[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63297599A - Method for removing scale of stainless steel - Google Patents

Method for removing scale of stainless steel

Info

Publication number
JPS63297599A
JPS63297599A JP13448087A JP13448087A JPS63297599A JP S63297599 A JPS63297599 A JP S63297599A JP 13448087 A JP13448087 A JP 13448087A JP 13448087 A JP13448087 A JP 13448087A JP S63297599 A JPS63297599 A JP S63297599A
Authority
JP
Japan
Prior art keywords
stainless steel
acid
ions
aqueous solution
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13448087A
Other languages
Japanese (ja)
Inventor
Mitsuo Kimura
光男 木村
Nobuo Totsuka
戸塚 信夫
Takao Kurisu
栗栖 孝雄
Katsuomi Tamaoki
玉置 克臣
Katsuosa Ishizawa
石沢 克修
Minoru Kanazawa
金沢 実
Nagahiro Komatsu
小松 永裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANAI SEKIYU KK
JFE Steel Corp
Original Assignee
SANAI SEKIYU KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANAI SEKIYU KK, Kawasaki Steel Corp filed Critical SANAI SEKIYU KK
Priority to JP13448087A priority Critical patent/JPS63297599A/en
Publication of JPS63297599A publication Critical patent/JPS63297599A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To remove the scales of a stainless steel in an extremely short time, by electrifying between a stainless steel and a counter electrode separately immersed in an acid aqueous solution containing specific amounts of nitrate ions and fluorine ions. CONSTITUTION:A stainless steel and a counter electrode are separately immersed in an acid aqueous solution which is an aqueous solution composed principally of nitrate ions and fluorine ions and containing the nitrate and fluorine ions by 1.5-40wt.%, in total, expressed in terms of nitric-acid and hydrofluoric-acid concentrations, respectively. It is desirable that any of <=about 20% inorganic acid, <=about 20% organic acid, <=about 3% surfactant, etc., is further added to the above-mentioned aqueous solution. Subsequently, electrification is applied to the position between the above-mentioned stainless steel and counter electrode. By this method, the scales of the stainless steel can be efficiently removed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、鋼材の酸化スケールを効率よく除去する方法
に関し、特にその除去が困難であるステンレス鋼材の酸
化スケール除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for efficiently removing oxide scale from steel materials, and particularly to a method for removing oxide scale from stainless steel materials, which is difficult to remove.

〈従来技術とその問題点〉 ステンレス鋼材、とりわけ厚板や、油井管、ラインパイ
プ用鋼管等は通常ステンレス薄鋼板と異なり、最終製品
となるまで脱スケール工程を経ることなく製造されるた
め酸化スケールも薄鋼板に比べて厚く除去し難いもので
ある。
<Prior art and its problems> Stainless steel materials, especially thick plates, oil country tubular goods, and steel pipes for line pipes, etc., are usually manufactured without going through a descaling process until they become final products, unlike thin stainless steel sheets, so they are prone to oxidation scale. It is also thicker and more difficult to remove than thin steel plates.

このため、従来は外面のみならず内面もショツトブラス
ト処理を行なった後酸性溶液(硝弗酸)中または溶融ア
ルカリ塩中に長時間(数時間)浸漬して、酸化スケール
を除去するというのが通常であった。
For this reason, the conventional method was to perform shot blasting on not only the external surface but also the internal surface, and then immerse it in an acidic solution (nitrofluoric acid) or molten alkali salt for a long time (several hours) to remove the oxidized scale. It was normal.

しかし、従来法では生産効率が悪く、鋼管と支持台との
接触部の脱スケールが不充分であること、また材質面で
は、長時間の酸洗中に酸洗の反応で生じた水素が鋼中に
侵入し、綱の靭性を劣化させる等の問題点があった。
However, with the conventional method, production efficiency is poor, descaling of the contact area between the steel pipe and the support is insufficient, and in terms of material quality, hydrogen generated from the pickling reaction during long pickling times is There were problems such as intrusion into the rope and deterioration of the toughness of the rope.

