JPS6329153A - Solar heat collecting method - Google Patents
Solar heat collecting methodInfo
- Publication number
- JPS6329153A JPS6329153A JP61169888A JP16988886A JPS6329153A JP S6329153 A JPS6329153 A JP S6329153A JP 61169888 A JP61169888 A JP 61169888A JP 16988886 A JP16988886 A JP 16988886A JP S6329153 A JPS6329153 A JP S6329153A
- Authority
- JP
- Japan
- Prior art keywords
- water
- container
- heat
- water surface
- pond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 94
- 239000002344 surface layer Substances 0.000 claims abstract description 7
- 238000007599 discharging Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 26
- 150000003839 salts Chemical class 0.000 description 14
- 238000005338 heat storage Methods 0.000 description 13
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000005791 algae growth Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/10—Solar heat collectors using working fluids the working fluids forming pools or ponds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、太陽熱を発電、産業用各種熱源供給、民生
用給湯、工業用給湯、冷暖房、海水淡水化、融雪等の各
種の熱源として利用する場合に採用する太陽熱の集熱方
法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention utilizes solar heat as a variety of heat sources such as power generation, various industrial heat source supplies, consumer hot water supply, industrial hot water supply, air conditioning, seawater desalination, and snow melting. This article relates to solar heat collection methods that can be used when
従来、水面を介して太陽熱エネルギーを吸収。 Traditionally, solar energy is absorbed through the water surface.
蓄熱する方法の代表的なものとして、第6図に示すよう
に、地盤4に築造された人工または天然の池5内に、高
濃度塩水を注入して底部蓄熱層6を形成し、その底部蓄
熱層乙の上K、底部側から上方に向かって順次濃度を下
げた塩水を層分けして約50段階に注入することにより
、塩水濃度勾配層(中間非対流層)7を形成し、その塩
水濃度勾配層7の上に清水を注水して清浄用上部清水層
8を形成し、前記底部蓄熱層6の濃度を約20〜25%
の範囲に設定し、前記底部蓄熱層6に太陽熱全収集蓄熱
すると共に、前記塩水濃度勾配層7により対流を抑制し
て非対流断熱性を発揮させて底部蓄熱層6からの放熱を
防止し、さらに清浄用上部清水層8により水面上に浮遊
するごみや汚れを清澄して、太陽熱を底部蓄熱層6へ入
射吸収させ、その底部蓄熱層6から給湯配管9により給
湯して熱を利用し、冷水を戻り配管10により底部蓄熱
層6に還元する集熱方法が仰られている。As shown in FIG. 6, a typical method for storing heat is to inject highly concentrated salt water into an artificial or natural pond 5 built on the ground 4 to form a bottom heat storage layer 6. Above the heat storage layer B, salt water whose concentration is gradually lowered from the bottom side upwards is divided into layers and injected in about 50 stages to form a salt water concentration gradient layer (intermediate non-convection layer) 7, and the salt water Clean water is poured onto the concentration gradient layer 7 to form an upper clean water layer 8, and the concentration of the bottom heat storage layer 6 is approximately 20 to 25%.
In addition to collecting and storing all of the solar heat in the bottom heat storage layer 6, the salt water concentration gradient layer 7 suppresses convection and exhibits non-convection heat insulation to prevent heat radiation from the bottom heat storage layer 6. Furthermore, the dust and dirt floating on the water surface are purified by the upper clean water layer 8, solar heat is incident and absorbed into the bottom heat storage layer 6, and hot water is supplied from the bottom heat storage layer 6 through the hot water supply pipe 9 to utilize the heat. A heat collection method is mentioned in which cold water is returned to the bottom heat storage layer 6 through a return pipe 10.
前記従来の太陽熱の集熱方法の場合は下記の問題点があ
る。The conventional solar heat collection method has the following problems.
(1) 多量の塩を必要とするので、コストが高く、
かつ塩を溶解する必要があるので煩雑である。(1) It is expensive because it requires a large amount of salt;
Moreover, it is complicated because it is necessary to dissolve the salt.
