[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63295519A - Production of 1,3-dimethyladamantane - Google Patents

Production of 1,3-dimethyladamantane

Info

Publication number
JPS63295519A
JPS63295519A JP62128054A JP12805487A JPS63295519A JP S63295519 A JPS63295519 A JP S63295519A JP 62128054 A JP62128054 A JP 62128054A JP 12805487 A JP12805487 A JP 12805487A JP S63295519 A JPS63295519 A JP S63295519A
Authority
JP
Japan
Prior art keywords
raw material
substance
dimethyladamantane
catalyst
perhydroacenaphthene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62128054A
Other languages
Japanese (ja)
Other versions
JPH0437052B2 (en
Inventor
Katsuhiko Takagi
克彦 高木
Yoshihiro Naruse
成瀬 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62128054A priority Critical patent/JPS63295519A/en
Publication of JPS63295519A publication Critical patent/JPS63295519A/en
Publication of JPH0437052B2 publication Critical patent/JPH0437052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled high-purity substance useful as a raw material for functional high polymers, etc., by using trans form of perhydroacenaphtene as a raw material and treating the compound by the use of a catalytic reaction system consisting of anhydrous AlCl3 and 1,2-dichloroethane. CONSTITUTION:Trans form of perhydroacenaphthene as a raw material is reacted at 50-60 deg.C for 1-10hr by the use of a complex obtained by heating a mixture of AlCl3/1,2-dichloroethane in the weight ratio of 1/10-20 at >=45 deg.C to give the titled substance. The atmosphere in the reactor may be an inert gas such as nitrogen or air. In the above-mentioned method, since the aimed substance is formed in high selectivity by selecting a proper reaction condition and the amount of the catalyst, the aimed substance can be obtained by vacuum distillation readily and in high yield. The titled substance is useful as a raw material for high-quality functional high polymers, drugs, catalysts and various fine chemicals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高級な機能性高分子及び医薬品等の原料とし
て有用である1、3−ジメチルアダマンタンの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing 1,3-dimethyladamantane, which is useful as a raw material for high-grade functional polymers and pharmaceuticals.

(従来の技術) 1.3−ジメチルアダマンタンは、医薬品をはじめ各種
ファインケミカルの原料として、そのジカルボン酸やジ
オールは、ポリエステル、ポリアミド等の高級な機能性
高分子の原料として、その有用性が期待されている。
(Prior art) 1.3-Dimethyladamantane is expected to be useful as a raw material for various fine chemicals including pharmaceuticals, and its dicarboxylic acids and diols are useful as raw materials for high-grade functional polymers such as polyester and polyamide. ing.

従来、メチル基のないアダマンタンの製造方法としては
、1956年にシュライヤー(Schleyer)らに
よりエンド−テトラヒドロジシクロペンタジェンを無水
塩化アルミニウム(AICh)触媒で異性化する方法(
J、Am、Chem、Soc、 79.3292(19
57))が発見されて以来、各種の酸触媒を用い炭素数
10以上の三環式炭化水素を異性化する試みが為されて
いる。初期のAlC11触媒によるエンド−テトラヒド
ロジシクロペンタジェンの異性化で得られるアダマンタ
ン収率は15〜20%程度であり、かつ、極めて多くの
副生物が生成し、工業的にアダマンタンを製造する方法
としては有利とは言えなかった。
Conventionally, as a method for producing adamantane without a methyl group, Schleyer et al. proposed in 1956 a method in which endo-tetrahydrodicyclopentadiene is isomerized using an anhydrous aluminum chloride (AICh) catalyst (
J, Am, Chem, Soc, 79.3292 (19
Since the discovery of 57)), attempts have been made to isomerize tricyclic hydrocarbons having 10 or more carbon atoms using various acid catalysts. The adamantane yield obtained by the isomerization of endo-tetrahydrodicyclopentadiene using an initial AlC11 catalyst is about 15 to 20%, and an extremely large amount of by-products are produced, making it difficult to use as a method for industrially producing adamantane. could not be said to be advantageous.

その後、各種の改良がなされ、アダマンタン収率が触媒
をBF3−HF系にすることにより30%程度まで向上
しくUSP2,937.211)、 AICh−)1c
I触媒系でHt加圧下で反応させると40%程度まで向
上すると言われている。また、特公昭51−20508
号によれば、エンド−テトラヒドロジシクロペンタジェ
ンを^1C13触媒を用い、溶媒として1.2−ジクロ
ルエタンを用いることにより、アダマンタンの収率は5
0%に向上するとともに、レジンなどの副生物の生成も
僅かになるとされている。
After that, various improvements were made, and the adamantane yield was improved to about 30% by using a BF3-HF catalyst as the catalyst.
It is said that when the reaction is carried out under Ht pressure using an I catalyst system, the improvement can be increased to about 40%. Also, special public service No. 51-20508
According to the issue, by using endo-tetrahydrodicyclopentadiene as a ^1C13 catalyst and using 1,2-dichloroethane as the solvent, the yield of adamantane was 5.
It is said that the production of by-products such as resin will be reduced to 0%.