すなわち、ステンレス鋼材の酸洗における従来法の問題
点は以下のとおりである。
That is, the problems with the conventional method for pickling stainless steel materials are as follows.

(1)酸洗溶液あるいは溶融アルカリ塩中に浸漬しての
酸洗では、事前にショツトブラストを行なっても、マル
テンサイト系あるいはオーステナイト系ステンレス鋼管
で通常2〜3時間、2相ステンレス鋼管では8〜10時
間の脱スケール時間を必要とする。 またショツトブラ
ストなしでは、それぞれ5〜6倍の脱スケール時間を必
要とし、生産性を著しく低下している。
(1) Pickling by immersion in a pickling solution or molten alkali salt usually takes 2 to 3 hours for martensitic or austenitic stainless steel pipes, and 8 hours for duplex stainless steel pipes, even if shot blasting is performed in advance. Requires ~10 hours of descaling time. Moreover, without shot blasting, descaling time is required to be 5 to 6 times longer, which significantly reduces productivity.

(2)長時間の酸洗中、スケールの溶解反応と同時に鋼
材表面で水素発生反応が起こり、発生した水素の一部が
鋼材中に侵入して、通常2〜3 ppm以下であるべき
鋼中水素濃度が10ppm以上に上昇してしまい、鋼材
の機械的性質、特に靭性に悪影響を与える危険がある。
(2) During long-term pickling, a hydrogen generation reaction occurs on the surface of the steel material at the same time as the scale dissolution reaction, and some of the generated hydrogen enters the steel material, which should normally be 2 to 3 ppm or less. There is a risk that the hydrogen concentration will increase to 10 ppm or more, which will adversely affect the mechanical properties of the steel, especially the toughness.

ステンレス薄鋼板については、従来間接通電法による電
解酸洗法(例えば特開昭59−59900号)があり行
なわれている。 しかしステンレス薄鋼板のスケールは
テンパーカラー等の非常に薄いスケールであるのに対し
、厚板や鋼管のスケールは製造工程中の約1150tの
溶体化処理で形成される非常に厚い強固なものであり、
上記手法では効率よくスケールを除去できず鋼管や厚板
においては一般に電解酸洗によるスケール除去が行なわ
れていないのが現状である。
Conventionally, stainless thin steel sheets have been subjected to an electrolytic pickling method using an indirect energization method (for example, Japanese Patent Application Laid-Open No. 59-59900). However, the scale on stainless thin steel plates is very thin, such as temper color, whereas the scale on thick plates and steel pipes is very thick and strong, formed by approximately 1150 tons of solution treatment during the manufacturing process. ,
The above methods cannot efficiently remove scale, and at present, scale is not generally removed by electrolytic pickling from steel pipes and thick plates.

〈発明の目的〉 本発明の目的は、従来その除去が困難であった厚板や鋼
管等のステンレス鋼材のスケールを、ショツトブラスト
なしで非常に短時間で除去できるステンレス鋼材のスケ
ール除去方法を提供しようとする。
<Object of the Invention> The object of the present invention is to provide a method for removing scale from stainless steel materials, which can remove scale from stainless steel materials such as thick plates and steel pipes in a very short time without shot blasting, which has been difficult to remove in the past. try to.

〈発明の構成〉 本発明のステンレス鋼材のスケール除去方法は、硝酸イ
オンとフッ素イオンを主体とする水溶液であって、硝酸
イオンを硝酸濃度に、フッ素イオンをフッ酸濃度に換算
し、両者を合わせて1.5〜40*t%含有する酸性水
溶液中に、ステンレス鋼材と対極とを離隔して浸漬し、
該ステンレス鋼材と該対極との間に通電することである
<Structure of the Invention> The method for removing scale from stainless steel materials of the present invention is to use an aqueous solution mainly containing nitrate ions and fluoride ions, convert nitrate ions to nitric acid concentration, fluorine ions to hydrofluoric acid concentration, and combine both. The stainless steel material and the counter electrode are immersed separately in an acidic aqueous solution containing 1.5 to 40*t%,
Electricity is applied between the stainless steel material and the counter electrode.

