JPS6329737A - Optical wavelength selecting element - Google Patents
Optical wavelength selecting elementInfo
- Publication number
- JPS6329737A JPS6329737A JP17317986A JP17317986A JPS6329737A JP S6329737 A JPS6329737 A JP S6329737A JP 17317986 A JP17317986 A JP 17317986A JP 17317986 A JP17317986 A JP 17317986A JP S6329737 A JPS6329737 A JP S6329737A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light
- incident
- rotator
- optical resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 113
- 230000010287 polarization Effects 0.000 claims description 45
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 19
- 239000003795 chemical substances by application Substances 0.000 abstract description 8
- 239000000835 fiber Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 19
- 239000000758 substrate Substances 0.000 description 9
- 239000005350 fused silica glass Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光通信装置の分波器あるいはろ波器として利
用する。特に、波長多重された光信号から所定の波長の
光信号を選択して出力する光波長選択素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used as a duplexer or filter for optical communication equipment. In particular, the present invention relates to an optical wavelength selection element that selects and outputs an optical signal of a predetermined wavelength from wavelength-multiplexed optical signals.
第10図は、光共振器を用いて波長多重された光信号か
ら所定の波長の光信号を選択出力する従来の光波長選択
素子の一例を示す図である(特願昭61−19685号
、「光波長選択素子」)。FIG. 10 is a diagram showing an example of a conventional optical wavelength selection element that selectively outputs an optical signal of a predetermined wavelength from optical signals wavelength-multiplexed using an optical resonator (Japanese Patent Application No. 19685-1982). "Optical wavelength selection element").
第10図に示す光波長選択素子は、透明な溶融石英ガラ
ス基板1上に作製した誘電体多層膜フィルタ2によるミ
ラーを対向させて光共振器を構成し、内部に印加電圧に
より光学的性質(屈折率)が変化する液晶5を封入する
構成である。参照番号3は透明電極であり、参照番号6
は透明電極3に接続され液晶5に電界を印加する電源で
ある。参照番号4は液晶5の配向方間を決める配向処理
剤であり、液晶5はこの配向処理剤4により再溶融石英
ガラス基板1上で同一方向の平行配向が与えられる。光
信号は、入射光ファイバ7からレンズ系8を介して入射
され、光波長選択素子から出射された光信号は受光系9
に入射される。The optical wavelength selection element shown in FIG. 10 has an optical resonator configured by opposing mirrors made of a dielectric multilayer filter 2 fabricated on a transparent fused silica glass substrate 1, and has optical properties ( The structure is such that liquid crystal 5 whose refractive index changes is sealed. Reference number 3 is a transparent electrode, reference number 6
is a power source connected to the transparent electrode 3 and applying an electric field to the liquid crystal 5. Reference number 4 is an alignment agent that determines the orientation direction of the liquid crystal 5, and the liquid crystal 5 is given parallel alignment in the same direction on the remelted silica glass substrate 1 by the alignment agent 4. The optical signal is input from the input optical fiber 7 via the lens system 8, and the optical signal output from the optical wavelength selection element is input to the light receiving system 9.
is incident on the
このような構成により、液晶5が印加電圧に応じて光路
長が変化し、その共振周波数が変化することを利用して
、ビームで入射した光信号のうち印加電圧に応じた共振
波長の光信号を透過させることができ、可変な光波長選
択素子として動作させることができる。With such a configuration, the liquid crystal 5 uses the fact that the optical path length changes depending on the applied voltage and its resonant frequency changes, so that among the optical signals incident in the form of a beam, the optical signal with the resonant wavelength corresponding to the applied voltage is can be transmitted, and can be operated as a variable optical wavelength selection element.
〔発明が解決しようとする問題点〕
ところが、このような従来の光波長選択素子では、入射
光の偏光状態が液晶5の配向方向と同一方向の直線偏光
であるときにのみ、可変な光波長選択素子として動作す
る。[Problems to be Solved by the Invention] However, in such a conventional optical wavelength selection element, the variable optical wavelength can only be changed when the polarization state of the incident light is linearly polarized light in the same direction as the alignment direction of the liquid crystal 5. Operates as a selection element.
