JPS6329901B2 - - Google Patents
Info
- Publication number
- JPS6329901B2 JPS6329901B2 JP18781982A JP18781982A JPS6329901B2 JP S6329901 B2 JPS6329901 B2 JP S6329901B2 JP 18781982 A JP18781982 A JP 18781982A JP 18781982 A JP18781982 A JP 18781982A JP S6329901 B2 JPS6329901 B2 JP S6329901B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- selective absorption
- paint
- parts
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010521 absorption reaction Methods 0.000 claims description 37
- 239000003973 paint Substances 0.000 claims description 31
- 239000000049 pigment Substances 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 14
- 229920000178 Acrylic resin Polymers 0.000 claims description 12
- 239000004925 Acrylic resin Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 239000008199 coating composition Substances 0.000 claims description 11
- 229920002050 silicone resin Polymers 0.000 claims description 10
- 239000004094 surface-active agent Substances 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000002923 metal particle Substances 0.000 claims description 7
- 239000006097 ultraviolet radiation absorber Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- -1 fluororesin Polymers 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229920001225 polyester resin Polymers 0.000 claims description 3
- 239000004645 polyester resin Substances 0.000 claims description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910001111 Fine metal Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 44
- 238000000576 coating method Methods 0.000 description 31
- 239000011248 coating agent Substances 0.000 description 29
- 238000012360 testing method Methods 0.000 description 17
- 239000004810 polytetrafluoroethylene Substances 0.000 description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 12
- 230000003595 spectral effect Effects 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000001023 inorganic pigment Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
Description
産業上の利用分野
この発明は太陽熱集熱板表面に適用する選択吸
収用塗料組成物に関するものである。
従来例の構成とその問題点
従来より、太陽熱集熱器の集熱特性の向上をめ
ざし、集熱板表面の選択吸収膜、ガラス透過板の
選択透過膜、集熱器内部の対流防止膜など種々の
技術が導入されている。その中でも積極的に取り
組まれているのが選択吸収膜の開発である。
太陽エネルギーを集熱する表面に望ましい特性
としては、波長0.3〜2.0μmにそのほとんどが存
在する太陽の放射エネルギーを極力多く吸収する
とともに、太陽エネルギーを吸収して80〜100℃
に温度上昇した集熱板表面から放散される波長
3μm以上にそのほとんどが存在する放射エネル
ギーを極力少なくする特性があげられる。この特
性を選択吸収性と呼んでいる。
メツキ処理や化成処理によつて選択吸収性を付
与した集熱板の具体例としては、着色ステンレ
ス、電解黒色酸化アルミニウム、ブラツククロ
ム、ブラツクカツパーなどがあげられ、これはい
ずれも波長0.3〜2.0μmの太陽エネルギー吸収率
α(以下、単にαと略す)が0.90〜0.95で、波長
3〜30μmの赤外放射率ε(以下、単にεと略す)
が0.10〜0.15という良好な選択吸収性を示す。し
かしながら、これらは支持物である金属表面に形
成する黒色被膜の組成や膜厚の制御に伴なう管理
が複雑であるうえに製造設備(廃液処理も含む)
が大規模となり、コストが高くなるという問題が
あつた。
このような背景から、生産性が高くトータルコ
ストのうえから有利な塗装に着目し、最近では選
択吸収性を付与させるための塗料が開発され、塗
装により選択吸収性を有する集熱板が出現してい
る。塗装により選択吸収性を付与した集熱板の特
性は、塗膜の膜厚約3μmで支持物がステンレス
の場合αが0.94でεが0.45となり、また同膜厚で
支持物がアルミニウムの場合αが0.94でεが0.40
を示し、前記着色ステンレス、ブラツククロムな
どに比べてεが著しく劣るという欠点を有する。
εを前述の値より低くするにはバインダである樹
脂の赤外吸収を少なくするために塗膜の膜厚をさ
らに薄くすればよいが、膜厚を薄くすることによ
り、太陽エネルギーの分布する波長0.8〜2.0μm
の近赤外線領域の反射が高くなるから、αが低く
なり、膜厚1.5μmではステンレスの場合αが0.90
でεが0.30となり、アルミニウムの場合αが0.88
でεが0.25の特性となるうえに、薄膜になると支
持物の隠ぺいが悪くなり、塗膜の密着性、耐食性