以下に本発明のスケール除去方法の詳細を述べる。 水
溶液中の硝酸イオンとフッ素イオンをそれぞれ硝酸濃度
、フッ酸濃度に換算した合計濃度を1.5〜40wt%
に限定する理由は、これらのイオンは脱スケール力を非
常に向上させる働きがあるが、1.5wt%未満ではそ
の効果があまりあられれず、また40wt%をこえると
逆に脱錆力が落ちるので1.5〜4.0wt%とした。
The details of the scale removal method of the present invention will be described below. The total concentration of nitrate ions and fluoride ions in the aqueous solution converted to nitric acid concentration and hydrofluoric acid concentration is 1.5 to 40 wt%.
The reason for limiting this is that these ions have the ability to greatly improve the descaling power, but if it is less than 1.5 wt%, the effect is not so great, and if it exceeds 40 wt%, the derusting power decreases. The content was set at 1.5 to 4.0 wt%.

なお、酸に換算した硝酸イオン、フッ素イオンの各々の
濃度は、硝酸イオンが硝酸換算で5〜30wt%、フッ
素イオンがフッ酸換算で1〜10冑t%が好適な範囲と
して挙げられる。
The preferable concentrations of nitrate ions and fluorine ions in terms of acid are 5 to 30 wt% for nitrate ions and 1 to 10 wt% for fluorine ions in terms of hydrofluoric acid.

すなわち、硝酸イオンが硝酸換算で5wt%より少ない
とフッ酸による腐食反応が優位となり、脱スケール後の
ステンレス鋼材表面の平滑性を損ない易く、30wt%
より多いと、硝酸による不働態化が優位となりスケール
が除去し難い。 また、フッ素イオンがフッ酸換算で1
wt%より少ないと、ステンレス鋼材の不働態被膜を十
分に破壊できないためスケールが除去し難く、10wt
%より多いと、フッ酸による腐食反応が優位となり、脱
スケール後のステンレス鋼材表面の平滑性を損ない易い
他、環境衛生上からも取扱いに困難さを増す。
In other words, if the nitrate ion content is less than 5 wt% (calculated as nitric acid), the corrosion reaction due to hydrofluoric acid becomes dominant, which tends to impair the smoothness of the stainless steel surface after descaling.
If the amount is larger, passivation by nitric acid becomes dominant, making it difficult to remove scale. In addition, fluorine ion is equivalent to 1
If it is less than 10wt%, it is difficult to remove scale because the passive film of the stainless steel material cannot be sufficiently destroyed.
If it exceeds %, the corrosion reaction due to hydrofluoric acid becomes dominant, which tends to impair the smoothness of the surface of the stainless steel material after descaling, and also increases the difficulty of handling from the standpoint of environmental hygiene.

本発明の電解脱スケール方法においては、上記した硝酸
イオンとフッ素イオンを主体とする酸性水溶液を用いる
ものであるが、具体的には、以下の(1)〜(9)に述
べる16[1類の液のいずれかを用いるのが望ましい。
In the electrolytic descaling method of the present invention, an acidic aqueous solution containing mainly nitrate ions and fluorine ions as described above is used. It is desirable to use one of these liquids.

(1)特定濃度の硝酸・弗素イオンを含む水溶液。(1) Aqueous solution containing nitric acid and fluorine ions at specific concentrations.

(2)特定濃度の硝酸・弗素イオンを含む水溶液に硫酸
・亜硫酸以外の特定の無機酸またはその塩を加えたもの
(2) A specific inorganic acid or its salt other than sulfuric acid or sulfurous acid is added to an aqueous solution containing a specific concentration of nitric acid or fluorine ions.

(3)特定濃度の硝酸・弗素イオンを含む水溶液に特定
の有機酸またはその塩を加えたもの。
(3) A specific organic acid or its salt added to an aqueous solution containing a specific concentration of nitric acid or fluorine ions.