(発明が解決しようとする問題点) しかしながら、アダマンクン類の中でもファインケミカ
ル原料として特に有用な1.3−ジメチルアダマンタン
を高収率で選択的に製造する方法は、現在知られていな
い。
(Problems to be Solved by the Invention) However, there is currently no known method for selectively producing 1,3-dimethyladamantane in a high yield, which is particularly useful as a raw material for fine chemicals among adamuncnes.

塩素処理したPt−Ah(h触媒が三環式炭化水素類を
異性化する触媒として有効であることが報告されている
(J、Am、Chem、Soc、 93.2.2798
(1971))が、触媒/原料比が7.5/1と極めて
多量の触媒を用いていること、触媒の寿命が極めて短い
ことから実用に耐えるものではない。
It has been reported that chlorinated Pt-Ah (h catalyst) is effective as a catalyst for isomerizing tricyclic hydrocarbons (J, Am, Chem, Soc, 93.2.2798
(1971)) uses an extremely large amount of catalyst with a catalyst/raw material ratio of 7.5/1, and the lifetime of the catalyst is extremely short, making it impractical.

また、特公昭52−12706号等には、希土類イオン
などでイオン交換したY型ゼオライトに各種金属を担持
した触媒が連続異性化触媒として良いとされているが、
パーヒドロアセナフテンを原料とした場合にも1.3−
ジメチルアダマンタンの収率は、20〜30%程度であ
り、工業的に使用できる水準ではない。
In addition, Japanese Patent Publication No. 52-12706 etc. states that catalysts in which various metals are supported on Y-type zeolite ion-exchanged with rare earth ions etc. are good as continuous isomerization catalysts.
Even when perhydroacenaphthene is used as a raw material, 1.3-
The yield of dimethyladamantane is about 20 to 30%, which is not at a level that can be used industrially.

本発明者らは、先に、パーヒドロアセナフテンを異性化
し、1,3−ジメチルアダマンタンを得る触媒として、
無水塩化アルミニウムと1.2−ジクロルエタンとから
生成する錯体が大変優れており、高収率で1.3−ジメ
チルアダマンタンを得ることができることを見出した(
特願昭61−305290号)。本発明者らは、さらに
1,3−ジメチルアダマンタンの収率を上げるため研究
を続けた結果、パーヒドロアセナフテンに存在する4種
の異性体のうち、特定の異性体だけを原料に用いた場合
、1,3−ジメチルアダマンタンがさらに高収率で得ら
れることを見出した。
The present inventors first used a catalyst for isomerizing perhydroacenaphthene to obtain 1,3-dimethyladamantane.
It was discovered that the complex formed from anhydrous aluminum chloride and 1,2-dichloroethane is very good, and it is possible to obtain 1,3-dimethyladamantane in high yield (
(Japanese Patent Application No. 61-305290). As a result of continuing research to further increase the yield of 1,3-dimethyladamantane, the present inventors found that among the four isomers present in perhydroacenaphthene, only a specific isomer was used as a raw material. It has been found that 1,3-dimethyladamantane can be obtained in even higher yields.

(問題点を解決するための手段) 本発明の1,3−ジメチルアダマンタンの製造方法は、
パーヒドロアセナフテンの異性体のうちトランス体を原
料とし、触媒反応系として無水塩化アルミニウムと1,
2−ジクロルエタンを用いることを特徴とする。
(Means for solving the problems) The method for producing 1,3-dimethyladamantane of the present invention includes:
Among the isomers of perhydroacenaphthene, the trans isomer is used as a raw material, and anhydrous aluminum chloride and 1,
It is characterized by using 2-dichloroethane.

原料のパーヒドロアセナフテンには2種のトランス体と
2種のシス体があるが、これらの異性体のうち、工業的
にはトランス体を用いることが好ましい。
The raw material perhydroacenaphthene has two types of trans isomers and two types of cis isomers, and among these isomers, it is preferable to use the trans isomer from an industrial perspective.