が著しく劣化するという欠点を有し、1.5μm以下
の膜厚は実用的ではなかつた。
集熱器の性能向上にはεが低いことが重要であ
るが、給湯を目的とした低温集熱器ではαが高い
ことも重要となる。事実、α:0.94、ε:0.45の
特性を有する集熱板とα:0.90、ε:0.30の特性
を有する集熱板について給湯システムで集熱性能
を比較すると両者はほぼ同等の集熱性能を示し、
εを低くすることだけが集熱器の性能向上とはな
らず、いかに高いαを維持し、低いεを実現する
かが重要な課題となるのである。
発明の目的
この発明の目的は、すぐれた選択吸収性を有
し、しかも低コストで耐食性、耐候性などの耐久
性にすぐれた太陽熱集熱板用の選択吸収用塗料組
成物を提供することである。
発明の構成
この発明の選択吸収用塗料組成物は、黒色顔料
と、バインダ剤と、4フツ化エチレン樹脂粉末
と、紫外線吸収剤と、界面活性剤とを含むもので
ある。
前記黒色顔料は、太陽エネルギーの吸収を主要
目的とするが、有機顔料に比して波長3μm以上
の赤外線吸収が少ない無機顔料を用いるのが良好
な選択吸収性を実現するうえで好ましいものであ
る。さらに無機顔料は耐熱性にもすぐれている。
とくに好ましい黒色無機顔料としては、鉄、マン
ガン、銅、クロム、コバルトおよびニツケルより
なる群から選ばれた1種または2種以上の金属の
酸化物あるいは複合酸化物があげられ、たとえば
CoO、Cr2O3、MnO2、Fe2O3、Fe2O3−MnO2−
CuO、CuO−Cr2O3などがある。コストを含めた
実用性を考えるとFe2O3−MnO2−CuOの顔料が
最適である。また、これら顔料の粒径は安定した
隠ぺい力を示しかつ波長3μm以上の散乱吸収が
少なく低いεを得るうえで1μm以下が好ましく、
とりわけ高いαを得るうえで平均粒子径が0.3〜
0.5μmであるのが好ましい。これは、太陽エネル
ギーの分布する波長0.8〜2.0μmの近赤外線を散
乱吸収するに適した粒子径が0.3〜0.5μmである
ためと考えられる。
この発明におけるバインダ剤としては、塗膜の
薄膜化が可能でかつ耐熱性、耐候性、耐食性にす
ぐれたものであるのが好ましく、このようなバイ
ンダ剤としては、たとえばアクリル樹脂、シリコ
ーン樹脂、エポキシ樹脂、フツ素樹脂、ウレタン
樹脂およびポリエステル樹脂よりなる群から選ば
れた少なくとも1種または2種以上があげられ、
さらにこれら樹脂を変性したものも採用可能であ
る。コストを含めた実用性を考えるとアクリル樹
脂に接着性を向上させるためにエポキシ樹脂を添
加したものがあげられる。
また、前記紫外線吸収剤は黒色無機顔料では吸
収の不足する波長0.3μmからの紫外線を吸収し、
太陽エネルギーが存在する波長0.3〜2.0μmの光
を極力多く吸収するように添加されるものであ
る。紫外線吸収剤としては、たとえば透明酸化
鉄、金属超微粒子等があげられ、これらは粒径が
0.1μm以下であるのが紫外線吸収にとりわけすぐ
れている。これは、粒径を0.1μm以下とすること
により、波長0.3μm程度の紫外線を散乱吸収する
のに適しているためと考えられる。
この発明における4フツ化エチレン樹脂粉末
(以下、PTFE粉末という)は、本来、塗膜の耐
食性、耐熱性、耐摩耗性を改善するために用いて
いるものであつたが、これが波長0.8〜2.0μmの
近赤外線の散乱吸収に有効に寄与していることが
明らかとなつた。これは、前記PTFE粉末の平均
粒子径が約0.3μmであることが、前記近赤外線の
散乱吸収に奇与していると考えられる。
塗装により選択吸収性を実現するためには塗膜
の膜厚をきわめて薄くする必要があり、より薄い
膜厚で均一に安定した塗膜を得るには塗布する塗
料の希釈度を高め、濡れ膜厚と溶剤蒸発後の乾燥
膜厚との差を大きくすることが必要となる。とこ
ろが、塗料の吐出圧力が1Kg/cm2のように低い圧
力で高希釈の塗料を塗装した場合、溶剤の蒸発に
伴ない溶剤を多量に含む塗膜内に対流現象が起こ
り、顔料と樹脂が分離し、その結果塗膜に斑点が
生じたり、縞模様になるなどの問題がある。この
発明における界面活性剤はこれらの問題を解決す
るために塗料に添加するものであり、種々の添加
剤を検討した結果、アミノ変性シリコーン樹脂、
ポリエーテル変性シリコーン樹脂の界面活性剤が
良好であつた。とくに塗膜の膜厚を1μm以下に
するには、塗料の希釈度がかなり高くなるため、
前記界面活性剤の添加は極めて有効といえる。
この発明の塗料組成物は前述の黒色顔料、バイ
ンダ剤、各種添加剤を適当量の溶剤とともにボー
ルミル、ロールミル、アトライタなどの分散機で
分散混合して調製することができる。
この発明の塗料組成物を適用すべき支持物とし
てはεの低い金属が有利であり、たとえばアルミ
ニウム、銅、ステンレスなどがあげられる。さら
に支持物が金属でなくともたとえばプラスチツク
等の表面にεを低くするための処理を施したもの
も使用可能である。
実施例の説明
この発明の選択吸収用塗料組成物を実施例をあ
げて説明する。各実施例において使用した試験片
はアルミニウム(JIS P 1100P規格)で寸法75
mm×150mm×0.5mmのものである。
実施例 1
(顔料/樹脂について)
熱硬化性アクリル樹脂(三菱レーヨン(株)製の
「ダイヤナールSE−5661」、樹脂固型分50重量%)
の100部(重量部、以下同様)に対し、平均粒子
径が0.3μmのFe2O3−MnO2−CuO系市販黒色顔
料を40部の割合で加え、さらにn−ブタノール58
部、キシロール42部、「ソルベツソ#100」(商品
名)100部を添加しボールミルで24時間分散混合
して塗料を調製した。この塗料を適当な粘度に調
整後、スプレーにてアルミニウム試験片に塗装
し、200℃で10分間焼成して膜厚が1μmの塗膜
(試料1)を得た。
また、顔料の配合量を60部、80部および100部
としたほかは前記と同様にして膜厚1μmの塗膜
(試料2、3および4)を得た。
各試料1〜4について、島津製作所製の自記分
光光度計「MPS−5000型」に積分球反射装置
「ISR−2型」を付加し、波長0.75〜2.0μmの分光
反射率を測定した。第1図に各試料1〜4の分光
反射率を示す。第1図から明らかなように、(顔
料/樹脂)が高くなるにつれて分光反射率が低く
なり、αが高くなるが、これは支持物上の顔料密
度が高くなるためである。
また、これらの試料について、デービイス・ア
ンド・サービス(Devices&Services)社製の
「放射率計」を用いて、波長3〜30μmのεを測
定した結果、いずれもεが0.20〜0.21を示し、
(顔料/樹脂)にあまり影響されないことから、
(顔料/樹脂)が高くなると選択吸収性は有利に
なる。しかしながら、(顔料/樹脂)が高くなる
と塗料粘度が増大し、塗装作業性が悪くなる上に
塗膜自身の密着性、硬度などが悪くなる欠点を有
する。これらの試験片について塗膜の密着性を試
験したところ(顔料/樹脂)が100/100のものは
他のものより密着性に劣る結果を得た。したがつ
て、塗膜の密着性と選択吸収性の両者を意識する
と(顔料/樹脂)の配合比率は60/100〜80/100
の範囲がよい。前述したように使用したアクリル