(4)特定濃度の硝酸・弗素イオンを含む水溶液に硫酸
・亜硫酸以外の特定の無機酸および有機酸またはそれら
の塩を加えたもの。
(4) Specific inorganic acids and organic acids other than sulfuric acid and sulfite, or their salts, are added to an aqueous solution containing nitric acid and fluorine ions at specific concentrations.

(5)特定濃度の硝酸・弗素イオンを含む水溶液に、特
定濃度の硫酸・亜硫酸イオンを含むもの。
(5) An aqueous solution containing a specific concentration of sulfuric acid or sulfite ions in an aqueous solution containing a specific concentration of nitric acid or fluorine ions.

(6)特定濃度の硝酸・弗素イオンを含む水溶液に、特
定濃度の硫酸・亜硫酸イオンと特定の無機酸またはその
塩を加えたもの。
(6) A solution containing a specific concentration of sulfuric acid/sulfite ions and a specific inorganic acid or its salt to an aqueous solution containing a specific concentration of nitric acid/fluorine ions.

(7)特定濃度の硝酸・弗素イオンを含む水溶液に、特
定濃度の硫酸・亜硫酸イオンと特定の有機酸またはその
塩を加えたもの。
(7) A solution containing a specific concentration of sulfuric acid/sulfite ions and a specific organic acid or its salt to an aqueous solution containing specific concentrations of nitric acid/fluorine ions.

(8)特定濃度の硝酸・弗素イオンを含む水溶液に、特
定濃度の硫酸・亜硫酸イオンと特定の無機酸および有機
酸またはそれらの塩を加えたもの。
(8) A solution containing a specific concentration of sulfuric acid or sulfite ions and a specific inorganic acid or organic acid or their salts to an aqueous solution containing a specific concentration of nitric acid or fluorine ions.

−(9)以上の(1)〜(8)に界面活性剤を加えたも
の。
-(9) A surfactant added to the above (1) to (8).

上記(2)〜(8)に関して、具体的な物質の名称及び
その濃度(酸に換算したもの)を述べると、例えば用い
る無機酸又はその塩としては塩酸、リン酸、クロム酸、
臭化水素酸等の無機酸、又はそれらのイオンを含んだ塩
を1種又は2 f!i以上20+vt%以下、添加する
のが好ましい。
Regarding (2) to (8) above, to state the names of specific substances and their concentrations (converted to acids), for example, the inorganic acids or their salts used include hydrochloric acid, phosphoric acid, chromic acid,
One or two inorganic acids such as hydrobromic acid, or salts containing these ions f! It is preferable to add more than i and less than 20+vt%.

これらの無機酸や塩は均一にスケール除去を促進させる
働きがある。
These inorganic acids and salts have the function of uniformly promoting scale removal.

しかし20wt%を越えて添加した場合は脱錆能力を低
下させるので20wt%以下とした。
However, if it is added in excess of 20 wt%, the rust removal ability will be reduced, so it is set at 20 wt% or less.

用いる有機酸又はそれらの塩としてはカルボン酸、オキ
シカルボン酸等の有機酸もしくはそれらを含む塩を20
wt%以下添加するのが好ましい。
The organic acids or salts thereof to be used include organic acids such as carboxylic acids and oxycarboxylic acids, or salts containing them.
It is preferable to add less than wt%.

これらの有機酸や塩もスケール除去を促進させる働きが
ある。  しかし20wt%を越えて添加した場合は、
脱錆能力を低下させるので20wt%以下とした。
These organic acids and salts also have the function of promoting scale removal. However, when added in excess of 20wt%,
Since it lowers the rust removal ability, the content was set to 20 wt% or less.

硫酸イオンと亜硫酸イオンは、これらのうちいずれか一
方又は両方を合わせて20wt%以下含有していること
が好ましい。
It is preferable that one or both of sulfate ions and sulfite ions be contained in a total amount of 20 wt % or less.

その理由は、硫酸イオン、亜硫酸イオンはスケール除去
を促進させる働きと脱スケール後の表面を美麗にする働
きがあるが、20wt%を超えて、添加すると脱スケー
ル力を低下させるので20wt%以下とした。
The reason is that sulfate ions and sulfite ions have the function of promoting scale removal and making the surface beautiful after descaling, but if added in excess of 20 wt%, the descaling power will decrease, so it should not exceed 20 wt%. did.