本発明者らは、先にアセナフテンの水素化反応を珪藻土
を担体とするニッケル触媒で行うと、2種のトランス体
のパーヒドロアセナフテンが合計で95%の収率で得ら
れること(特願昭61−107970号)、さらにルテ
ニウム系触媒及び/又はロジウム系触媒を用いると2種
のシス体のうち、沸点の高いものが90%の収率で得ら
れること(特願昭61−107969号)を見出した。
The present inventors have discovered that by first carrying out the hydrogenation reaction of acenaphthene with a nickel catalyst using diatomaceous earth as a carrier, two types of trans-perhydroacenaphthene can be obtained with a total yield of 95% (patent application). Furthermore, by using a ruthenium-based catalyst and/or a rhodium-based catalyst, one of the two types of cis isomers with a higher boiling point can be obtained with a yield of 90% (Japanese Patent Application No. 1983-107969). ) was discovered.

本発明で用いる原料パーヒドロアセナフテンの異性体は
、これらの方法によって得られたものを用いることがで
きる。
As the isomer of the raw material perhydroacenaphthene used in the present invention, those obtained by these methods can be used.

パーヒドロアセナフテンはト・ランス体又はシス体の何
れも用いることができるが、異性化反応経路、活性化エ
ネルギー等の違いから、より高い1゜3−ジメチルアダ
マンタン収率を得るためには、トランス体を用いる方が
良い。
Perhydroacenaphthene can be used in either the trans or cis form, but due to differences in isomerization reaction route, activation energy, etc., in order to obtain a higher yield of 1°3-dimethyladamantane, It is better to use the trans isomer.

本発明で用いられる触媒系は、AlCl3と1.2−ジ
クロルエタンとから加熱下(約45℃以上)で生成する
錯体であるため、均一系の反応に近くなる0通常AlC
l5は原料に対して重量比あるいはモル比で1:1以上
と多量に使用されるが、本発明の方法によれば、Al0
13 /パーヒドロアセナフテン比は重量比で1/2未
満、特に1/3〜1/6が好ましい。1.2−ジクロル
エタン/AlCl+の重量比は8/1以上、好ましくは
10/1〜20/1が良い。AlCl3が多いと反応の
制御が困難になるばかりでなく不経済であり、また特に
AlCl3 /パーヒドロアセナフテン比が1/6未満
では反応速度が掻端に遅くなり実際的でない。1.2−
ジクロルエタンは、ある程度多い方が反応の面からは有
利であるが、回収・経済性の観点から上記の値が適当で
ある。
The catalyst system used in the present invention is a complex formed from AlCl3 and 1,2-dichloroethane under heating (about 45°C or higher), so the reaction is close to a homogeneous system.
Although l5 is used in a large amount at a weight ratio or molar ratio of 1:1 or more to the raw material, according to the method of the present invention, Al0
13 /perhydroacenaphthene ratio is preferably less than 1/2, particularly 1/3 to 1/6 by weight. The weight ratio of 1,2-dichloroethane/AlCl+ is preferably 8/1 or more, preferably 10/1 to 20/1. If the amount of AlCl3 is too large, it will not only be difficult to control the reaction, but it will also be uneconomical, and if the AlCl3/perhydroacenaphthene ratio is less than 1/6, the reaction rate will be extremely slow, making it impractical. 1.2-
A certain amount of dichloroethane is advantageous from the viewpoint of the reaction, but the above value is appropriate from the viewpoint of recovery and economy.

反応温度は45〜70℃、特に50〜60℃が好ましい
The reaction temperature is preferably 45 to 70°C, particularly 50 to 60°C.

45℃未満では反応速度が極めて遅く、また、60℃を
超えると反応速度は大きくなるが、反応の制御が困難に
なり、副生成物が増加するため好ましくない。反応時間
は、AlC1,/パーヒドロアセナフテン比にもよるが
、1〜10時間で行われる。例えば、AlCl3 /パ
ーヒドロアセナフテン比が1/4の場合、5〜6時間が
適当である。反応容器の雰囲気は、窒素等の不活性気体
あるいは空気の何れでも良い。
If the temperature is lower than 45°C, the reaction rate is extremely slow, and if the temperature exceeds 60°C, the reaction rate increases, but this is not preferable because it becomes difficult to control the reaction and the amount of by-products increases. The reaction time is 1 to 10 hours, depending on the AlCl,/perhydroacenaphthene ratio. For example, when the AlCl3/perhydroacenaphthene ratio is 1/4, 5 to 6 hours is appropriate. The atmosphere in the reaction vessel may be either an inert gas such as nitrogen or air.