樹脂は固型分が50重量%であるので、(顔料/樹
脂固型分)換算では60/50〜80/50の範囲とな
る。
実施例 2
(PTFE粉末について)
実施例1で使用したと同じアクリル樹脂および
黒色顔料を用い、アクリル樹脂100部に対して黒
色顔料70部を加え、さらに平均粒子径約0.3μmの
PTFE粉末(ダイキン工業(株)製の「ルブロンL−
2」)を前記アクリル樹脂100部に対し5部の割合
で加え、実施例1と同様にして塗料を調製し、こ
れをスプレーにてアルミニウム試験片に塗装し、
200℃で10分間焼成して厚さ1μmの塗膜(試料
5)を得た。
また、PTFE粉末の配合量を10部および15部と
したほかは前記と同様にしてそれぞれ膜厚1μm
の塗膜(試料6および7)を得た。
これらの各試料5〜7について、実施例1と同
様にして波長0.75〜2.0μmの範囲で分光反射率を
測定した。その結果を第2図に示す。また、実施
例1と同様にしてεを測定したところ、いずれの
試料もεが0.20であつた。
第2図から、前記PTFE粉末の添加量が多くな
るに従い、分光反射率が低くなる傾向を示してい
ることがわかり、波長0.8〜2.0μmの近赤外線領
域の吸収に関して、有効に寄与していることが明
らかにされた。これは、前記PTFE粉末の粒子径
が近赤外線領域の散乱吸収に適しているためと考
えられる。さらに、いずれの試料5〜7もεが同
レベルであることから、前記PTFE粉末は波長3μ
m以上の赤外線吸収が非常に少ないことが考えら
れる。
また、これらの試料5〜7について塗膜の密着
性を試験したところいずれも良好な結果を得た。
しかしながら、前記PTFE粉末が白色であり、か
つ粒子のまま塗膜に存在することから、この添加
量をさらに増加すると塗膜表面が白くなり、波長
0.3〜8.0μmの紫外、可視部の吸収が悪くなる傾
向がみられた。したがつて、PTFE粉末の添加量
は、前記アクリル樹脂100部に対し15部前後が好
ましい。なお、前記アクリル樹脂固型分100部に
対しては30部前後となる。
実施例 3
(紫外線吸収剤について)
実施例2の塗料組成物に平均粒子径が約0.01μ
mの透明酸化鉄(大日精化(株)製の「トランスオキ
サイド・レツド」)を5部添加し実施例1と同様
にして塗料を調製し、これをスプレーにてアルミ
ニウム試験片上に塗装し200℃で10分間焼成して
厚さ約1μmの塗膜を得た。
また、前記透明酸化鉄に代えて平均粒子径
0.05μmの銅からなる金属超微粒子を添加したほ
かは前記と同様にして塗膜を得た。
このようにして得た各試料について波長0.3〜
2.0μmでの分光反射率を実施例1と同様にして調
べた。その結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a coating composition for selective absorption applied to the surface of a solar heat collector plate. Conventional configurations and their problems Conventionally, with the aim of improving the heat collection characteristics of solar heat collectors, we have developed selective absorption films on the surface of heat collection plates, selective permeation films on glass transparent plates, and convection prevention films inside the heat collectors. Various technologies have been introduced. Among these, the development of selective absorption membranes is being actively pursued. Desirable properties for a surface that collects solar energy include absorbing as much solar radiation energy as possible, most of which exists in the wavelength range of 0.3 to 2.0 μm, and absorbing solar energy to a temperature of 80 to 100 degrees Celsius.
The wavelength radiated from the surface of the heat collector plate whose temperature has increased to
One of its characteristics is to minimize the amount of radiant energy, most of which is present at 3 μm or larger. This characteristic is called selective absorption. Specific examples of heat collector plates that have been given selective absorption properties through plating or chemical conversion treatment include colored stainless steel, electrolytic black aluminum oxide, black chrome, and black cutter, all of which have wavelengths of 0.3 to 2.0. The solar energy absorption rate α (hereinafter simply abbreviated as α) in μm is 0.90 to 0.95, and the infrared emissivity ε (hereinafter simply abbreviated as ε) at a wavelength of 3 to 30 μm.
shows good selective absorption of 0.10 to 0.15. However, these methods require complicated management to control the composition and thickness of the black film formed on the metal surface that is the support, and the manufacturing equipment (including waste liquid treatment) is difficult to manage.