(2)塩水濃度勾配層7を設ける際の多数の異濃度層形
成作業が極めて煩雑であシ、かつ塩水濃度勾配層7の塩
水濃度勾配状態の維持管理にも極めて手間がか\る。(2) The work of forming a large number of different concentration layers when providing the salt water concentration gradient layer 7 is extremely complicated, and the maintenance and management of the salt water concentration gradient state of the salt water concentration gradient layer 7 is also extremely time consuming.
(6)底部蓄熱層以外の層も容器内に設けるか仕切りを
設ける必要があり、しかも水量が著しく多いので、建設
コストおよび上水コストが高くなる。(6) It is necessary to provide layers other than the bottom heat storage layer within the container or provide partitions, and the amount of water is significantly large, resulting in high construction costs and water supply costs.
(4)蓄熱層が底部にあるので太陽熱の吸収量が少ない
。(4) Since the heat storage layer is at the bottom, the amount of solar heat absorbed is small.
(5)底部蓄熱層および他の層が太陽光線に当たるので
、バクテリア、藻類の繁殖を起こし易く、そのため殺菌
および藻類の繁殖防止用の薬品を必要とするので、コス
トが高くなる。(5) Since the bottom heat storage layer and other layers are exposed to sunlight, they are prone to the growth of bacteria and algae, and therefore require chemicals for sterilization and prevention of algae growth, which increases costs.
(6)風雨に弱く、かつ塩水濃度勾配層の安定状態が崩
れ易い。(6) It is vulnerable to wind and rain, and the stable state of the salt water concentration gradient layer is likely to collapse.
(7)底部蓄熱層乙の塩水を直接循環させて給熱すると
、塩水濃度勾配層7が乱れ易い。(7) If the salt water in the bottom heat storage layer B is directly circulated to supply heat, the salt water concentration gradient layer 7 is likely to be disturbed.
この発明は前述の問題を有利に解決できる太陽熱の集熱
方法を提供することを目的とするものであって、この発
明の要旨とするところは、下部が開放されている断熱密
閉容器1の下部を太陽光の照射する水面下に浅く没入さ
せ、前記断熱密閉容器1内金負圧にすることにより、断
熱ぞ閉容器1内の水面2を、断熱密閉容器1の外部の水
面6よりも上昇させ、この状態を連続して保持すること
によシ、断熱密閉容器1の外部の水面表層部に吸収され
ている太陽熱を自然対流現象によって断熱密閉容器1内
の水に集熱することを特徴とする太陽熱の集熱方法にあ
る。The purpose of this invention is to provide a method for collecting solar heat that can advantageously solve the above-mentioned problems. By immersing the water shallowly under the water surface irradiated by sunlight and creating a negative pressure inside the insulated closed container 1, the water level 2 inside the insulated closed container 1 is raised above the water level 6 outside the insulated closed container 1. By continuously maintaining this state, the solar heat absorbed by the water surface layer outside the insulated hermetic container 1 is collected into the water inside the insulated hermetic container 1 by natural convection. It is a method of collecting solar heat.
次にこの発明を図示の例によって詳細に説明する。 Next, the present invention will be explained in detail using illustrated examples.
第1図はこの発明の第1実施例を示すものであって、地
盤4に人工の池5が築造され、円筒部分とその上端部に
連設された半球状部分とからなる断熱密閉容器1は、金
属またはプラスチックからなる容器本体11とその容器
本体11の外面に一体に設けられた発泡ウレタン等の断
熱材12とにより構成され、かつ断熱密閉容器1の下端
部の周囲には、多数の支脚13の上端部が密閉容器下端
部周囲方向に間隔をおいて固定され、さらに各支脚16
の下端部は池5の底部に設けられた基礎14に固定され
、断熱密閉容器1の下端部は池5の水面6の下に浅く没
入されている。FIG. 1 shows a first embodiment of the present invention, in which an artificial pond 5 is built on the ground 4, and an insulated airtight container 1 consisting of a cylindrical portion and a hemispherical portion connected to the upper end thereof. is composed of a container body 11 made of metal or plastic and a heat insulating material 12 such as foamed urethane provided integrally on the outer surface of the container body 11. The upper ends of the supporting legs 13 are fixed at intervals in the circumferential direction of the lower end of the closed container, and each supporting leg 16
The lower end portion is fixed to a foundation 14 provided at the bottom of the pond 5, and the lower end portion of the heat-insulating sealed container 1 is shallowly submerged below the water surface 6 of the pond 5.
