。ガラスファイ
バ2は、液体噴出装置3と噴出される液体を受ける液体
受取装置4からなる温度冷却装置を走通する。すなわち
、液体噴出装置3から噴出する冷却用液体の形成する液
[1を通過して所定温度に冷却された後、樹脂塗布装置
7によυ樹脂を塗布され、樹脂硬化装置8で樹脂が硬化
され、被覆光ファイバー0が形成され、キャプスタン1
1を介して巻取装置9に巻取られる。FIG. 1 is a diagram illustrating an optical fiber drawing process according to the present invention. The preform 5 is heated and melted in a heating furnace 6,
The glass fiber 2 is spun into a glass fiber 2 having a predetermined diameter. The glass fiber 2 runs through a temperature cooling device consisting of a liquid ejecting device 3 and a liquid receiving device 4 for receiving the ejected liquid. That is, after the cooling liquid ejected from the liquid ejecting device 3 passes through the formed liquid [1 and is cooled to a predetermined temperature, the resin is applied by the resin coating device 7, and the resin is hardened by the resin curing device 8. The coated optical fiber 0 is formed, and the capstan 1 is
1 to be wound up by a winding device 9.
第2図に本発明に係るガラスファイバ冷却装置による冷
却法の実施例の要部構成を示す。冷却用液体は、液体噴
出装置3のスリット状のノズル13の液体噴出スリット
12から噴出され、液膜1を形成し、ガラスファイバ2
はとの液膜1を貫通する。FIG. 2 shows the main structure of an embodiment of a cooling method using a glass fiber cooling device according to the present invention. The cooling liquid is ejected from the liquid ejection slit 12 of the slit-shaped nozzle 13 of the liquid ejection device 3, forms a liquid film 1, and is attached to the glass fiber 2.
Penetrates the liquid film 1 of the dove.
このとき、ガラスファイバ2は液膜1によシ、第1図に
TおよびPで示す液膜通過前と通過後の状態に完全に区
割され、ガラスファイバ2が、図示で上方から牽引して
きた高温の空気層は液膜1によシ完全に遮断され、所定
の温度に冷却される。At this time, the glass fiber 2 is completely divided by the liquid film 1 into states before and after passing through the liquid film, as shown by T and P in FIG. The high temperature air layer is completely blocked by the liquid film 1 and cooled to a predetermined temperature.
なお、液膜1を用いた場合、通常の液体冷却と同様に液
体への伝熱の効果もある。また液膜1を形成する液体の
沸点がガラスファイバ2の線引後の温度より低い液体を
用いることによシ、ガラスファイバ2の表面において液
体は蒸発し、冷却の効果が加味される。Note that when the liquid film 1 is used, there is also the effect of heat transfer to the liquid, similar to normal liquid cooling. Furthermore, by using a liquid that forms the liquid film 1 and whose boiling point is lower than the temperature after drawing the glass fiber 2, the liquid evaporates on the surface of the glass fiber 2, thereby adding a cooling effect.
本発明の冷却法においては、上述した効果が液膜1の厚
みによシ異ることから、ガラスファイバ2の張力や、必
要な冷却効果によシ、厚みを適宜変えて制御することが
できる。なお液膜1の厚み制御に際して、液膜1を厚く
するのに伴ない蒸発潜熱による効果と、伝熱の効果は増
すが、一方ガラスファイバ1に加わる力が大きくなシ、
ガラスファイバ1の張力が小さい場合は適切な厚みに選
定することが必要である。In the cooling method of the present invention, since the above-mentioned effects vary depending on the thickness of the liquid film 1, the thickness can be controlled by appropriately changing the tension of the glass fiber 2 and the required cooling effect. . Note that when controlling the thickness of the liquid film 1, as the liquid film 1 becomes thicker, the effect of latent heat of vaporization and the effect of heat transfer increase, but on the other hand, the force applied to the glass fiber 1 increases.
When the tension of the glass fiber 1 is small, it is necessary to select an appropriate thickness.
次に本発明の冷却方法の具体的な実施例について説明す
る。以下の具体例は第1図に示す光ファイバ桿引工程に
より行い、冷却装置は第2図に要部構成を示した液体噴
出スリットを有するノズルを備えた液体噴出装置を用い
て実施した例である。Next, a specific example of the cooling method of the present invention will be described. The following specific example is an example in which the optical fiber rod drawing process shown in FIG. be.
液体噴
小装置の設置位置は、ガラスファイバの温度が250℃
の位置であシ、効果の測定はこの位置より50 am下
方の位置で行った。ガラスファイバの温度の測定には赤
外線カメラを使用した。The installation position of the liquid spray device is such that the temperature of the glass fiber is 250℃.