The problem was that the scale was large and the cost was high. Against this background, we have focused on coating, which has high productivity and is advantageous in terms of total cost.Recently, coatings that impart selective absorption have been developed, and heat collecting plates that have selective absorption due to coating have appeared. ing. The characteristics of a heat collector plate that has been given selective absorption by coating are that when the coating film thickness is approximately 3 μm and the support is stainless steel, α is 0.94 and ε is 0.45, and when the film thickness is the same and the support is aluminum, α is is 0.94 and ε is 0.40
It has the disadvantage that ε is significantly inferior to the above-mentioned colored stainless steel, black chrome, etc.
In order to lower ε below the above value, the thickness of the coating film can be made even thinner in order to reduce the infrared absorption of the binder resin. 0.8~2.0μm
Since the reflection in the near-infrared region of
In the case of aluminum, ε is 0.30, and α is 0.88.
In addition to having a characteristic of ε of 0.25, a thin film has the disadvantage that it becomes difficult to hide the support and the adhesion and corrosion resistance of the paint film are significantly deteriorated, and a film thickness of 1.5 μm or less is not practical. Ta. A low ε is important for improving the performance of a heat collector, but a high α is also important for low-temperature heat collectors intended for hot water supply. In fact, when comparing the heat collection performance of a heat collection plate with characteristics of α: 0.94, ε: 0.45 and a heat collection plate with characteristics of α: 0.90, ε: 0.30 in a water heating system, it is found that the two have almost the same heat collection performance. show,
Lowering ε is not the only way to improve the performance of a heat collector; the important issue is how to maintain a high α and achieve a low ε. Purpose of the Invention An object of the present invention is to provide a coating composition for selective absorption for solar heat collector plates that has excellent selective absorption properties, is low cost, and has excellent durability such as corrosion resistance and weather resistance. be. Structure of the Invention The selective absorption coating composition of the present invention contains a black pigment, a binder agent, a tetrafluoroethylene resin powder, an ultraviolet absorber, and a surfactant. The main purpose of the black pigment is to absorb solar energy, but in order to achieve good selective absorption, it is preferable to use an inorganic pigment that absorbs less infrared rays at wavelengths of 3 μm or more than organic pigments. . Furthermore, inorganic pigments also have excellent heat resistance.
Particularly preferred black inorganic pigments include oxides or composite oxides of one or more metals selected from the group consisting of iron, manganese, copper, chromium, cobalt, and nickel.
CoO, Cr 2 O 3 , MnO 2 , Fe 2 O 3 , Fe 2 O 3 −MnO 2 −
Examples include CuO and CuO−Cr 2 O 3 . Considering practicality including cost, Fe 2 O 3 −MnO 2 −CuO pigment is optimal. In addition, the particle size of these pigments is preferably 1 μm or less in order to exhibit stable hiding power, have little scattering absorption at wavelengths of 3 μm or more, and obtain a low ε.
In order to obtain particularly high α, the average particle diameter should be 0.3~
Preferably, it is 0.5 μm. This is thought to be because the particle diameter suitable for scattering and absorbing near-infrared rays with a wavelength of 0.8 to 2.0 μm, where solar energy is distributed, is 0.3 to 0.5 μm. The binder used in this invention is preferably one that can form a thin coating film and has excellent heat resistance, weather resistance, and corrosion resistance. Examples of such a binder include acrylic resin, silicone resin, and epoxy resin. At least one or two or more selected from the group consisting of resin, fluororesin, urethane resin, and polyester resin,
Furthermore, modified versions of these resins can also be used. Considering practicality including cost, acrylic resin with epoxy resin added to improve adhesiveness can be cited. In addition, the ultraviolet absorber absorbs ultraviolet light from a wavelength of 0.3 μm, which is insufficiently absorbed by black inorganic pigments,
It is added to absorb as much light as possible in the wavelength range of 0.3 to 2.0 μm, where solar energy exists. Examples of ultraviolet absorbers include transparent iron oxide and ultrafine metal particles, which have a particle size of
A material with a diameter of 0.1 μm or less has particularly excellent ultraviolet absorption. This is thought to be because the particle size of 0.1 μm or less is suitable for scattering and absorbing ultraviolet light with a wavelength of about 0.3 μm. The tetrafluoroethylene resin powder (hereinafter referred to as PTFE powder) in this invention was originally used to improve the corrosion resistance, heat resistance, and abrasion resistance of coating films, but this powder has a wavelength of 0.8 to 2.0. It has become clear that it effectively contributes to the scattering and absorption of near-infrared rays in the μm range. This is thought to be due to the fact that the average particle diameter of the PTFE powder is about 0.3 μm, which has a strange effect on the scattering and absorption of the near-infrared rays. In order to achieve selective absorption through painting, the thickness of the paint film must be made extremely thin, and in order to obtain a uniformly stable paint film with a thinner film thickness, the degree of dilution of the paint to be applied must be increased to reduce the wet film thickness. It is necessary to increase the difference between the thickness and the dry film thickness after solvent evaporation. However, when highly diluted paint is applied at a low paint discharge pressure of 1 kg/ cm2 , convection occurs within the paint film containing a large amount of solvent as the solvent evaporates, causing the pigment and resin to evaporate. Separation occurs, resulting in problems such as spots and stripes on the paint film. The surfactant in this invention is added to paint to solve these problems, and after studying various additives, we found that amino-modified silicone resin,
The surfactant of the polyether-modified silicone resin was good. In particular, in order to reduce the thickness of the paint film to 1 μm or less, the dilution of the paint is quite high.