前記断熱密閉容器1の上部中央に設けられた吸引口15
は開閉弁16を有する空気吸引管17を介して真空ポン
グ18の吸入口に接続され、かつ給湯配管19の吸込端
部は断熱密閉容器1内の水中に配置され、かつ冷水戻り
管20の吐出端部は池5内の水中に配置されている。
、。A suction port 15 provided at the center of the upper part of the heat-insulating airtight container 1
is connected to the suction port of the vacuum pump 18 via an air suction pipe 17 having an on-off valve 16, and the suction end of the hot water supply pipe 19 is placed in the water inside the insulated sealed container 1, and the discharge end of the cold water return pipe 20 The end portion is placed underwater in the pond 5.
,.
前記直空ポンプ18により断熱密閉容器1内が負圧にさ
れて、断熱密閉容器1内の水面2が池5内の水面3より
も上昇されたのち、開閉弁16が閉じられて、真空ポン
グ18の運転が停止され、この状態で放置される。After the inside of the insulated airtight container 1 is made negative pressure by the direct air pump 18 and the water level 2 in the insulated airtight container 1 is raised above the water level 3 in the pond 5, the on-off valve 16 is closed and the vacuum pump is turned off. 18 is stopped and left in this state.
このようにすると、太陽熱が池5の水面表層部に吸収さ
れると共に、その吸収された太陽熱が自然対流現象によ
って断熱密閉容器1内の水に集熱される。断熱密閉容器
1内で昇温された高温水は給湯配管19により温水使用
場所に送られ、熱洞用後の冷水は冷水戻り管20により
池5内に還元される。In this way, solar heat is absorbed by the water surface layer of the pond 5, and the absorbed solar heat is collected into the water in the heat-insulating closed container 1 by natural convection. The high-temperature water heated in the heat-insulating sealed container 1 is sent to a hot water usage area through a hot water supply pipe 19, and the cold water after being used in the heat cave is returned to the pond 5 through a cold water return pipe 20.
第2図はこの発明の第2実施例を示すものであって、下
部が開放されている半球状の断熱密閉容器1における下
部外周に、浮力タンク21が取付けられ、この浮力タン
ク付き密閉容器1は、造船所において建造されて、海上
の設置場所まで曳航され、海底地盤24からアンカー2
6および係留ローブ2′2によシ海面上に係留される。FIG. 2 shows a second embodiment of the present invention, in which a buoyancy tank 21 is attached to the lower outer periphery of a hemispherical heat-insulating sealed container 1 with an open bottom. The anchor 2 is constructed at a shipyard, towed to the installation site at sea, and anchored 2 from the seabed ground 24.
6 and mooring lobe 2'2 on the sea surface.
断熱密閉容器1の上部中央に設けられた吸引口15は開
閉弁16を有する空気吸引管17を介して直空ボング1
8の吸入口に接続され、かつ給湯配管19の吸込端部は
断熱密閉容器1内の水中の上部に配置され、さらに冷水
戻シ管20の吐出端部は断熱密閉容器1内の水中の下部
に配置されている。A suction port 15 provided at the center of the upper part of the heat-insulating sealed container 1 is connected to the direct air bong 1 through an air suction pipe 17 having an on-off valve 16.