たとえば、波長λ、の光信号を選択出力する場合には、
入射光信号の偏光状態と液晶5の配向方向とが同一方向
であるときに、印加電圧を適当に設定することにより、
誘電体多層膜フィルタ2を対向して配置した光共振器を
透過させることができる(第1)図)が、液晶5の配向
方向が入射光の偏光状態と直交するときには、印加電圧
に応じた波長選択性を得ることができなかった(第12
図)。For example, when selectively outputting an optical signal with wavelength λ,
By appropriately setting the applied voltage when the polarization state of the incident optical signal and the alignment direction of the liquid crystal 5 are in the same direction,
Although the dielectric multilayer filter 2 can be transmitted through the optical resonator arranged facing each other (Fig. 1), when the alignment direction of the liquid crystal 5 is orthogonal to the polarization state of the incident light, Wavelength selectivity could not be obtained (12th
figure).
一方これに対して、光信号を偏光板を介して入射させ、
入射光の偏光状態を直線偏光にして光波長選択素子の波
長選択性を保持する方法があるが、実際の光信号伝送で
は入射光の偏光状態は大きく変動しており、偏光状態に
よって偏光板透過後の光強度が変動するので、光強度変
調された光信号では信号成分が損なわれる可能性がある
。また、偏光制御し入射偏光を直線偏光に変換する技術
は・複雑な光学系による制御を伴い、したがって損失が
増大する問題点があった。On the other hand, by making the optical signal enter through a polarizing plate,
There is a method to maintain the wavelength selectivity of the optical wavelength selection element by changing the polarization state of the incident light to linear polarization, but in actual optical signal transmission, the polarization state of the incident light varies greatly, and the polarization state may vary depending on the polarization state. Since the subsequent light intensity varies, signal components may be lost in the light intensity modulated optical signal. Furthermore, the technique of controlling polarization and converting incident polarized light into linearly polarized light involves control using a complicated optical system, and therefore has the problem of increased loss.
本発明は、このような従来の問題点を解決するもので、
偏光依存性のない光波長選択素子を提供することを目的
とする。The present invention solves these conventional problems,
It is an object of the present invention to provide an optical wavelength selection element without polarization dependence.
本発明は、光共振器の入射側の一部に光学的旋光子を設
け、入射光のうち偏光状態が光学的異方性媒質の配向方
向に対して直交している特定の偏光は、この光学的旋光
子を通過させて光共振器に入射あるいは再入射させるこ
とを特徴とする。In the present invention, an optical rotator is provided in a part of the incident side of the optical resonator, and a specific polarization state of the incident light is perpendicular to the orientation direction of the optically anisotropic medium. It is characterized by passing through an optical rotator and making it enter or re-enter the optical resonator.
すなわち、本発明第一の発明は、光共振器内部に光学的
異方性媒質が封入され、この光学的異方性媒質の印加電
圧を選択波長に応じて変更する手段を含む光波長選択素
子において、上記光共振器の光入射面の一部に反射層を
有する光学的旋光子が貼着され、この光学的旋光子の非
貼着部分を光入射部とすることを特徴とする。That is, the first invention of the present invention provides an optical wavelength selection element in which an optically anisotropic medium is sealed inside an optical resonator and includes means for changing the voltage applied to the optically anisotropic medium according to a selected wavelength. An optical rotator having a reflective layer is attached to a part of the light incident surface of the optical resonator, and the non-attached part of the optical rotator is used as a light incident part.
光学的旋光子は通過光に対して45°+90°×k(k
は整数)の回転を与える構造であることが好ましい。The optical rotator is 45° + 90° x k (k
is an integer).
本発明第二の発明は、光共振器内部に光学的異方性媒質
が封入され、この光学的異方性媒質の印加電圧を選択波
長に応じて変更する手段を含む光波長選択素子において
、上記光共振器の光入射面に偏光分離素子を備え、この
偏光分離素子と上記光共振器との間に、この偏光分離素
子で分離される一方の偏光に対して、他方の偏光と同一
の偏光状態にする光学的旋光子が挿入されたことを特徴
とする。A second aspect of the present invention is an optical wavelength selection element in which an optically anisotropic medium is sealed inside an optical resonator and includes means for changing the voltage applied to the optically anisotropic medium according to a selected wavelength. A polarization splitting element is provided on the light incidence surface of the optical resonator, and between the polarization splitting element and the optical resonator, one polarized light separated by the polarization splitting element is provided with a polarized light that is the same as the other polarized light. It is characterized by the insertion of an optical rotator that changes the polarization state.