Addition of the above-mentioned surfactant can be said to be extremely effective. The coating composition of the present invention can be prepared by dispersing and mixing the above-mentioned black pigment, binder agent, and various additives together with an appropriate amount of a solvent using a dispersing machine such as a ball mill, roll mill, or attritor. As the support to which the coating composition of the present invention is applied, metals with low ε are advantageous, such as aluminum, copper, stainless steel, and the like. Furthermore, even if the support is not made of metal, it is also possible to use a material such as plastic whose surface has been treated to lower ε. Description of Examples The selective absorption coating composition of the present invention will be explained with reference to Examples. The test pieces used in each example were made of aluminum (JIS P 1100P standard) and had dimensions of 75.
It is mm x 150mm x 0.5mm. Example 1 (About pigment/resin) Thermosetting acrylic resin ("Dyanal SE-5661" manufactured by Mitsubishi Rayon Co., Ltd., resin solid content 50% by weight)
To 100 parts (parts by weight, the same applies hereinafter) of 40 parts of a commercially available Fe 2 O 3 -MnO 2 -CuO black pigment with an average particle size of 0.3 μm was added, and further 58 parts of n-butanol was added.
1 part, 42 parts of xylene, and 100 parts of "Solbetsuso #100" (trade name) were added and dispersed and mixed in a ball mill for 24 hours to prepare a paint. After adjusting this paint to an appropriate viscosity, it was sprayed onto an aluminum test piece and baked at 200°C for 10 minutes to obtain a coating film (sample 1) with a thickness of 1 μm. Further, coating films with a thickness of 1 μm (Samples 2, 3, and 4) were obtained in the same manner as described above, except that the amount of pigment was changed to 60 parts, 80 parts, and 100 parts. For each sample 1 to 4, the spectral reflectance at a wavelength of 0.75 to 2.0 μm was measured using a self-recording spectrophotometer “MPS-5000 model” manufactured by Shimadzu Corporation with an integrating sphere reflector “ISR-2 model” added. FIG. 1 shows the spectral reflectance of each sample 1 to 4. As is clear from FIG. 1, as the ratio (pigment/resin) increases, the spectral reflectance decreases and α increases, but this is because the pigment density on the support increases. In addition, as a result of measuring ε of these samples at a wavelength of 3 to 30 μm using an "emissivity meter" manufactured by Devices & Services, the results showed that ε was 0.20 to 0.21 in all cases.
(pigment/resin) as it is not affected much.
The higher the (pigment/resin) content, the more advantageous the selective absorption becomes. However, when the (pigment/resin) content increases, the viscosity of the paint increases, which impairs coating workability, and has the disadvantage that the adhesion and hardness of the paint film itself deteriorate. When testing the adhesion of the paint film on these test pieces, it was found that those with a ratio of 100/100 (pigment/resin) had poorer adhesion than the others. Therefore, considering both the adhesion and selective absorption of the paint film, the blending ratio (pigment/resin) should be 60/100 to 80/100.
A range of is good. As mentioned above, since the solid content of the acrylic resin used is 50% by weight, the ratio (pigment/resin solid content) is in the range of 60/50 to 80/50. Example 2 (About PTFE powder) Using the same acrylic resin and black pigment as used in Example 1, 70 parts of black pigment was added to 100 parts of acrylic resin, and PTFE powder with an average particle diameter of about 0.3 μm was added.
PTFE powder (Daikin Industries, Ltd. "Ruburon L-"
2) was added at a ratio of 5 parts to 100 parts of the acrylic resin, a paint was prepared in the same manner as in Example 1, and this was sprayed onto an aluminum test piece,
A coating film (sample 5) with a thickness of 1 μm was obtained by baking at 200° C. for 10 minutes. In addition, the film thickness was 1 μm in the same manner as above except that the amount of PTFE powder was changed to 10 parts and 15 parts.
coating films (Samples 6 and 7) were obtained. Regarding each of these samples 5 to 7, the spectral reflectance was measured in the wavelength range of 0.75 to 2.0 μm in the same manner as in Example 1. The results are shown in FIG. Further, when ε was measured in the same manner as in Example 1, ε was 0.20 for all samples. From Figure 2, it can be seen that as the amount of the PTFE powder added increases, the spectral reflectance tends to decrease, and it contributes effectively to absorption in the near-infrared region of wavelengths 0.8 to 2.0 μm. It was revealed that. This is thought to be because the particle size of the PTFE powder is suitable for scattering and absorption in the near-infrared region. Furthermore, since all samples 5 to 7 have the same ε, the PTFE powder has a wavelength of 3μ.
It is thought that the absorption of infrared rays above m is very low. Moreover, when the adhesion of the coating film was tested for these samples 5 to 7, good results were obtained in all of them.
However, since the PTFE powder is white and exists in the coating film as particles, if the amount added is further increased, the coating surface becomes white and the wavelength
There was a tendency for absorption in the ultraviolet and visible regions of 0.3 to 8.0 μm to deteriorate. Therefore, the amount of PTFE powder added is preferably around 15 parts per 100 parts of the acrylic resin. Note that the amount is approximately 30 parts for 100 parts of the solid acrylic resin. Example 3 (About ultraviolet absorber) The coating composition of Example 2 had an average particle size of about 0.01μ.