8, and the suction end of the hot water supply pipe 19 is arranged above the water in the insulated closed container 1, and the discharge end of the cold water return pipe 20 is arranged below the water in the insulated closed container 1. It is located in
第2実施例の場合も、真空イング18によシ断熱密閉容
器1内が負圧にされて、断熱密閉容器1内の水面2が断
熱密閉容器1外の水面6よりも上昇されたのち、開閉弁
16が閉じられて、直空ポング18の運転が停止され、
この状態で放置されて、第1実施例の場合と同様にして
集熱されると共に給湯および遣水が行なわれる。In the case of the second embodiment as well, after the inside of the insulated hermetic container 1 is made negative pressure by the vacuum pump 18 and the water level 2 inside the insulated hermetic container 1 is raised above the water level 6 outside the insulated hermetic container 1, The on-off valve 16 is closed, the operation of the direct air pump 18 is stopped,
When left in this state, heat is collected and hot water and water are supplied in the same manner as in the first embodiment.
第2実施例の場合は、断熱密閉容器1の周囲に浮力タン
ク21が取付けられていて、その断熱ぞ閉容器1が浮上
するので、断熱密閉容器1を移動式として利用すること
ができ、かつ水位の変動にも自動的に対応させることが
できる。In the case of the second embodiment, a buoyancy tank 21 is attached around the insulated closed container 1, and the insulated closed container 1 floats, so that the insulated closed container 1 can be used as a mobile device, and It can also automatically respond to changes in water level.
この発明を実施する場合、断熱密閉容器1を、天然の海
、池、湖、水溜等に設置するかまたは浮上係留して使用
することができる。また断熱密閉容器1め形状は半球形
が理想的であるが、他の任意形状であってもよい。さら
にまた、断熱密閉容器1を昇降移動可能に設置するか、
または断熱密閉容器1の下端開口部に開閉自在な蓋を設
けて、太陽光が照射されないとき、断熱密閉容器1f、
下降移動するか、または前記蓋を閉じて、断熱密閉容器
1内の水と断熱密閉容器外の水とを遮断し、断熱密閉容
器1内の水の放熱を防止してもよい。When carrying out the present invention, the heat-insulating sealed container 1 can be installed in a natural sea, pond, lake, puddle, etc., or can be used by being floated and moored. Further, the first shape of the heat-insulating sealed container is ideally hemispherical, but it may be any other arbitrary shape. Furthermore, the heat insulating airtight container 1 may be installed so as to be movable up and down, or
Alternatively, a lid that can be opened and closed is provided at the lower end opening of the insulating airtight container 1, so that when sunlight is not irradiated, the insulating airtight container 1f,
It may be moved downward or the lid may be closed to shut off the water inside the insulated hermetic container 1 and the water outside the insulated hermetic container 1, thereby preventing the water inside the insulating hermetic container 1 from radiating heat.
断熱密閉容器1内の水の蓄熱を回収するために、断熱密
閉容器1内に熱交換器を設けてもよく、また断熱密閉容
器1の外周に、その断熱密閉容器1の周囲の水面6を覆
う透光性膜または透光性ガラスを取付けて、断熱密閉容
器1の周囲の水面ろからの放熱を防止するようにしても
よい。In order to recover the heat accumulated in the water in the insulated hermetic container 1, a heat exchanger may be provided in the insulated hermetic container 1, and a water surface 6 around the insulated hermetic container 1 may be provided on the outer periphery of the insulated hermetic container 1. A covering light-transmitting film or light-transmitting glass may be attached to prevent heat radiation from the water surface around the heat-insulating closed container 1.
断熱密閉容器1内を負圧にする手段として、真空ボング
に代えてエアーエジェクターまたはその他の手段を採用
してもよく、また小規模な集熱全行なう場合は、断熱密
閉容器1の底面を池5の底面に一時的に着座させ、断熱
密閉容器1の内部の水を充滴させてから断熱密閉容器1
t−引上げてもよい。さらにまた、断熱密閉容器1にお
ける断熱壁部の構造は前記以外の任意構造であってもよ
い。An air ejector or other means may be used instead of a vacuum bong as a means of creating a negative pressure inside the insulated hermetic container 1. Also, when performing small-scale heat collection, the bottom of the insulated hermetic container 1 may be placed in a pond. Temporarily seat it on the bottom of the insulated sealed container 1, and fill it with water inside the insulated sealed container 1.
t- You may pull it up. Furthermore, the structure of the heat insulating wall portion of the heat insulating closed container 1 may be any structure other than the above.