光学的旋光子は通過光に対して90°+180”xk(
kは整数)の回転を与える構造であることが好ましい。The optical rotator is 90°+180”xk(
It is preferable to have a structure that provides rotation (k is an integer).
本発明第一の発明では、反射層を有する光学的旋光子を
光共振器の入射面の一部に貼着し、非貼着部分から所定
の入射角度で光信号を入射させることにより、入射光の
偏光状態が光学的異方性媒質の配向方向に対して平行で
ある場合は、光共振器の波長選択性により可変選択動作
を可能とし、入射光の偏光状態が光学的異方性媒質の配
向方向に対して直交している場合は、反射層を有する光
学的旋光子を通過させて光共振器に再入射させることに
より可変選択動作を可能にする。In the first aspect of the present invention, an optical rotator having a reflective layer is attached to a part of the incident surface of an optical resonator, and an optical signal is made incident at a predetermined angle of incidence from the non-attached part. When the polarization state of the light is parallel to the orientation direction of the optically anisotropic medium, the wavelength selectivity of the optical resonator enables variable selection operation, and the polarization state of the incident light is parallel to the orientation direction of the optically anisotropic medium. If the beam is perpendicular to the orientation direction of the beam, it passes through an optical rotator having a reflective layer and re-enters the optical resonator, thereby enabling a variable selection operation.
本発明第二の発明では、偏光分離素子により入射光を可
変選択動作する偏光成分と、可変選択動作しない偏光成
分とに分離し、可変選択動作しない偏光成分の光を光学
的旋光子を介して回転させて光共振器に入射させること
により、可変選択動作を可能にすることができる。In the second aspect of the present invention, the incident light is separated by a polarization separation element into a polarization component that is variably selected and a polarization component that is not variably selected, and the light of the polarization component that is not variably selected is transmitted through an optical rotator. By rotating and injecting the optical resonator into the optical resonator, variable selection operation can be made possible.
なお、本発明第一の発明では、光弁振器自身が有する偏
光分離機能を利用することにより、偏光分離素子を不要
にしている。Note that in the first aspect of the present invention, the polarization separation element is not required by utilizing the polarization separation function that the light valve oscillator itself has.
このように本発明第一の発明および第二の発明は、光パ
ワー損失を伴うことなく光波長選択素子の偏光依存性を
除去することができる。As described above, the first invention and the second invention of the present invention can eliminate the polarization dependence of the optical wavelength selection element without causing optical power loss.
以下、本発明の実施例方式を図面に基づいて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
第1図は、本発明第一の発明の第一実施例を示す構成図
である。第1図において、溶融石英ガラス基板1、誘電
体多層膜フィルタ2、透明電極3、配向処理剤4、液晶
5および電源6の配置は、従来例構成と同様であり、対
向して配置される2枚の誘電体多層膜フィルタ2で光共
振器が構成される。入射光は、入射光ファイバ7および
レンズ系8を介して所定の入射角度で光共振器に入射さ
れ、対向する位置に受光系9が設けられる。FIG. 1 is a configuration diagram showing a first embodiment of the first invention of the present invention. In FIG. 1, the arrangement of a fused silica glass substrate 1, a dielectric multilayer filter 2, a transparent electrode 3, an alignment agent 4, a liquid crystal 5, and a power source 6 is the same as in the conventional structure, and they are arranged facing each other. The two dielectric multilayer filters 2 constitute an optical resonator. The incident light enters the optical resonator at a predetermined angle of incidence via the incident optical fiber 7 and the lens system 8, and a light receiving system 9 is provided at an opposing position.
本発明第一の発明の特徴は、光信号の入射側の溶融石英
ガラス基板1上に、反射鏡1)を有し通過光に45”+
90°Xk(kは整数)の回転を与えるファラデー旋光
子12を貼着する構成にある。The first feature of the present invention is that a reflecting mirror 1) is provided on the fused silica glass substrate 1 on the incident side of the optical signal, and a mirror 1) is provided on the fused silica glass substrate 1 on the incident side of the optical signal.
It has a configuration in which a Faraday rotator 12 that gives a rotation of 90°Xk (k is an integer) is attached.