A paint was prepared in the same manner as in Example 1 by adding 5 parts of transparent iron oxide ("Transoxide Red" manufactured by Dainichiseika Co., Ltd.), and this was sprayed onto an aluminum test piece. It was baked at ℃ for 10 minutes to obtain a coating film with a thickness of about 1 μm. In addition, instead of the transparent iron oxide, average particle diameter
A coating film was obtained in the same manner as described above, except that ultrafine metal particles made of copper of 0.05 μm were added. For each sample obtained in this way, the wavelength is 0.3~
The spectral reflectance at 2.0 μm was examined in the same manner as in Example 1. The results are shown in Table 1.
【表】
第1表に示すように、透明酸化鉄を含有する塗
膜および銅からなる金属超微粒子を含有する塗膜
は、紫外線吸収剤を含有しない塗膜に比して波長
0.3〜0.4μmの紫外線の吸収がみられ、αの向上
に寄与しているといえる。とくに、銅からなる金
属超微粒子を含有する塗膜は波長約0.6μmまでの
吸収が他に比べて高く、望ましい結果を得てい
る。なお、波長0.7μm以上では三者ともほぼ同等
の分光反射率を示した。
さらに、これら試験片について、εを実施例1
と同手法で測定したところ、いずれもε=0.20〜
0.21を示し、透明酸化鉄および銅からなる金属超
微粒子の添加によりεが悪くならないといえる。
また、透明酸化鉄および銅金属超微粒子が紫外線
を吸収することにより、バインダ剤である樹脂の
劣化が抑制され、耐候性に対する改善効果も期待
される。
この他に鉄、ニツケル−鉄の金属超微粒子につ
いても前記銅金属微粒子とほぼ同等の結果を得
た。
実施例 4
(界面活性剤について)
実施例3の塗料組成物を用い実施例1と同様に
して調製した塗料100部に対し、重量比でn−ブ
タノール:キシロール:「ソルベツソ#100」が
29:21:50である混合溶剤200部を加えて希釈し、
第2表に示す各種添加剤を添加した。各種添加剤
を添加した塗料をアルミニウム試験片上に塗膜に
斑点や縞模様が発生しやすい塗装条件で膜厚約
1μmになるように塗装し、200℃で10分間焼成し
た。このようにして得た試験片上の塗膜表面を観
察し、塗装不良を評価した。その結果を第2表に
示す。なお、添加剤1種類について試験片を20枚
作成し、評価した。また、第2表に示す評価は以
下の基準に基づいて行なつた。
×:試験片の半数以下が塗膜表面に顕著な斑点、
縞模様が発生
△:試験片の半数以下が塗膜表面に顕著な斑点、
縞模様が発生
〇:全数異常なし[Table] As shown in Table 1, coating films containing transparent iron oxide and coating films containing ultrafine metal particles made of copper have a higher wavelength than coating films containing no ultraviolet absorber.
Absorption of ultraviolet rays of 0.3 to 0.4 μm was observed, which can be said to contribute to the improvement of α. In particular, the coating film containing ultrafine metal particles made of copper has higher absorption up to a wavelength of about 0.6 μm than other coatings, and has achieved desirable results. Note that at wavelengths of 0.7 μm or more, all three exhibited approximately the same spectral reflectance. Furthermore, for these test pieces, ε was set to Example 1.
When measured using the same method as ε=0.20~
0.21, and it can be said that the addition of ultrafine metal particles made of transparent iron oxide and copper does not worsen ε.
In addition, since the transparent iron oxide and copper metal ultrafine particles absorb ultraviolet rays, deterioration of the resin as a binder agent is suppressed, and an improvement effect on weather resistance is also expected. In addition, almost the same results as the copper metal fine particles were obtained with ultrafine metal particles of iron and nickel-iron. Example 4 (About the surfactant) For 100 parts of a paint prepared in the same manner as in Example 1 using the paint composition of Example 3, a weight ratio of n-butanol: xylene: "Solbetsuso #100" was added.
Dilute by adding 200 parts of a mixed solvent of 29:21:50,
Various additives shown in Table 2 were added. Paints with various additives were applied to aluminum test pieces under coating conditions that tend to cause spots and stripes on the paint film, and the film thickness was approximately
It was coated to a thickness of 1 μm and baked at 200°C for 10 minutes. The surface of the coating film on the test piece thus obtained was observed to evaluate coating defects. The results are shown in Table 2. Note that 20 test pieces were prepared for each type of additive and evaluated. Moreover, the evaluation shown in Table 2 was performed based on the following criteria. ×: Less than half of the test pieces had noticeable spots on the coating surface.
Striped patterns occur △: Less than half of the test pieces have noticeable spots on the coating surface.