The effect was measured at a position 50 am below this position. An infrared camera was used to measure the temperature of the glass fiber.
実施例1:
冷却用液体として沸点が87℃のトリクロルエチレンを
用い、温度を15℃に保持して、スリット寸法0.5m
mx 20tywnの液体噴出スリットから噴出し液膜
を形成した。この液膜を走通させたガラスファイバの測
温位置における温1度は120℃であシ、液膜走通前の
250℃の温度のに強に冷却されており、冷却効果が認
められた。Example 1: Trichlorethylene with a boiling point of 87°C was used as the cooling liquid, the temperature was maintained at 15°C, and the slit size was 0.5 m.
A liquid film was ejected from a liquid ejecting slit of mx 20 tywn. The temperature of the glass fiber at the temperature measurement position through which this liquid film was passed was 120°C, which was strongly cooled down to the 250°C temperature before the liquid film was passed through it, and a cooling effect was observed. .
これに対し、冷却装置の作動を中止し、冷却を行わず、
自然空冷として測温位置におけるガラスファイバの温度
を測定したところ、145℃であった。In response to this, the operation of the cooling device is stopped and no cooling is performed.
When the temperature of the glass fiber at the temperature measuring position was measured as natural air cooling, it was 145°C.
この温度では、以後の對指塗布にはなお不均一性の危惧
が残る。At this temperature, there is still a risk of non-uniformity in subsequent finger applications.
実施例2:
実施例1の場合の冷却装置の配置に加えて、さらに10
cm下方および20cm下方の位置に2個の冷却装置を
配置し、液膜を3層としてガラスファイバを走通させた
。その結果、測温位置におけるガラスファイバの温度は
93℃まで冷却されており、十分な冷却効果のあること
が確認された。Example 2: In addition to the arrangement of the cooling device in Example 1, additional 10
Two cooling devices were placed at positions 1 cm and 20 cm below, and a glass fiber was run through three layers of liquid film. As a result, the temperature of the glass fiber at the temperature measurement position was cooled to 93° C., and it was confirmed that there was a sufficient cooling effect.
実施例3:
実施例2と同じく、冷却装置3個を同じ配置とし、冷却
用液体のトリクロルエチレンの温度を0℃に冷却して液
膜を形成し、実施例2と同様の評価を行った。その結果
、測温位置におけるガラスファイバの温度は80℃とな
シ、冷却の効果がさらに増していることが確認された。Example 3: As in Example 2, three cooling devices were arranged in the same way, the temperature of the cooling liquid trichlorethylene was cooled to 0°C to form a liquid film, and the same evaluation as in Example 2 was performed. . As a result, it was confirmed that the temperature of the glass fiber at the temperature measurement position was 80° C., which further increased the cooling effect.
実施例4:
実施例1の冷却装置の配置と同じ方法で、冷却用液体と
して、沸点が47.6℃のダイキン株式会社製のグイフ
ロンS3を15℃の温度に保持した液体を用いて実施例
1と同様の評価を行った。その結果、測温位置における
ガラスファイバの温度は114℃であシ、実施例1と同
様、冷却を行わなかった場合のガラスファイバの温度1
45Cと比較して冷却効果が確認された。Example 4: In the same manner as the arrangement of the cooling device in Example 1, an example was carried out using Guiflon S3 manufactured by Daikin Corporation, which has a boiling point of 47.6°C and kept at a temperature of 15°C, as the cooling liquid. The same evaluation as in 1 was performed. As a result, the temperature of the glass fiber at the temperature measurement position was 114°C, and as in Example 1, the temperature of the glass fiber without cooling was 1.
The cooling effect was confirmed compared to 45C.
なお、本発明の効果をさらに上げるために、本発明に係
る冷却装置を多数台装備・配置する方法や、ガラスファ
イバ近傍のガスとして熱伝導率の良いヘリウムや水素を
置換しておく方法、或いは低温のガスを用いる方法を併
用することは有効である。In order to further increase the effects of the present invention, there may be a method of equipping and arranging a large number of cooling devices according to the present invention, a method of replacing the gas near the glass fiber with helium or hydrogen having good thermal conductivity, or It is effective to use a method using low-temperature gas in combination.
冷却用液の溶剤としては、水、アルコールやその他の種
々の有機溶剤を適用できるが、光ファイバの強度に影響
を与える水分が少ない点や、高温のガラスファイバを走
通させることから、燃性の低い、すなわち難燃性の溶剤
が使い易く、たとえば弗素置換炭化水素や塩素置換炭化
水素が有効である。Water, alcohol, and various other organic solvents can be used as the solvent for the cooling liquid, but they have low flammability because they contain little water, which affects the strength of the optical fiber, and because they run through high-temperature glass fibers. It is easy to use solvents with low flame retardant properties, such as fluorine-substituted hydrocarbons and chlorine-substituted hydrocarbons.