すなわち、入射光のうち対向する誘電体多層膜フィルタ
2が構成する光共振器で反射された光は、ファラデー旋
光子12を通過し、反射鏡1)で反射して再びファラデ
ー旋光子12を通過して光共振器に導かれる。したがっ
て、光共振器で反射された光は、45°+90°×にの
ファラデー旋光子12を2回通過することにより、偏光
が90°+180”xk回転されて再び光共振器に入射
される。That is, among the incident light, the light reflected by the optical resonator formed by the opposing dielectric multilayer filters 2 passes through the Faraday rotator 12, is reflected by the reflecting mirror 1), and passes through the Faraday rotator 12 again. and guided into an optical resonator. Therefore, the light reflected by the optical resonator passes twice through the Faraday rotator 12 at 45°+90°×, thereby having its polarization rotated by 90°+180″xk, and enters the optical resonator again.
ここで、偏光が90°+180°×に回転後に光共振器
に再入射されたときに再び反射した場合には、その光は
偏光状態に基づく反射ではなく、液晶5の印加電圧に応
じた非選択光信号であるので、以後この光を光共振器に
入射させても反射を繰り返すだけである。このような再
々入射を防ぐためには、反射鏡1)の大きさをファラデ
ー旋光子12の大きさに比べて小さくすることがよい。Here, if the polarized light is reflected again when re-entering the optical resonator after being rotated to 90° + 180°, the light is not reflected based on the polarization state, but is reflected due to the voltage applied to the liquid crystal 5. Since this is a selective optical signal, even if this light is subsequently incident on the optical resonator, it will simply be reflected repeatedly. In order to prevent such repeated incidence, it is preferable to make the size of the reflecting mirror 1) smaller than the size of the Faraday rotator 12.
その割合は、本光波長選択素子の大きさ、入射ビーム光
の入射角度およびスポットの大きさにより決定される。The ratio is determined by the size of the optical wavelength selection element, the angle of incidence of the incident beam, and the size of the spot.
このように、反射鏡1)の大きさをファラデー旋光子1
2の大きさに比べて小さくするのが理想的ではあるが、
必ずしもそれに限定されるものではない。In this way, the size of the reflecting mirror 1) can be changed to the Faraday rotator 1
Although it would be ideal to make it smaller than the size of 2,
It is not necessarily limited to this.
第2図および第3図は、本発明第一の発明の第二実施例
および第三実施例を示す構成図である。FIG. 2 and FIG. 3 are configuration diagrams showing a second embodiment and a third embodiment of the first aspect of the present invention.
第2図および第3図に示す第二実施例および第三実施例
は、製造を容易にするためにファラデー旋光子12の全
面に反射鏡1)を貼着した構成例である。特に、第3図
に示す第三実施例では、たとえば溶融石英ガラス基板l
の全面に反射鏡1)を有するファラデー旋光子12を貼
着してから、光信号が入射される部分を削り貫く工法で
作製することができるので、その製造が極めて容易にな
る。The second and third embodiments shown in FIGS. 2 and 3 are configuration examples in which a reflecting mirror 1) is attached to the entire surface of the Faraday rotator 12 in order to facilitate manufacturing. In particular, in the third embodiment shown in FIG.
Since the Faraday rotation photon 12 having the reflecting mirror 1) is pasted on the entire surface of the mirror 1) and the part into which the optical signal is incident is cut through, the manufacturing becomes extremely easy.
第4図ないし第6図は、本発明第一の発明の詳細な説明
する図である。以下、第一実施例によりその動作につい
て説明する。4 to 6 are diagrams for explaining the first aspect of the present invention in detail. The operation will be explained below using the first embodiment.
液晶5の配向方向と同一方向の偏光(波長λ、)が入射
された場合には、印加電圧を適当に設定し波長λ1の光
を選択出力するようにすると、従来の光波長選択素子と
同様に誘電体多層膜フィルタ2を通過させて選択するこ
とができる(第4図)。When polarized light (wavelength λ,) in the same direction as the alignment direction of the liquid crystal 5 is incident, the applied voltage is set appropriately to selectively output the light with wavelength λ1, which is similar to the conventional optical wavelength selection element. can be selected by passing it through the dielectric multilayer filter 2 (FIG. 4).