本発明方法では適当な反応条件と触媒量を選択すること
により、高い選択率で1.3−ジメチルアダマンタンが
生成するため、得られる生成物の分布が比較的単純であ
り、目的物である1、3−ジメチルアダマンタンを減圧
蒸留により、容易かつ高純度に分離することができる。
In the method of the present invention, 1,3-dimethyladamantane is produced with high selectivity by selecting appropriate reaction conditions and catalyst amount, so the distribution of the obtained product is relatively simple, and the desired product 1 , 3-dimethyladamantane can be easily and highly purified by distillation under reduced pressure.

(実施例) 実施例1 無水塩化アルミニウム5gを10gの1,2−ジクロル
エタン中で粉砕・混合したものと、12.5gの1.2
−ジクロルエタンを冷却管、攪拌機、温度計を装着した
300−の4つロフラスコに入れて混合し、次に、フラ
スコを冷水に浸し冷却した。これに、1,2−ジクロル
エタン27.5.で希釈したトランス体のパーヒドロア
セナフテン20gをゆっくり加えた後、予め約50℃に
加温されたオイルバス中に上記フラスコを浸漬し、反応
温度50℃±1℃で5時間攪拌しながら異性化反応を行
った。反応停止後、約200−の水中に反応液を加え、
無水塩化アルミニウムを加水分解した後、油水分離した
。この加水分解操作は、水層が中性になるまで繰り返し
行った。その後、油層の一部を採取し、ガスクロマトグ
ラフィにて生成物の分析を行った。
(Example) Example 1 5 g of anhydrous aluminum chloride was ground and mixed in 10 g of 1,2-dichloroethane, and 12.5 g of 1.2
-Dichloroethane was mixed in a 300-meter four-hole flask equipped with a condenser, stirrer, and thermometer, and then the flask was cooled by immersing it in cold water. To this, 27.5% of 1,2-dichloroethane was added. After slowly adding 20 g of trans-perhydroacenaphthene diluted in A chemical reaction was carried out. After the reaction has stopped, add the reaction solution to about 200 ml of water,
After hydrolyzing anhydrous aluminum chloride, oil and water were separated. This hydrolysis operation was repeated until the aqueous layer became neutral. After that, a part of the oil layer was collected and the products were analyzed by gas chromatography.

その結果、1,3−ジメチルアダマンタンの収率は79
%であり、原料のパーヒドロアセナフテンよりも高沸点
の重質物の生成は殆ど見られなかった。
As a result, the yield of 1,3-dimethyladamantane was 79
%, and the production of heavy substances with a boiling point higher than that of perhydroacenaphthene, the raw material, was hardly observed.

この反応液から、目的生成物を分離、回収するために、
20〜30mmHgで1.2−ジクロルエタンを蒸発回
収した後、102 mmHg、126〜128℃で減圧
蒸留したところ、純度99%以上の1,3−ジメチルア
ダマンタンが得られた。
In order to separate and recover the target product from this reaction solution,
After evaporating and recovering 1,2-dichloroethane at 20 to 30 mmHg, vacuum distillation was performed at 102 mmHg and 126 to 128°C to obtain 1,3-dimethyladamantane with a purity of 99% or more.

比較例1 原料のパーヒドロアセナフテンとしてシス体を用いた以
外は、実施例1と同様にしてパーヒドロアセナフテンの
異性化反応を行った。反応停止後、実施例1と同様にし
て触媒を分解した後、生成物の分析を行ったところ、1
.3−ジメチルアダマンタンの収率は73%であった。
Comparative Example 1 The isomerization reaction of perhydroacenaphthene was carried out in the same manner as in Example 1 except that the cis form was used as the raw material perhydroacenaphthene. After the reaction was stopped, the catalyst was decomposed in the same manner as in Example 1, and the product was analyzed.
.. The yield of 3-dimethyladamantane was 73%.

比較例2 原料のパーヒドロアセナフテンとして、アセナフテンの
水素化をパラジウム系触媒で行って得た4種の異性体の
平均的混合物を用いた以外は、実施例1と同様にして異
性化反応を行った。触媒を加水分解した後、生成物の分
析を行ったところ、1.3−ジメチルアダマンタンの収
率は75%であった。
Comparative Example 2 An isomerization reaction was carried out in the same manner as in Example 1, except that an average mixture of four isomers obtained by hydrogenating acenaphthene with a palladium catalyst was used as the raw material perhydroacenaphthene. went. After hydrolyzing the catalyst, the product was analyzed and the yield of 1,3-dimethyladamantane was 75%.