Striped patterns occur 〇: No abnormality in all cases
【表】
第2表に示した試験結果から、塗料の高希釈時
の薄膜安定形成の目的として塗料添加剤を用いる
場合、分散剤よりもむしろ、ポリエーテル変性シ
リコーン樹脂、アミノ変性シリコーン樹脂などの
界面活性剤の添加が有効であるといえる。これら
の界面活性剤が有効である理由としては塗装時の
支持物に対する塗料のレベリングを良好なものに
していることがあげられる。なお、第2表記載の
添加剤を含有しない場合は、試験片20枚のうち半
数以上が塗膜表面に斑点や縞模様が発生した。
実施例 5
熱硬化性アクリル樹脂「ダイヤナールSE−
5661」(前出)100部、平均粒子径が約0.3μmの
Fe2O3−MnO2−CuO系黒色顔料70部、PTFE粉
末「ルブロンL−2」(前出)15部、透明酸化鉄
「トランスオキサイド・レツド(前出)5部、n
−ブタノール58部、キシロール42部および「ソル
ベツソ#100」100部を用いて実施例1と同様にし
て塗料を調製した。この塗料100部に対してn−
ブタノール:キシロール:「ソルベツソ#100」が
29:21:50(重量比)である混合溶剤を200部の割
合で加えて希釈し、さらに界面活性剤ポリエーテ
ル変性シリコーン樹脂1.5部を添加したのち、ア
ルミニウム試験片に膜厚が約1μmとなるように
スプレーにより塗装し、200℃で10分間焼成した。
このようにして作成した試料について、波長0.3
〜2.0μmの分光反射率を実施例1と同様にして測
定し、分光反射率から大気質量M=2における太
陽エネルギーに対するαを算出し、さらに実施例
1と同様にしてεを測定し選択吸収性を評価した
ところ、αが0.93、εが0.18〜0.20の特性が得ら
れた。
実施例 6
実施例5の熱硬化性アクリル樹脂に代えてシリ
コーン樹脂(信越化学工業(株)製の「KR−282」、
樹脂固型分50重量%)を用い、さらに溶剤、希釈
剤としてキシロールのみを用いたほかは実施例5
と同様にして塗料を調製し、アルミニウム試験片
上にスプレーにて膜厚約1μmとなるように塗装
し、200℃で30分間焼成した。このように作成し
た試験片について実施例5と同様にしてαおよび
εを評価したところ、αが0.93、εが0.18〜0.20
の特性が得られた。
実施例 7
実施例5および6で得た各試料について塗膜の
密着性、耐熱性、耐食性、促進耐侯性など塗膜の
信頼性を評価したところ、第3表および第4表に
示すごとく良好な結果が得られた。[Table] From the test results shown in Table 2, when paint additives are used for the purpose of stably forming a thin film when paint is highly diluted, polyether-modified silicone resins, amino-modified silicone resins, etc. should be used rather than dispersants. It can be said that addition of a surfactant is effective. The reason why these surfactants are effective is that they improve the leveling of the paint relative to the support during painting. In addition, when the additives listed in Table 2 were not included, more than half of the 20 test pieces had spots or striped patterns on the coating film surface. Example 5 Thermosetting acrylic resin “Dyanal SE-
5661” (mentioned above) 100 parts, with an average particle size of approximately 0.3 μm.
70 parts of Fe 2 O 3 -MnO 2 -CuO black pigment, 15 parts of PTFE powder "Luburon L-2" (mentioned above), 5 parts of transparent iron oxide "Transoxide Red" (mentioned above), n
- A paint was prepared in the same manner as in Example 1 using 58 parts of butanol, 42 parts of xylene and 100 parts of "Sorbetso #100". n- per 100 parts of this paint
Butanol: Xylene: "Sorbetso #100"
After diluting by adding 200 parts of a mixed solvent with a ratio of 29:21:50 (weight ratio) and further adding 1.5 parts of a surfactant polyether-modified silicone resin, a film thickness of about 1 μm was formed on an aluminum test piece. It was spray painted and baked at 200℃ for 10 minutes.
For the sample prepared in this way, the wavelength was 0.3
Spectral reflectance of ~2.0 μm was measured in the same manner as in Example 1, α for solar energy at atmospheric mass M = 2 was calculated from the spectral reflectance, and ε was further measured in the same manner as in Example 1 to determine selective absorption. When the characteristics were evaluated, the characteristics were obtained that α was 0.93 and ε was 0.18 to 0.20. Example 6 Silicone resin (“KR-282” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the thermosetting acrylic resin in Example 5.
Example 5 except that a resin solid content of 50% by weight was used, and only xylene was used as a solvent and diluent.
A paint was prepared in the same manner as above, and it was sprayed onto an aluminum test piece to a film thickness of about 1 μm, and baked at 200°C for 30 minutes. When α and ε of the thus prepared test piece were evaluated in the same manner as in Example 5, α was 0.93 and ε was 0.18 to 0.20.
The following characteristics were obtained. Example 7 The reliability of the coating film, such as adhesion, heat resistance, corrosion resistance, and accelerated weathering resistance, was evaluated for each sample obtained in Examples 5 and 6, and the results were good as shown in Tables 3 and 4. The results were obtained.
【表】【table】
【表】【table】
【表】【table】
【表】
また、バインダ剤として、エポキシ樹脂、フツ
素樹脂、ウレタン樹脂およびポリエステル樹脂を
使用した場合も実施例1〜7とほぼ同等の結果が
得られた。
発明の効果
この発明の選択吸収用塗料組成物は、きわめて
すぐれた選択吸収性が得られるとともに、耐食
性、耐候性などの耐久が向上し信頼性を高め、さ
らに低コストで製造できる選択吸収用塗膜を得る
ことができるという効果がある。[Table] Also, when epoxy resin, fluororesin, urethane resin, and polyester resin were used as the binder, almost the same results as in Examples 1 to 7 were obtained. Effects of the Invention The selective absorption coating composition of the present invention not only provides extremely excellent selective absorption properties, but also improves durability such as corrosion resistance and weather resistance, increases reliability, and can be manufactured at low cost. This has the effect that a film can be obtained.
第1図は実施例1で得た各試料(塗膜)につい
ての分光反射率を示すグラフ、第2図は実施例2
で得た試料についての分光反射率を示すグラフで
ある。
Figure 1 is a graph showing the spectral reflectance of each sample (coating film) obtained in Example 1, and Figure 2 is a graph showing the spectral reflectance of Example 2.