また冷却用液の溶剤の温度を下げておくことは、ガラス
ファイバを直接冷却する効果に加えて、液膜を走通する
際のガラスファイバ表面に付着するガスの温度を下げる
効果もあり、有効である。In addition, lowering the temperature of the solvent in the cooling liquid not only has the effect of directly cooling the glass fiber, but also has the effect of lowering the temperature of the gas that adheres to the surface of the glass fiber when it runs through the liquid film, which is effective. It is.
さらに液膜を厚くし過ぎると、ガラスファイバの通過に
際し、ガラスファイバとの当接による液体の飛散が生じ
、安定な冷却効果が得られない場合がある。この点から
、液膜は2mrs程度以下で、少くとも0.05mm以
上の厚みに選ぶことが好適である。またガラスファイバ
には、液膜との接触により側方からの力が加えられるこ
とから、複数台の冷却装置を使用する場合には、ガラス
7アイパに対して対称方向から液体を噴出するよう冷却
装置の液体噴出スリットの位置を配置することが有効で
ある。Furthermore, if the liquid film is made too thick, the liquid may scatter due to contact with the glass fiber when it passes through the glass fiber, and a stable cooling effect may not be obtained. From this point of view, it is preferable to select the liquid film to be approximately 2 mrs or less and to have a thickness of at least 0.05 mm or more. In addition, since force is applied to the glass fiber from the side when it comes into contact with the liquid film, when using multiple cooling devices, cool the glass fiber so that the liquid is ejected from a symmetrical direction with respect to the glass 7 eyeper. It is effective to arrange the position of the liquid ejection slit of the device.
以上説明した本発明の冷却法は、光ファイバの製造に際
しての線引されたガラスファイバの冷却法を実施例とし
て説明してきたが、本発明は、他・ の線引工程により
加工される細径線材一般において、たとえば被覆工程の
前段における被覆材の均一塗布を目的とした線材冷却法
としても適用できることは明らかである。The cooling method of the present invention described above has been explained by taking as an example a method of cooling a drawn glass fiber during the production of optical fiber. It is clear that this method can also be applied to wire rods in general, for example, as a wire cooling method for the purpose of uniformly coating a coating material in the first stage of a coating process.
以上説明したように、本発明は、液膜流をガラスファイ
バに向かって常に一定流速で噴出し、一定景の液膜を常
にガラスファイバと接触させる冷却法であることから、
高温のガラスファイバを、金属などの固体に接触させる
ことなく、均一にガラスファイバの温度を下げることが
でき、とくに光ファイバの製造工程において適用し、そ
の効果が顕著である。また本発明に適用する冷却装置は
、従来の気体冷却装置とは異なり、高さ方向に小型なも
のとなシ、線引装置に併設する際の空間効率がよいとい
う利点もある。As explained above, the present invention is a cooling method in which a liquid film stream is always ejected toward a glass fiber at a constant flow rate, and a constant view of the liquid film is always brought into contact with the glass fiber.
The temperature of the high-temperature glass fiber can be lowered uniformly without bringing it into contact with solid objects such as metals, and the effect is particularly noticeable when applied in the manufacturing process of optical fibers. Furthermore, unlike conventional gas cooling devices, the cooling device applied to the present invention has the advantage of being compact in the height direction and having good space efficiency when installed alongside a wire drawing device.
第1図は本発明に係る光フアイバ線引工程説明図、
第2図は本発明に係るガラスファイバ冷却法実施例概要
図、
第3図は高温ガラスファイバの周辺の空気層の温度を示
す図である。
1・・・液膜
2・・・ガラスファイバ
3・・・液体噴出装置
4・・・液体受取装置
5・・・プリフォーム
6・・・加熱炉
7・・・樹脂塗布装置
8・・・雲脂硬化装置
9・・・巻取装置
10・・・被覆光ファイバ
11・・・キャプスタン
12・・・液体噴出スリット
13・・・ノズルFig. 1 is an explanatory diagram of the optical fiber drawing process according to the present invention, Fig. 2 is a schematic diagram of an embodiment of the glass fiber cooling method according to the present invention, and Fig. 3 is a diagram showing the temperature of the air layer around the high-temperature glass fiber. It is. 1...Liquid film 2...Glass fiber 3...Liquid ejecting device 4...Liquid receiving device 5...Preform 6...Heating furnace 7...Resin coating device 8...Cloud Fat curing device 9... Winding device 10... Coated optical fiber 11... Capstan 12... Liquid ejection slit 13... Nozzle
Claims (5)
・溶融してガラスファイバを線引形成し、前記ガラスフ
ァイバを冷却した後、樹脂被覆を施して光ファイバを製
造する方法において、 前記ガラスファイバを冷却する工程は、 前記線引きしたガラスファイバを、液体噴出装置から液
体を噴出して形成する液膜中を通過させ、前記走行して
いるガラスファイバを冷却することを特徴とするガラス
ファイバ冷却法。(1) A method of manufacturing an optical fiber by heating and melting a glass fiber preform in a heating furnace to form a glass fiber, cooling the glass fiber, and then applying a resin coating, the method comprising cooling the glass fiber. A glass fiber cooling method characterized in that the step of cooling the traveling glass fiber by passing the drawn glass fiber through a liquid film formed by jetting liquid from a liquid jetting device.