この発明によれば、下部が開放されている断熱密閉容器
1の下部を太陽光の照射する水面下に浅く没入させ、前
記断熱密閉容器1内を負圧にすることにより、断熱密閉
容器1内の水面2を、断熱密閉容器1の外部の水面6よ
シも上昇させ、この状態を連続して保持することにより
、断熱密閉容器1の外部の水面表層部に吸収されている
太陽熱を自然対流現象によって断熱密閉容器1内の水に
集熱するので、下記の効果が得られる。According to this invention, the lower part of the insulating sealed container 1, which is open at the bottom, is immersed shallowly under the water surface irradiated with sunlight, and the inside of the insulating sealed container 1 is made to have a negative pressure. By raising the water level 2 above the water level 6 outside the insulated hermetic container 1 and continuously maintaining this state, the solar heat absorbed by the surface layer of the water outside the insulated hermetic container 1 can be absorbed by natural convection. Due to this phenomenon, heat is collected in the water in the heat-insulating closed container 1, so that the following effects can be obtained.
(1)集熱するための必要動力は、断熱密閉容器1内の
水位全上昇させるまでの動力だけであるので、動力費を
極めて少なくしてコスト’を下げることができる。(1) Since the power required to collect heat is only the power needed to fully raise the water level in the heat-insulating sealed container 1, the power cost can be extremely reduced and costs can be lowered.
(2)塩水の製造、水質管理、流動管理、汚濁清澄管理
が不要で、自然に入手できる海水または清水をそのまま
利用できるので、コストヲ下げることができると共に、
適用性が広くかつ容易に集熱することができる。(2) There is no need for salt water production, water quality control, flow control, pollution/clarification control, and naturally available seawater or fresh water can be used as is, reducing costs.
It has wide applicability and can easily collect heat.
(3) 自然状態で最も高温になる表層部の水の熱を
自然対流を利用して集熱、蓄熱することができるので、
集熱効率を簡単な手段によって向上させることができる
。(3) It is possible to collect and store the heat of the water in the surface layer, which is at its highest temperature in its natural state, using natural convection.
Heat collection efficiency can be improved by simple means.
(4) 自然の水面を仕切ることなく利用でき、また
人工池を築造する場合は、浅い池でよいので、建設コス
トを安くすることができる。(4) The natural water surface can be used without partitioning, and when constructing an artificial pond, a shallow pond is sufficient, so construction costs can be reduced.
(5)大規模、小規模に拘らず技術的問題がなく、容易
に実用化できる。(5) There are no technical problems regardless of whether the scale is large or small, and it can be easily put into practical use.
(6)断熱密閉容器1の大きさは蓄熱容量に必要な分だ
けで済むので、集熱設備の製造コストを安くすることが
できる。(6) Since the size of the heat-insulating sealed container 1 is only required for the heat storage capacity, the manufacturing cost of the heat collection equipment can be reduced.
(力 断熱密閉容器1内の上部全負圧にすることにより
、断熱密閉容器1内の多量の水を、断熱密閉容器1外の
水面6よりも高レベルに保持することができる。By creating a negative pressure in the upper part of the insulated hermetic container 1, a large amount of water in the insulated hermetic container 1 can be maintained at a higher level than the water surface 6 outside the insulated hermetic container 1.
第1図はこの発明の第1実施例を示す縦断側面図、第2
図はこの発明の第2実施例金示す縦断側面図である。第
6図は従来の太陽熱の集熱設備を示す縦断側面図である
。
図において、1は断熱密閉容器、2および3は水面、5
は池、11は容器本体、12は断熱材、13は支脚、1
4は基礎、15は吸引口、16は開閉弁、17は空気吸
引管、18は直空ポング、19は給湯配管、20は冷水
戻り管、21は浮力タンク、22は係留ロープ、26は
アンカーである。FIG. 1 is a longitudinal cross-sectional side view showing a first embodiment of the present invention, and a second embodiment of the present invention is shown in FIG.