界面活性剤は3wt%以下添加するのが好ましい。 鋼
材の表面に油等の汚れがある場合、界面活性剤の添加に
より脱錆力を向上できる。
It is preferable to add 3 wt% or less of the surfactant. If there is oil or other stains on the surface of the steel material, the rust removal ability can be improved by adding a surfactant.

この界面活性剤は硝酸、フッ素イオンを含む水溶液中で
安定なものであればいかなるものでもよい。 例えば非
イオン系界面活性剤等が代表的に挙げられる。 界面活
性剤は、鋼の界面を活性にし、脱錆能力を上げるが3w
t%超の添加はそれ以上あまり効果がなく、かつコスト
もかかるので、3%以下とした。
Any surfactant may be used as long as it is stable in an aqueous solution containing nitric acid and fluorine ions. For example, nonionic surfactants are representative. Surfactants activate the interface of steel and increase rust removal ability, but 3w
Addition of more than t% is not very effective and increases cost, so it is set to 3% or less.

本発明方法は以上説明した硝酸イオンとフッ素イオンと
を主体とする水溶液等の中でスケールを除去されるステ
ンレスバイブ等のステンレス鋼材を陽極として電解する
。 ステンレスバイブは、製造工程中で約1150℃で
溶体化処理等がされるので10−〜60戸厚0非常に厚
い強固なスケールを持っている。
In the method of the present invention, electrolysis is performed using a stainless steel material such as a stainless steel vibrator from which scale is removed in an aqueous solution mainly containing nitrate ions and fluorine ions as described above, as an anode. Stainless steel vibes are subjected to solution treatment at about 1150°C during the manufacturing process, so they have very thick and strong scales with a thickness of 10 to 60 mm.

なお電源として交流を用いることもできるが、脱錆効率
は直流に比べてやや劣る。
Note that alternating current can also be used as a power source, but the rust removal efficiency is slightly inferior to direct current.

また、電流値は高いほど脱錆効果があるが、電流を上げ
すぎるとバイブおよび浴の温度上昇が激しく、発生する
酸蒸気のために環境が悪化し、浴の蒸発量も多量となる
ため、そのような場合、浴の冷却手段を用いるのが好ま
しい。
In addition, the higher the current value, the more effective the rust removal effect, but if the current is increased too much, the temperature of the vibrator and bath will rise sharply, the environment will deteriorate due to the generated acid vapor, and a large amount of evaporation from the bath will occur. In such cases, it is preferred to use means for cooling the bath.

ステンレス鋼材の対極として用いるものは、いかなるも
のでもよいが、5US316等のステンレスバイブやス
テンレス板が好ましい。
Any material may be used as the counter electrode to the stainless steel material, but a stainless steel vibrator or a stainless steel plate such as 5US316 is preferable.

本発明方法を実施する電解装置の1例を第1図に示した
が、これに限定されるものではない。
An example of an electrolytic apparatus for carrying out the method of the present invention is shown in FIG. 1, but the present invention is not limited thereto.

第1図では、洗浄するステンレスバイブ4の両端部にロ
ーブ1をまきつけ、上記の特定の酸性水溶液を有する電
解浴4ffS中に浸漬する。
In FIG. 1, lobes 1 are wrapped around both ends of a stainless steel vibrator 4 to be cleaned, and the vibrator 4 is immersed in an electrolytic bath 4ffS containing the above-mentioned specific acidic aqueous solution.

このステンレスバイブ4の内側と外側に円筒状の内側電
極3と外側電極2をステンレスバイブと同軸的に設ける
。 内側電極3と外側電極2は、ステンレスバイブ4と
同様にそれぞれ図示しないローブ等で支持する。
A cylindrical inner electrode 3 and an outer electrode 2 are provided on the inside and outside of this stainless steel vibrator 4 coaxially with the stainless steel vibrator. The inner electrode 3 and the outer electrode 2 are supported by lobes or the like (not shown), similarly to the stainless steel vibrator 4.