の温度より低い沸点の液体であることを特徴とする特許
請求の範囲第1項記載のガラスファイバ冷却法。(2) The glass fiber cooling method according to claim 1, wherein the liquid forming the liquid film is a liquid having a boiling point lower than the temperature of the glass fiber.
5mm以上であることを特徴とする特許請求の範囲第1
項記載のガラスファイバ冷却法。(3) The liquid film has a film thickness of 2 mm or less and at least 0.0 mm.
Claim 1 characterized in that the diameter is 5 mm or more.
Glass fiber cooling method described in section.
特徴とする特許請求の範囲第1項記載のガラスファイバ
冷却法。(4) The glass fiber cooling method according to claim 1, wherein the liquid is made of halogenated hydrocarbon.
特徴とする特許請求の範囲第1項記載のガラスファイバ
冷却法。(5) The glass fiber cooling method according to claim 1, wherein the liquid is made of trichlorethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128639A JP2501582B2 (en) | 1987-05-26 | 1987-05-26 | Glass fiber cooling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62128639A JP2501582B2 (en) | 1987-05-26 | 1987-05-26 | Glass fiber cooling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63291833A true JPS63291833A (en) | 1988-11-29 |
JP2501582B2 JP2501582B2 (en) | 1996-05-29 |
Family
ID=14989793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62128639A Expired - Lifetime JP2501582B2 (en) | 1987-05-26 | 1987-05-26 | Glass fiber cooling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2501582B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0570161A (en) * | 1991-09-06 | 1993-03-23 | Fujikura Ltd | Production unit for optical fiber |
EP0838440A1 (en) * | 1996-10-25 | 1998-04-29 | Alcatel | Process and apparatus for cooling a glass optical fibre drawn from a glass preform |
-
1987
- 1987-05-26 JP JP62128639A patent/JP2501582B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0570161A (en) * | 1991-09-06 | 1993-03-23 | Fujikura Ltd | Production unit for optical fiber |
EP0838440A1 (en) * | 1996-10-25 | 1998-04-29 | Alcatel | Process and apparatus for cooling a glass optical fibre drawn from a glass preform |
Also Published As
Publication number | Publication date |
---|---|
JP2501582B2 (en) | 1996-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2772518A (en) | Method of coating glass filaments with metal | |
KR970005421B1 (en) | Optical fiber manufacturing apparatus and method | |
US4388093A (en) | Process for producing a glass fiber for light transmission | |
JP2765033B2 (en) | Optical fiber drawing method | |
JPH10114550A (en) | Optical fiber, its drawing device, and manufacture of optical fiber | |
JPH0455138B2 (en) | ||
US6010741A (en) | Apparatus and method for controlling the coating thickness of an optical glass fiber | |
JPS6240304B2 (en) | ||
CN107428592B (en) | Method for manufacturing optical fiber | |
JP2501582B2 (en) | Glass fiber cooling | |
US11008245B2 (en) | Optical fiber production method | |
JP4302367B2 (en) | Optical fiber drawing method and drawing apparatus | |
JP2023549223A (en) | Roll forming apparatus and method for high refractive index glass sheet | |
US3604392A (en) | Apparatus for manufacturing a plastic insulated wire | |
JP2844741B2 (en) | Optical fiber cooling device and cooling method | |
JP6174092B2 (en) | Optical fiber manufacturing apparatus, optical fiber manufacturing method, and optical fiber | |
JP2001180950A (en) | Improved manufacturing method for continuous thin sheet glass | |
JPH02184544A (en) | Apparatus for cooling optical fiber and cooling method | |
DE19644350A1 (en) | Method and device for producing an optical glass fiber | |
JPH11135320A (en) | Superconducting coil and its manufacture | |
JPS6337046B2 (en) | ||
JP2001287927A (en) | Method and apparatus for drawing wire of optical fiber | |
JPS63112443A (en) | Production of optical fiber | |
JPS62162651A (en) | Production of optical fiber coated with thermoplastic resin and apparatus therefor | |
JP2001114525A (en) | Process for production of optical fiber and apparatus therefor |