The figure is a longitudinal sectional side view showing a second embodiment of the present invention. FIG. 6 is a longitudinal sectional side view showing a conventional solar heat collection facility. In the figure, 1 is an insulated airtight container, 2 and 3 are water surfaces, and 5
is the pond, 11 is the container body, 12 is the insulation material, 13 is the support leg, 1
4 is a foundation, 15 is a suction port, 16 is an on-off valve, 17 is an air suction pipe, 18 is a direct air pump, 19 is a hot water supply pipe, 20 is a cold water return pipe, 21 is a buoyancy tank, 22 is a mooring rope, 26 is an anchor It is.
Claims (1)
照射する水面下に浅く没入させ、前記断熱密閉容器1内
を負圧にすることにより、断熱密閉容器1内の水面2を
、断熱密閉容器1の外部の水面3よりも上昇させ、この
状態を連続して保持することにより、断熱密閉容器1の
外部の水面表層部に吸収されている太陽熱を自然対流現
象によつて断熱密閉容器1内の水に集熱することを特徴
とする太陽熱の集熱方法。By immersing the lower part of the insulated sealed container 1, which is open at the bottom, shallowly under the water surface irradiated by sunlight and create a negative pressure inside the insulated sealed container 1, the water surface 2 in the insulated sealed container 1 is insulated. By raising the water level above the water level 3 outside the hermetic container 1 and continuously maintaining this state, the solar heat absorbed by the water surface layer outside the insulating hermetic container 1 is absorbed by the natural convection phenomenon. A solar heat collection method characterized by collecting heat into water within a room.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61169888A JPS6329153A (en) | 1986-07-21 | 1986-07-21 | Solar heat collecting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61169888A JPS6329153A (en) | 1986-07-21 | 1986-07-21 | Solar heat collecting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6329153A true JPS6329153A (en) | 1988-02-06 |
Family
ID=15894816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61169888A Pending JPS6329153A (en) | 1986-07-21 | 1986-07-21 | Solar heat collecting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6329153A (en) |
-
1986
- 1986-07-21 JP JP61169888A patent/JPS6329153A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7329656B2 (en) | solar power plant | |
US3730120A (en) | Method and apparatus of collecting rainwater | |
WO2017201794A1 (en) | Half-submerged deep-sea aquaculture cage combining wave power and solar power generation | |
JPH067773B2 (en) | Fish farming equipment | |
JPH027B2 (en) | ||
US4092827A (en) | Apparatus for aerial water acquisition and sub-sea aqueduct | |
TWI568170B (en) | Water chase solar power generation system | |
US4380993A (en) | Combined solar collector and storage pond | |
JPS6329153A (en) | Solar heat collecting method | |
CN108455103B (en) | Heat-storage pool floating heat-insulating cover with wind resistance, rain resistance and dehumidification functions | |
WO2005108299A1 (en) | A floating cover system for a body of liquid | |
Short et al. | A solar pond for heating greenhouses and rural residences—a preliminary report | |
CN215399230U (en) | Flood-fighting overwater living room | |
CN214930475U (en) | Ocean platform for deep seawater intake development and comprehensive utilization | |
EP4122096A1 (en) | A floating solar power plant | |
AU2004100619A4 (en) | A cover system for a body of liquid | |
CN112722177A (en) | Ocean platform and method for deep seawater intake development and comprehensive utilization | |
GB2458104A (en) | Tide powered pump | |
CN219750099U (en) | Ocean floating type photovoltaic power station | |
US11892195B2 (en) | Localized heating system for large water bodies with a partial confinement system | |
IL32259A (en) | Apparatus of collecting rainwater | |
US4672950A (en) | Method of and apparatus for protecting a halocline in a salt-water solar pond against the effects of wind | |
KR102124647B1 (en) | Device for reversing Laver bed | |
JPS63187054A (en) | Solar heat collector | |
AU2003246047A1 (en) | Aquadam |