浴槽5外の適切な位置に直流電源6を設置し、ステンレ
スバイブ4と直流電源6の陽極とを電気的に接続し、外
側電極2と内側電極3はそれぞれ陰極と電気的に接続す
る。
A DC power supply 6 is installed at an appropriate position outside the bathtub 5, the stainless steel vibrator 4 and the anode of the DC power supply 6 are electrically connected, and the outer electrode 2 and the inner electrode 3 are electrically connected to the cathode, respectively.

〈実施例〉 以下に実施例により本発明を具体的に述べる。<Example> The present invention will be specifically described below with reference to Examples.

、(実施例および比較例) 長さ300mm、外径178mm、内径162mmの2
相ステンレスシームレスパイプを種々の酸洗液中に浸漬
し、第1図に示した装置を用いて電解酸洗を行なった。
, (Example and Comparative Example) 2 with a length of 300 mm, an outer diameter of 178 mm, and an inner diameter of 162 mm.
Phase stainless steel seamless pipes were immersed in various pickling solutions and electrolytically pickled using the apparatus shown in FIG.

なお、用いた界面活性剤は、非イオン系界面活性剤であ
る。
Note that the surfactant used was a nonionic surfactant.

また電解酸洗条件、および脱錆状況を表1に示す、 脱
錆状況は酸洗処理後の試料を肉眼および10倍のルーペ
で観察し、表面清浄性で評価した。
Further, the electrolytic pickling conditions and the rust removal status are shown in Table 1. The rust removal status was evaluated by observing the sample after pickling with the naked eye and with a 10x magnifying glass, and evaluating the surface cleanliness.

評価基準は、以下のとおりとした。The evaluation criteria were as follows.

(1)表面清浄性 ×;脱スケール不十分 △:若干のスケール残存あり O;やや酸洗のあとが残るが実用上問題なし◎;非常に
きれいに仕上がる (酸洗あとなし) (2)総合評価 ×;実用上使用不可 △;実用上やや問題あり O;十分実用化可能 ◎:非常に優れている 本発明法を使用した場合はすべて60分以内で脱錆(脱
スケール)された。
(1) Surface cleanliness ×; Insufficient descaling △: Some scale remains O; Slight pickling residue remains, but no practical problem ◎; Very clean finish (no pickling marks) (2) Overall evaluation ×: Practically unusable △: Some practical problems O: Fully practical ◎: Very good When the method of the present invention was used, all rusting (descaling) was achieved within 60 minutes.

しかし比較法に示す試料No、13.14.41.42
.43のようにF−もしくはNO3−を使用しない場合
は脱スケール能が劣る。 また試料No、15.16.
44.45.46のように電流を流さない単なる浸漬の
場合は脱スケール力が非常に劣り、30時間浸漬しても
充分にスケールが取れなかった。
However, sample No. 13.14.41.42 shown in the comparative method
.. When F- or NO3- is not used as in No. 43, the descaling ability is poor. Also, sample No. 15.16.
In the case of simple immersion without electric current, as in No. 44, 45, and 46, the descaling power was very poor, and even after 30 hours of immersion, the scale could not be removed sufficiently.

〈発明の効果〉 本発明法を用いることにより、従来に比べて非常に短時
間でステンレス鋼材のスケールを除去できる。
<Effects of the Invention> By using the method of the present invention, scales from stainless steel materials can be removed in a much shorter time than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の1例を示す線図で
ある。 符号の説明 1・・・ローブ、      2・・・外側電極、3・
・・内側電極、     4・・・パイプ、5・・・浴
槽、       6・・・直流電源特許出願人  川
崎製鉄株式会社 同     三愛石油株式会社 ′〔 代理人 弁理士  渡 辺 望 稔q FIG、1
FIG. 1 is a diagram showing one example of an apparatus for carrying out the method of the invention. Explanation of symbols 1...lobe, 2...outer electrode, 3...
...Inner electrode, 4...Pipe, 5...Bathtub, 6...DC power supply Patent applicant Kawasaki Steel Corporation San-Ai Oil Co., Ltd.' [Representative Patent Attorney Minoru Watanabe Nozomi FIG, 1

