[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6328029A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS6328029A
JPS6328029A JP17124586A JP17124586A JPS6328029A JP S6328029 A JPS6328029 A JP S6328029A JP 17124586 A JP17124586 A JP 17124586A JP 17124586 A JP17124586 A JP 17124586A JP S6328029 A JPS6328029 A JP S6328029A
Authority
JP
Japan
Prior art keywords
anode lead
solid electrolytic
lead wire
electrolytic capacitor
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17124586A
Other languages
Japanese (ja)
Inventor
入蔵 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17124586A priority Critical patent/JPS6328029A/en
Publication of JPS6328029A publication Critical patent/JPS6328029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器に利用される固体電解コンデンサ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to solid electrolytic capacitors used in various electronic devices.

従来の技術 固体電解コンデンサは小型、大容量であるという特徴を
有しており、最近の電子機器の小型化の動向には非常に
適し几コンデンサであシ、最近は特にテップタイプの需
要が旺盛であり民生機器は勿論のこと自動車、コンピュ
ータへと需要は拡大しつつある。
Conventional technology Solid electrolytic capacitors are characterized by their small size and large capacity, making them extremely suitable for the recent trend toward miniaturization of electronic devices.Recently, demand for tip type capacitors is particularly strong. Demand is expanding not only for consumer electronics, but also for automobiles and computers.

これまでの固体電解コンデンサ用多孔質焼結体は第4図
に示すように外周表面のどの部分においても同じ表面状
態を有する多孔質焼結体であった。
As shown in FIG. 4, conventional porous sintered bodies for solid electrolytic capacitors have the same surface condition at all parts of the outer peripheral surface.

即ち弁作用を有する微細なタンタル金属粉末にバインダ
ーとしてカンファーを混合し、此れを一定形状の金型に
いれ、予め用意した一定線径のタンタルなどの陽極導出
線1の一部が埋設するようプレス成形して多孔質成形体
2を得る。
That is, camphor is mixed as a binder with fine tantalum metal powder having a valve action, and this is put into a mold of a certain shape, so that a part of the anode lead wire 1 prepared in advance, such as tantalum or the like, with a certain wire diameter is embedded. A porous molded body 2 is obtained by press molding.

その後、多孔質成形体2 f 10’−10−6Tor
rの真空中で1400−2000°Cの焼結をおこない
コンデンサ用の多孔質焼結体としていた。これに誘電体
性の酸化被膜を形成させ、更に、この上面に硝酸マンガ
ン溶液の熱分解反応により二酸化マンガンなどの電解質
層を形成させ、順次、カーボン層、陰極層などを形成さ
せてコンデンサ素子とし、この陽極導出線1に外部陽極
端子を接続し、更には外部陰極端子を接続し、その後樹
脂外装をし固体電解コンデンサを得ていた。
After that, the porous molded body 2 f 10'-10-6 Tor
A porous sintered body for a capacitor was obtained by sintering at 1400-2000°C in a vacuum of 30°C. A dielectric oxide film is formed on this, and an electrolyte layer such as manganese dioxide is formed on the top surface by a thermal decomposition reaction of a manganese nitrate solution, and a carbon layer, a cathode layer, etc. are sequentially formed to form a capacitor element. An external anode terminal and an external cathode terminal were connected to this anode lead wire 1, and then the capacitor was covered with resin to obtain a solid electrolytic capacitor.

発明が解決しようとする問題点 しかしながら、このような従来の構成の固体電解コンデ
ンサ用焼結体では、二酸化マンガンが陽極導出線1の引
だし根本部まで這い上がり、後の製造工程での処理時の
機械的振動、及び組立時のコンデンサ素子の陽極導出線
1を陽極外部端子に接続するときの溶接時の振動、曲り
などの物理的。
Problems to be Solved by the Invention However, in the conventional sintered body for solid electrolytic capacitors, manganese dioxide creeps up to the base of the anode lead wire 1 and is removed during processing in the subsequent manufacturing process. mechanical vibrations, and physical vibrations and bending during welding when connecting the anode lead wire 1 of the capacitor element to the anode external terminal during assembly.

機械的ストレスが加わるため、陽極導出線1の引だし根
本部にストレスが集中して誘電体酸化皮膜を破壊させ存
在する二酸化マンガンとの接触が起るためコンデンサの
漏れ電流を増大させるなどの欠点を有していた。又、完
成され九コンデンサとしても高温度環境下に晒されると
洩れ電流が増大する欠点をも有していた。
As mechanical stress is applied, stress concentrates on the root of the anode lead wire 1, which destroys the dielectric oxide film and causes contact with existing manganese dioxide, resulting in increased leakage current of the capacitor. It had Furthermore, even when the completed capacitor is used, it has the disadvantage that leakage current increases when exposed to a high temperature environment.