(発明の効果) 1.3−ジメチルアダマンタンは、従来工業的にを利に
製造する方法が無かったため、非常に高価でその誘導体
の開発のネックになっていたが、本発明によれば、工業
的に容易に且つ比較的安価に、7f、に度の1.3−ジ
メチルアダマンタンを提供できる。これにより、高級な
機能性高分子、医薬品、触媒をはじめ各種ファインケミ
カルの原料として、1,3〜ジメチルアダマンタンを応
用することができ、その意義は大きい。
(Effects of the Invention) Conventionally, 1,3-dimethyladamantane was extremely expensive and a bottleneck in the development of its derivatives because there was no industrially advantageous manufacturing method. 7f, 1,3-dimethyladamantane can be provided easily and relatively inexpensively. This makes it possible to apply 1,3-dimethyladamantane as a raw material for various fine chemicals including high-grade functional polymers, pharmaceuticals, and catalysts, which is of great significance.

Claims (1)

【特許請求の範囲】[Claims] (1)パーヒドロアセナフテンの異性体のうち、トラン
ス体を原料とし、触媒反応系として無水塩化アルミニウ
ムと1,2−ジクロルエタンを用いることを特徴とする
1,3−ジメチルアダマンタンの製造方法。
(1) A method for producing 1,3-dimethyladamantane, which is characterized in that among the isomers of perhydroacenaphthene, the trans isomer is used as a raw material, and anhydrous aluminum chloride and 1,2-dichloroethane are used as a catalytic reaction system.
JP62128054A 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane Granted JPS63295519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62128054A JPS63295519A (en) 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62128054A JPS63295519A (en) 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane

Publications (2)

Publication Number Publication Date
JPS63295519A true JPS63295519A (en) 1988-12-01
JPH0437052B2 JPH0437052B2 (en) 1992-06-18

Family

ID=14975346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62128054A Granted JPS63295519A (en) 1987-05-27 1987-05-27 Production of 1,3-dimethyladamantane

Country Status (1)

Country Link
JP (1) JPS63295519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528309A (en) * 2006-03-01 2009-08-06 メルツ・ファルマ・ゲーエムベーハー・ウント・コー・カーゲーアーアー Process for producing 1-formamide-3,5-dimethyladamantane
WO2012063809A1 (en) * 2010-11-12 2012-05-18 三菱瓦斯化学株式会社 Method for producing 1,3-dimethyladamantane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528309A (en) * 2006-03-01 2009-08-06 メルツ・ファルマ・ゲーエムベーハー・ウント・コー・カーゲーアーアー Process for producing 1-formamide-3,5-dimethyladamantane
WO2012063809A1 (en) * 2010-11-12 2012-05-18 三菱瓦斯化学株式会社 Method for producing 1,3-dimethyladamantane
US9085503B2 (en) 2010-11-12 2015-07-21 Mitsubishi Gas Chemical Company, Inc. Method for producing 1,3-dimethyladamantane
EP2639214A4 (en) * 2010-11-12 2015-09-16 Mitsubishi Gas Chemical Co Method for producing 1,3-dimethyladamantane

Also Published As

Publication number Publication date
JPH0437052B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
EP0589490B1 (en) Dimethylnaphthalene isomerization
Olah et al. Chemistry in superacids. 7. Superacid-catalyzed isomerization of endo-to exo-trimethylenenorbornane (tetrahydrodicyclopentadiene) and to adamantane
US4288646A (en) Regioselective preparation of β-isopropylnaphthalene over superacidic solid or supported perfluorinated sulfonic acid catalysts
JPS63295519A (en) Production of 1,3-dimethyladamantane
US5012024A (en) Preparation of a dimethylnaphthalene
US3347945A (en) Hydrodimerization of benzene
JP2001354598A (en) Method of producing adamantane
US4962260A (en) Preparation of a dimethylnaphthalene
JP2511573B2 (en) Method for producing 1-ethyl adamantane
US20060111596A1 (en) Process for the preparation of adamantanes
JPH01502825A (en) Liquid phase isomerization of iodinated aromatic compounds
US5118892A (en) Preparation of a dimethylnaphthalene
JP2683088B2 (en) Method for producing alkyl adamantane
JPH0413332B2 (en)
JPH024721A (en) Production of alkyladamantanes
JP2001151705A (en) Method for producing adamantane
JP2569155B2 (en) Method for producing alkyl adamantane
JPH0443890B2 (en)
JP2982845B2 (en) Method for producing dimethylnaphthalene
US3428698A (en) Production of 6,7-dimethyltetralin and 2,3-dimethylnaphthalene
US5550284A (en) Production method for alkoxynaphthalenecarboxylic acid
JP4170697B2 (en) Method for producing high purity adamantane
JP3019707B2 (en) Method for isomerizing dimethylnaphthalene
JP2982850B2 (en) Method for isomerizing dimethylnaphthalene
JP4170698B2 (en) Method for producing high purity adamantane