Claims (1)

【特許請求の範囲】[Claims] (1)硝酸イオンとフッ素イオンを主体とする水溶液で
あって、硝酸イオンを硝酸濃度に、フッ素イオンをフッ
酸濃度に換算し、両者を合わせて1.5〜40wt%含
有する酸性水溶液中に、ステンレス鋼材と対極とを離隔
して浸漬し、該ステンレス鋼材と該対極との間に通電す
ることを特徴とするステンレス鋼材のスケール除去方法
(1) An aqueous solution mainly containing nitrate ions and fluoride ions, where the nitrate ions are converted to nitric acid concentration and the fluorine ions are converted to hydrofluoric acid concentration, and the total content of both is 1.5 to 40 wt%. A method for removing scale from a stainless steel material, comprising immersing the stainless steel material and a counter electrode in a spaced manner, and applying electricity between the stainless steel material and the counter electrode.
JP13448087A 1987-05-29 1987-05-29 Method for removing scale of stainless steel Pending JPS63297599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13448087A JPS63297599A (en) 1987-05-29 1987-05-29 Method for removing scale of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13448087A JPS63297599A (en) 1987-05-29 1987-05-29 Method for removing scale of stainless steel

Publications (1)

Publication Number Publication Date
JPS63297599A true JPS63297599A (en) 1988-12-05

Family

ID=15129313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13448087A Pending JPS63297599A (en) 1987-05-29 1987-05-29 Method for removing scale of stainless steel

Country Status (1)

Country Link
JP (1) JPS63297599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379795A (en) * 1989-08-23 1991-04-04 Kawasaki Steel Corp Method and apparatus for continuously annealing and pickling stainless steel strip
EP0915185A1 (en) * 1997-10-28 1999-05-12 Kawasaki Steel Corporation Method of making austenitic stainless steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379795A (en) * 1989-08-23 1991-04-04 Kawasaki Steel Corp Method and apparatus for continuously annealing and pickling stainless steel strip
EP0915185A1 (en) * 1997-10-28 1999-05-12 Kawasaki Steel Corporation Method of making austenitic stainless steel sheet
US6149744A (en) * 1997-10-28 2000-11-21 Kawasaki Steel Corporation Method of making austenitic stainless steel sheet

Similar Documents

Publication Publication Date Title
JP5897717B2 (en) Pickling of stainless steel in an oxidative electrolytic acid bath
EP1307609B1 (en) Continuous electrolytic pickling method for metallic products using alternate current supplied cells
US4363709A (en) High current density, acid-free electrolytic descaling process
WO2001021855A1 (en) Removal of metal oxide scale from metal products
US5490908A (en) Annealing and descaling method for stainless steel
US3010854A (en) Pickling solution and method
EP0264972B1 (en) Method of cleaning aluminium surfaces
US2576680A (en) Method for increasing the resistance to corrosion of stainless steel
US3239440A (en) Electrolytic pickling of titanium and titanium base alloy articles
JPS63297599A (en) Method for removing scale of stainless steel
US3519779A (en) Method of making non-porous weld beads
JPS63169391A (en) Metal member for semiconductor producing device
US3632490A (en) Method of electrolytic descaling and pickling
JPH10219500A (en) Finish electrolytic pickling method for descaling of stainless steel strip
US3006827A (en) Method of pickling titanium and compositions used therein
US3378668A (en) Method of making non-porous weld beads
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
US1918817A (en) Art of removing lead from tubes and other articles
US2738293A (en) Salt bath system and method for treating metals
JPS60218489A (en) Scale removing method and device for metal strip
JP2005126743A (en) High corrosion resistance impartment surface treatment method for stainless steel
JPH1060697A (en) Surface treatment of material to be treated consisting of special steel
JPH09324286A (en) Descaling method for stainless steel strip and heat resistant steel strip
Urréjola et al. Optimization of Electrolytic Cleaning of Low Carbon Steels
JP3882866B2 (en) Stainless steel descaling method