問題点を解決するための手段 この欠点を解決するために本発明は多孔質焼結体の陽極
導出線引だし面の上面をレーザ光線により溶融して内部
より表面に繋がる空孔部を無くするように粒子間の溶融
を行った溶融部を設ける構成としたものである。
Means for Solving the Problems In order to solve this drawback, the present invention melts the upper surface of the anode lead wire drawing surface of the porous sintered body with a laser beam to eliminate the voids that connect from the inside to the surface. The structure is such that a melting section is provided in which particles are melted as shown in FIG.

作用 この構成により二酸化マンガンが陽極導出線の引だし根
本部まで這いあがらず、また表面の粒子間の結合が強く
なるため多孔質体と陽極導出線の接続強度が高くなるの
で振動、曲りなどの物理的。
Effect: This structure prevents manganese dioxide from creeping up to the root of the anode lead wire, and also strengthens the bonds between the particles on the surface, increasing the connection strength between the porous body and the anode lead wire, thereby preventing vibrations, bending, etc. Physical.

機械的ストレスが加わって根本部の誘電体酸化被膜に欠
陥が生じてもそこに電解質である二酸化マンガンが存在
しないので洩れ電流には影響しなくなり又、根本部に少
々のストレスが加わってもコンデンサの洩れ電流が増大
しない。
Even if a defect occurs in the dielectric oxide film at the base due to mechanical stress, there is no manganese dioxide, which is an electrolyte, so it will not affect the leakage current, and even if a small amount of stress is applied to the base, the capacitor will fail. leakage current does not increase.

実施例 第1図、第2図は本発明の一実施例であり、弁作用を有
する微細なタンタル金属粉末にバインダーとしてカンフ
ァーを混合し、これを一定形状の金型にいれ、予め用意
した陽極導出線3の一部が粉末のほうに埋設するようプ
レス成形して多孔質成形体を得る。
Embodiment Figures 1 and 2 show an embodiment of the present invention, in which camphor is mixed as a binder with fine tantalum metal powder having a valve action, this is put into a mold of a certain shape, and the anode prepared in advance is mixed with camphor as a binder. Press molding is performed so that a part of the lead wire 3 is buried in the powder to obtain a porous molded body.

その後、多孔質成形体を10 −10  TOrrの真
空中で1400−2000”Cの焼結をおこないコンデ
ンサ用の多孔質焼結体4とする。陽極導出線3が電極全
体を支えるので金属粉末部と陽極導出線とは強固に接続
されなければならない。
Thereafter, the porous molded body is sintered at 1400-2000"C in a vacuum of 10 -10 Torr to form a porous sintered body 4 for a capacitor. Since the anode lead wire 3 supports the entire electrode, the metal powder part and the anode lead-out wire must be firmly connected.

そのために陽極導出線3を引だしている根本部を中心に
して多孔質焼結体4の上・面に炭酸ガスレーザーを照射
することによって表面部の各粒子間の隙間が無くなるよ
うに溶融部5を形成する。
For this purpose, a carbon dioxide laser is irradiated onto the top and surface of the porous sintered body 4, centering on the root part from which the anode lead wire 3 is drawn out, so that the molten part is removed so that there are no gaps between the particles on the surface. form 5.

溶融する領域は陽極導出線3の引だし面の表面全域でも
よいが陽極導出線3を中心にしてその周囲が陽極導出線
30半径の3倍半径以上の領域に溶融部6を形成すれば
二酸化マンガンの這い上がりを十分防止できると共に多
孔質焼結体4と陽極導出線3との強度を確保することが
できる。
The area to be melted may be the entire surface of the drawing surface of the anode lead wire 3, but if the molten part 6 is formed in an area centered around the anode lead wire 3 and whose circumference is three times the radius or more of the radius of the anode lead wire 30, carbon dioxide will be generated. It is possible to sufficiently prevent manganese from creeping up, and to ensure the strength of the porous sintered body 4 and the anode lead wire 3.

すなわち、実験結果から弁作用金属がタンタルの場合、
陽極導出線3を中心にしてその周囲が陽極導出線3の半
径の3倍半径以上あればよいことを究明した。陽極導出
線3は埋設するように設けなくともよく、陽極導出線3
の引だし面に予めレーザー照射により溶融部6を形成し
ておき、その後陽極導出線3を溶接してもよい。第3図
a、bにそれを示す。
In other words, from the experimental results, if the valve metal is tantalum,
It has been found that the radius around the anode lead-out line 3 should be at least three times the radius of the anode lead-out line 3. The anode lead wire 3 does not have to be buried, and the anode lead wire 3
The fused portion 6 may be formed in advance on the drawing surface by laser irradiation, and then the anode lead wire 3 may be welded. This is shown in Figures 3a and 3b.