液晶5の配向方向と直交する方向の偏光(波長λI)が
入射された場合には、印加電圧を適当に設定し波長λ、
の光を選択出力するようにすると、入射された光信号は
一旦光共振器部分で反射し、さらに反射鏡1)で反射さ
れて再び光共振器に入射されるまでに、ファラデー旋光
子12により偏光が90°+180°×k回転している
ので、液晶5の配向方向と同一方向の偏光となり、誘電
体多層膜フィルタ2を通過させて選択することができる
(第5図)。When polarized light (wavelength λI) in a direction perpendicular to the alignment direction of the liquid crystal 5 is incident, the applied voltage is appropriately set to change the wavelength λ,
When selectively outputting the light of Since the polarized light is rotated by 90°+180°×k, it becomes polarized in the same direction as the alignment direction of the liquid crystal 5, and can be passed through the dielectric multilayer filter 2 and selected (FIG. 5).
また、印加電圧を波長λ、の光を非選択するように設定
した場合には、入射光の偏光状態にかかわらず、光共振
具部分で反射した光は反射鏡1)により再び光共振器に
入射されるが、再度反射されて外部へ消失して選択出力
されない(第6図)。In addition, when the applied voltage is set to non-select light with wavelength λ, the light reflected at the optical resonator part is returned to the optical resonator by the reflecting mirror 1), regardless of the polarization state of the incident light. Although the light is incident, it is reflected again and disappears to the outside, so that it is not selectively output (FIG. 6).
ここで、第4図ないし第6図に示す光信号の反射経路お
よび透過経路は、その動作の説明を簡単にするためのモ
デル経路であり、対向する2枚の誘電体多層膜フィルタ
2で構成される光共振器による反射光および透過光の実
際の状況は、次のとおりである。Here, the reflection path and transmission path of the optical signal shown in FIGS. 4 to 6 are model paths to simplify the explanation of the operation, and are composed of two dielectric multilayer filters 2 facing each other. The actual situation of reflected light and transmitted light by the optical resonator is as follows.
第7図は、光共振器により光が反射あるいは透過する状
況を説明する図である。FIG. 7 is a diagram illustrating a situation in which light is reflected or transmitted by an optical resonator.
対向する2枚の誘電体多層膜フィルタ2a、2bで構成
される光共振器に光が入射されると、誘電体多層膜フィ
ルタ2aで反射した光(ア)、誘電体多層膜フィルタ2
aを透過し誘電体多層膜フィルタ2bも透過した光(7
)’、誘電体多層膜フィルタ2bで反射し誘電体多層膜
フィルタ2aを透過した光(イ)、誘電体多層膜フィル
タ2aで反射し誘電体多層膜フィルタ2bを透過した光
(イ)′、以下同様に反射光は(7) 、(イ) 、・
・・となり、透過光は(ア)′、(イ)′、・・・とな
る。したがって、光共振器による反射光は(ア)、(イ
)、・・・の総和であり、また透過光は(ア)′、(イ
)′、・・・の総和となる。When light enters an optical resonator made up of two dielectric multilayer filters 2a and 2b facing each other, the light reflected by the dielectric multilayer filter 2a (A) and the dielectric multilayer filter 2
The light (7
)', light reflected by the dielectric multilayer filter 2b and transmitted through the dielectric multilayer filter 2a (a), light reflected by the dielectric multilayer filter 2a and transmitted through the dielectric multilayer filter 2b (a)', Similarly, the reflected light is (7), (a), ・
..., and the transmitted light becomes (a)', (b)',... Therefore, the light reflected by the optical resonator is the sum of (a), (b), . . . , and the transmitted light is the sum of (a)', (b)', .
第8図は、本発明第二の発明の第一実施例を示す構成図
である。第8図において、溶融石英ガラス基板1、誘電
体多層膜フィルタ2、透明電極3、配向処理剤4、液晶
5および電源6の配置は、従来例構成および第一の発明
の構成例と同様である。FIG. 8 is a configuration diagram showing a first embodiment of the second invention of the present invention. In FIG. 8, the arrangement of a fused silica glass substrate 1, a dielectric multilayer filter 2, a transparent electrode 3, an alignment agent 4, a liquid crystal 5, and a power source 6 is the same as in the conventional configuration and the configuration example of the first invention. be.
本発明第二の発明の特徴とするところは、光信号の入射
側の溶融石英ガラス基板1上に、偏光分離素子21およ
び90°+180°×にの回転を与えるファラデー旋光
子22を備える構成にある。参照番号23はスペーサ(
透明、均一なガラスその他)である。The second aspect of the present invention is characterized by a configuration in which a polarization splitting element 21 and a Faraday rotator 22 that provides a rotation of 90° + 180° are provided on the fused silica glass substrate 1 on the incident side of the optical signal. be. Reference number 23 is a spacer (
transparent, uniform glass, etc.).