It is a graph showing the spectral reflectance of the sample obtained in .
Claims (1)
ン樹脂粉末と、紫外線吸収剤と、界面活性剤とを
含む選択吸収用塗料組成物。 2 前記黒色顔料が鉄、マンガン、銅、クロム、
コバルトおよびニツケルよりなる群から選ばれた
1種または2種以上の金属の酸化物または複合酸
化物である特許請求の範囲第1項記載の選択吸収
用塗料組成物。 3 前記バインダ剤がアクリル樹脂、シリコーン
樹脂、エポキシ樹脂、フツ素樹脂、ウレタン樹脂
およびポリエステル樹脂よりなる群から選ばれた
1種または2種以上である特許請求の範囲第1項
記載の選択吸収用塗料組成物。 4 前記紫外線吸収剤が平均粒径0.1μm以下の金
属微粒子または透明酸化鉄である特許請求の範囲
第1項記載の選択吸収用塗料組成物。 5 前記界面活性剤がポリエーテル変性シリコー
ン樹脂またはアミノ変性シリコーン樹脂である特
許請求の範囲第1項記載の選択吸収用塗料組成
物。[Scope of Claims] 1. A coating composition for selective absorption containing a black pigment, a binder agent, a tetrafluoroethylene resin powder, an ultraviolet absorber, and a surfactant. 2 The black pigment is iron, manganese, copper, chromium,
The paint composition for selective absorption according to claim 1, which is an oxide or composite oxide of one or more metals selected from the group consisting of cobalt and nickel. 3. The selective absorption material according to claim 1, wherein the binder agent is one or more selected from the group consisting of acrylic resin, silicone resin, epoxy resin, fluororesin, urethane resin, and polyester resin. Paint composition. 4. The coating composition for selective absorption according to claim 1, wherein the ultraviolet absorber is fine metal particles or transparent iron oxide with an average particle size of 0.1 μm or less. 5. The coating composition for selective absorption according to claim 1, wherein the surfactant is a polyether-modified silicone resin or an amino-modified silicone resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18781982A JPS5975960A (en) | 1982-10-25 | 1982-10-25 | Paint composition for selective absorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18781982A JPS5975960A (en) | 1982-10-25 | 1982-10-25 | Paint composition for selective absorption |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5975960A JPS5975960A (en) | 1984-04-28 |
JPS6329901B2 true JPS6329901B2 (en) | 1988-06-15 |
Family
ID=16212787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18781982A Granted JPS5975960A (en) | 1982-10-25 | 1982-10-25 | Paint composition for selective absorption |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5975960A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2532854B2 (en) * | 1986-12-12 | 1996-09-11 | 大阪有機化学工業株式会社 | Cooking device |
JPH07113719B2 (en) * | 1987-10-27 | 1995-12-06 | トヨタ自動車株式会社 | Liquid crystal display element |
US8460456B2 (en) | 2005-02-10 | 2013-06-11 | Toda Kogyo Corporation | Infrared reflecting black pigment, paint and resin composition |
JP6035500B1 (en) * | 2015-10-05 | 2016-11-30 | エム・テクニック株式会社 | Silicon oxide coated iron oxide composition for paints |
WO2017061140A1 (en) * | 2015-10-05 | 2017-04-13 | エム・テクニック株式会社 | Metal oxide particles and method for producing same |
WO2017134910A1 (en) | 2016-02-02 | 2017-08-10 | エム・テクニック株式会社 | Zinc oxide particles with controlled color properties, method for producing same, and coating composition that includes said zinc oxide particles |
-
1982
- 1982-10-25 JP JP18781982A patent/JPS5975960A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5975960A (en) | 1984-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6162901B2 (en) | Infrared reflective pigment and infrared reflective coating composition | |
Schaeffer et al. | Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles | |
Mar et al. | Low cost coatings for flat plate solar collectors | |
EP0059087B1 (en) | Coating compositions for solar selective absorption | |
DE2709837A1 (en) | SOLAR COLLECTOR | |
KR20130058661A (en) | Coating composition for coating surface of reflective plate for solar heat collection purposes reflective plate for solar heat collection purposes and processes for production of the coating composition and the reflective plate | |
US4310596A (en) | Solar selective surfaces | |
JPS6329901B2 (en) | ||
JP5384928B2 (en) | Paint for coated metal plate, painted metal plate and method for producing painted metal plate | |
JP6797548B2 (en) | Heat shield film, heat shield paint, and optical equipment | |
JPS60156771A (en) | Coating composition for solar heat energy selective absorption | |
Boström et al. | Durability tests of solution-chemically derived spectrally selective absorbers | |
JP5906226B2 (en) | Paint for coated metal plate, painted metal plate and method for producing painted metal plate | |
CN109266154B (en) | Mirror back aluminizing protective coating and preparation method thereof | |
CN109401554A (en) | High refractive index nano hydridization extinction material and preparation method thereof | |
JP2017194493A (en) | Heat-blocking film for optical instrument, heat-blocking paint for optical instrument, and optical instrument using these | |
JPS601269A (en) | Coating composition having selective light absorption | |
KR20210009957A (en) | High weatherability infrared low emissivity paint material compositions | |
JPS6154158B2 (en) | ||
JPS60188758A (en) | Solar heat collecting panel | |
JP7071481B2 (en) | Heat shield film, heat shield paint, and optical equipment | |
JP7076143B2 (en) | Exterior coating and its construction method | |
JPS6355624B2 (en) | ||
JPS621511B2 (en) | ||
JPS6337862B2 (en) |