すなわち、入射光を偏光分離素子21に入射し、可変選
択動作しない偏光成分と可変選択動作する偏光成分とに
分離し、可変選択動作しない偏光成分の光はファラデー
旋光子22により90°+180°×にの回転を与えて
光共振器に入射させ、可変選択動作する偏光成分の光は
スペーサ23を介してそのまま光共振器に入射させる構
成である。That is, the incident light enters the polarization separation element 21 and is separated into a polarization component that does not perform variable selection and a polarization component that does not perform variable selection, and the light of the polarization component that does not perform variable selection is separated by 90° + 180 The configuration is such that the light of the polarized component subjected to the variable selection operation is made to enter the optical resonator as it is through the spacer 23.
したがって、光信号が光共振器に入射されるときには、
必ず可変選択動作する偏光になっているので、入射光の
偏光状態に依存せずに光波長選択素子を構成することが
できる。Therefore, when an optical signal is input into an optical resonator,
Since the polarized light is always variably selectively operated, an optical wavelength selection element can be constructed without depending on the polarization state of the incident light.
第9図は、本発明第二の発明の第二実施例を示す構成図
である。FIG. 9 is a configuration diagram showing a second embodiment of the second invention of the present invention.
第9図に示す本発明第二の発明の第二実施例の構成は、
第8図に示す第一実施例の構成において、偏光分離素子
として偏光分離プリズム25を用い、分離された可変選
択動作しない偏光成分の光を反射鏡26および90°+
180°×にの回転を与えるファラデー旋光子27を介
して光共振器に入射させることを特徴とする。The configuration of the second embodiment of the second invention shown in FIG. 9 is as follows:
In the configuration of the first embodiment shown in FIG. 8, a polarization splitting prism 25 is used as a polarization splitting element, and the separated light of the polarization component that does not operate is variably selected by a reflecting mirror 26 and a polarization splitting prism 25.
It is characterized in that the light is made incident on the optical resonator via a Faraday rotator 27 that gives a rotation of 180°.
ここで、本発明光波長選択素子の寸法の一例を示す。Here, an example of the dimensions of the optical wavelength selection element of the present invention will be shown.
溶融石英ガラス基板1の直径は30mm、厚さはlII
Imであり、誘電体多層膜フィルタ2の厚さは約1−1
透明電極3および配向処理剤4の厚さはそれぞれ1μm
以下、液晶5の厚さは10−である。The diameter of the fused silica glass substrate 1 is 30 mm, and the thickness is lII.
Im, and the thickness of the dielectric multilayer filter 2 is approximately 1-1
The thickness of the transparent electrode 3 and the alignment treatment agent 4 is 1 μm each.
Hereinafter, the thickness of the liquid crystal 5 is 10-.
本発明は、以上説明したように、光学的異方性媒質(液
晶)の印加電圧を変更することにより可変選択動作がで
き、さらに入射光の偏光状態がいかなる場合でも波長選
択を可能にすることができる。すなわち、波長多重され
た入射光からその偏光状態に依存せずに所定の波長の光
を選択出力することができる。As explained above, the present invention enables variable selection operation by changing the applied voltage to an optically anisotropic medium (liquid crystal), and further enables wavelength selection regardless of the polarization state of incident light. Can be done. That is, it is possible to selectively output light of a predetermined wavelength from wavelength-multiplexed incident light without depending on its polarization state.
したがって、デバイスとしてのフレキシビリティを上げ
ることができ、これを用いた光分波器その他を利用して
光信号処理装置あるいは光交換装置、さらに構内網の構
築その他に広く適用することができる効果がある。Therefore, the flexibility of the device can be increased, and it can be widely applied to optical signal processing equipment, optical switching equipment, construction of local area networks, etc. using optical demultiplexers and other devices using this device. be.
【図面の簡単な説明】
第1図は本発明第一の発明の第一実施例を示す構成図。
第2図は本発明第一の発明の第二実施例を示す構成図。
第3図は本発明第一の発明の第三実施例を示す構成図。
第4図は本発明第一の発明の選択波長に対する動作(配
向方向と平行な偏光入射)を説明する図。
第5図は本発明第一の発明の選択波長に対する動作(配
向方向と直交する偏光入射)を説明する図。
第6図は本発明第一の発明の非選択波長に対する動作を
説明する図。
第7図は光共振器により光が反射あるいは透過する状況
を説明する図。
第8図は本発明第二の発明の第一実施例を示す構成図。
第9図は本発明第二の発明の第二実施例を示す構成図。
第10図は従来の光波長選択素子の一例を示す図。
第1)図は従来例の選択波長に対する動作(配向方向と
平行な偏光入射)を説明する図。
第12図は従来例の選択波長に対する動作(配向方向と
直交する偏光入射)を説明する図。
1・・・溶融石英ガラス基板、2・・・誘電体多層膜フ
ィルタ、3・・・透明電極、4・・・配向処理剤、5・
・・液晶、6・・・電源、7・・・入射光ファイバ、8
・・・レンズ系、9・・・受光系、1)・・・反射鏡、
12・・・ファラデー旋光子、21・・・偏光分離素子
、22・・・ファラデー旋光子、23・・・スペーサ、
25・・・偏光分離プリズム、26・・・反射鏡、27
・・・ファラデー旋光子。
特許出願人 日本電信電話株式会社2.−1代理人
弁理士 井 出 直 孝
゛・ぺ−−〜・
17図
第二の発明第一実施例
第8図
第二の発明第二実施例
第9図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing a first embodiment of the first invention of the present invention. FIG. 2 is a configuration diagram showing a second embodiment of the first invention of the present invention. FIG. 3 is a configuration diagram showing a third embodiment of the first invention of the present invention. FIG. 4 is a diagram illustrating the operation of the first invention for selected wavelengths (polarized light incident parallel to the alignment direction). FIG. 5 is a diagram illustrating the operation of the first invention for selected wavelengths (polarized light incident perpendicular to the alignment direction). FIG. 6 is a diagram illustrating the operation of the first invention for non-selected wavelengths. FIG. 7 is a diagram illustrating a situation in which light is reflected or transmitted by an optical resonator. FIG. 8 is a configuration diagram showing a first embodiment of the second invention of the present invention. FIG. 9 is a configuration diagram showing a second embodiment of the second invention of the present invention. FIG. 10 is a diagram showing an example of a conventional optical wavelength selection element. Fig. 1) is a diagram explaining the operation of the conventional example for the selected wavelength (polarized light incident parallel to the alignment direction). FIG. 12 is a diagram illustrating the operation of the conventional example for selected wavelengths (polarized light incident perpendicular to the alignment direction). DESCRIPTION OF SYMBOLS 1... Fused silica glass substrate, 2... Dielectric multilayer film filter, 3... Transparent electrode, 4... Alignment treatment agent, 5...
...Liquid crystal, 6...Power source, 7...Incoming optical fiber, 8
...Lens system, 9...Light receiving system, 1)...Reflector,
12... Faraday rotator, 21... polarization separation element, 22... Faraday rotator, 23... spacer,
25...Polarization separation prism, 26...Reflector, 27
...Faraday rotation photon. Patent applicant: Nippon Telegraph and Telephone Corporation 2. -1 agent
Patent Attorney Nao Ide Takashi P. 17 Figure 2 First Embodiment of the Invention Figure 8 Second Invention Second Embodiment Figure 9
Claims (4)
の光学的異方性媒質の印加電圧を選択波長に応じて変更
する手段を含む光波長選択素子において、上記光共振器
の光入射面の一部に反射層を有する光学的旋光子が貼着
され、 この光学的旋光子の非貼着部分を光入射部とする ことを特徴とする光波長選択素子。(1) An optical wavelength selection element in which an optically anisotropic medium is sealed inside an optical resonator and includes means for changing the voltage applied to the optically anisotropic medium according to a selected wavelength. An optical wavelength selection element characterized in that an optical rotator having a reflective layer is attached to a part of a light incident surface, and the non-attached part of the optical rotator is used as a light incident part.
k(kは整数)の回転を与える構造である特許請求の範
囲第(1)項に記載の光波長選択素子。(2) Optical rotator is 45° + 90° x
The optical wavelength selection element according to claim (1), which has a structure that provides rotation k (k is an integer).
の光学的異方性媒質の印加電圧を選択波長に応じて変更
する手段を含む光波長選択素子において、上記光共振器
の光入射面に偏光分離素子を備え、この偏光分離素子と
上記光共振器との間に、この偏光分離素子で分離される
一方の偏光に対して、他方の偏光と同一の偏光状態にす
る光学的旋光子が挿入された ことを特徴とする光波長選択素子。(3) An optical wavelength selection element in which an optically anisotropic medium is sealed inside an optical resonator and includes means for changing the voltage applied to the optically anisotropic medium according to a selected wavelength. A polarization splitting element is provided on the light incidence plane, and an optical system is provided between the polarization splitting element and the optical resonator to make one polarized light separated by the polarization splitting element the same polarization state as the other polarized light. 1. An optical wavelength selection element characterized in that a optical rotator is inserted.
×k(kは整数)の回転を与える構造である特許請求の
範囲第(3)項に記載の光波長選択素子。(4) Optical rotator is 90° + 180° with respect to the passing light
The optical wavelength selection element according to claim (3), which has a structure that provides rotation xk (k is an integer).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17317986A JPS6329737A (en) | 1986-07-23 | 1986-07-23 | Optical wavelength selecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17317986A JPS6329737A (en) | 1986-07-23 | 1986-07-23 | Optical wavelength selecting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6329737A true JPS6329737A (en) | 1988-02-08 |
Family
ID=15955551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17317986A Pending JPS6329737A (en) | 1986-07-23 | 1986-07-23 | Optical wavelength selecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6329737A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05133800A (en) * | 1991-11-11 | 1993-05-28 | Nippon Telegr & Teleph Corp <Ntt> | Photo-sensor |
WO1997043686A1 (en) * | 1996-05-10 | 1997-11-20 | Seiko Epson Corporation | Projection liquid crystal display |
JP2005292664A (en) * | 2004-04-02 | 2005-10-20 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength selective variable optical attenuator |
-
1986
- 1986-07-23 JP JP17317986A patent/JPS6329737A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05133800A (en) * | 1991-11-11 | 1993-05-28 | Nippon Telegr & Teleph Corp <Ntt> | Photo-sensor |
WO1997043686A1 (en) * | 1996-05-10 | 1997-11-20 | Seiko Epson Corporation | Projection liquid crystal display |
US6671014B2 (en) | 1996-05-10 | 2003-12-30 | Seiko Epson Corporation | Liquid projection device having a liquid crystal display element that includes an electroluminescent element |
US6900858B2 (en) | 1996-05-10 | 2005-05-31 | Seiko Epson Corporation | Liquid crystal projection device having a liquid crystal display element that includes an electroluminescent element |
JP2005292664A (en) * | 2004-04-02 | 2005-10-20 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength selective variable optical attenuator |
JP4523315B2 (en) * | 2004-04-02 | 2010-08-11 | 日本電信電話株式会社 | Wavelength-selectable variable optical attenuator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6175667B1 (en) | High-speed polarization-insensitive electro-optic modulator | |
JP2003172912A (en) | Liquid crystal variable wavelength filter device and driving method therefor | |
JPH02276285A (en) | Phototransistor | |
JP2724098B2 (en) | Optical wavelength filter device | |
US6888661B1 (en) | Square filter function tunable optical devices | |
US7019724B2 (en) | Liquid crystal optical switch | |
EP1255156A2 (en) | Tunable optical filter | |
JP2009042557A (en) | Wavelength selection switch | |
JPS6329737A (en) | Optical wavelength selecting element | |
JP2765529B2 (en) | Waveguide type optical device | |
CN105182473B (en) | A kind of wavelength selective optical disabler | |
US7263250B1 (en) | Optical switch using polarization beam splitters | |
US8619216B1 (en) | Optical wavelength filter | |
JPS62178219A (en) | Optical wavelength selecting element | |
JPH05323265A (en) | Polarization non-dependency type wavelength variable filter | |
JPH05249507A (en) | Optical switch and optical path switching method | |
Huang | Commercial optical switches | |
JP3031394B2 (en) | Transmission wavelength control method | |
JPH05249506A (en) | Optical switch | |
JP2022538227A (en) | Micro magneto-optical fiber optic switch | |
JPH0750284B2 (en) | Optical path switch | |
JPH04140714A (en) | Variable wavelength filter module | |
JP3099851B2 (en) | Variable wavelength filter device | |
JP2003270610A (en) | Liquid crystal optical switch and driving method therefor | |
JPS60247228A (en) | Optical fiber switch |