このような多孔質焼結体4には誘電体性の酸化皮膜6を
形成し、その上に二酸化マンガンなどの電解質層7を形
成し、その上にカーボン層8.陰極層9を形成してコン
デンサ素子とし、上記陽極導出線3にL字状の外部陽極
端子1oを溶接などで接続し、陰極層9に外部陰極端子
11を半田12などで接続し、上記外部陽極端子1o、
外部陰極端子11の一部を表出させるように全体を樹脂
外装置3で被って固体電解コンデンサとしている。
A dielectric oxide film 6 is formed on such a porous sintered body 4, an electrolyte layer 7 such as manganese dioxide is formed thereon, and a carbon layer 8 is formed thereon. A cathode layer 9 is formed to form a capacitor element, an L-shaped external anode terminal 1o is connected to the anode lead wire 3 by welding or the like, an external cathode terminal 11 is connected to the cathode layer 9 by solder 12, etc. Anode terminal 1o,
The entire structure is covered with a resin outer device 3 so that a part of the external cathode terminal 11 is exposed, thereby forming a solid electrolytic capacitor.

発明の効果 以上のような本発明の多孔質焼結体を陽極に用いること
により次のような効果が得られる。
Effects of the Invention By using the porous sintered body of the present invention as described above for an anode, the following effects can be obtained.

1)コンデンサの電気的特性である洩れ電流の非常に小
さな安定な固体電解コンデンサを得ることができる。
1) A stable solid electrolytic capacitor with extremely small leakage current, which is an electrical characteristic of a capacitor, can be obtained.

2)製造歩留が大巾に向上する。2) Manufacturing yield will be greatly improved.

3)熱衝撃に優れた耐熱性の固体電解コンデンサが得ら
れる。
3) A heat-resistant solid electrolytic capacitor with excellent thermal shock resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電解コンデンサの一実施例を示す
断面図、第2図は同コンデンサに用いる多孔質焼結体の
斜視図、第3図a、bは他の実施例における多孔質焼結
体と陽極導出線の接続工程を示す斜視図、第4図は従来
の固体電解コンデンサの多孔質焼結体の斜視図である。 3・・・・・・陽極導出線、4・・・・・・多孔質焼結
体、6・・・・・・溶融部、6・・・・・・誘電体性の
酸化皮膜、7・・・・・電解質層、8・・・・・・カー
ボン層、9・・・・・・陰極層、10・・・・・・外部
陽極端子、11・・・・・・外部陰極端子、13・・・
・・・樹脂外装。 第1図
Figure 1 is a sectional view showing one embodiment of the solid electrolytic capacitor of the present invention, Figure 2 is a perspective view of a porous sintered body used in the same capacitor, and Figures 3a and b are porous sintered bodies in other embodiments. FIG. 4 is a perspective view showing a process of connecting the sintered body and the anode lead wire, and FIG. 4 is a perspective view of a porous sintered body of a conventional solid electrolytic capacitor. 3... Anode lead wire, 4... Porous sintered body, 6... Melt part, 6... Dielectric oxide film, 7... ... Electrolyte layer, 8 ... Carbon layer, 9 ... Cathode layer, 10 ... External anode terminal, 11 ... External cathode terminal, 13 ...
...Resin exterior. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)弁作用を有する金属粉末の成形焼結した多孔質焼
体の陽極導出線の引だし面である上面をレーザ光線によ
り溶融して、内部より表面に繋がる空孔部を無くするよ
うに粒子間の溶融を行った溶融部を設け、この孔質焼結
体に誘電体性酸化皮膜、電解質層、カーボン層、陰極層
を設け、上記陽極導出線に外部陽極端子を、陰極層に外
部陰極端子を接続し、全体を樹脂外装で被ってなる固体
電解コンデンサ。
(1) The upper surface of the porous sintered body made of molded and sintered metal powder with valve action is melted with a laser beam, which is the leading surface of the anode lead wire, to eliminate the voids that connect from the inside to the surface. A fusion zone in which particles are fused is provided, a dielectric oxide film, an electrolyte layer, a carbon layer, and a cathode layer are provided on this porous sintered body. A solid electrolytic capacitor whose cathode terminals are connected and the entire body is covered with a resin exterior.
(2)陽極導出線を中心にしてその周囲が陽極導出線の
半径の3倍半径以上の領域に溶融部を形成した特許請求
の範囲第1項記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the molten portion is formed in a region centered around the anode lead-out wire and whose circumference is at least three times the radius of the anode lead-out wire.
(3)陽極導出線引だし面に予めレーザー照射により形
成した溶融部に陽極導出線を溶接した特許請求の範囲第
1項記載の固体電解コンデンサ。
(3) The solid electrolytic capacitor according to claim 1, wherein the anode lead wire is welded to a fused portion formed in advance by laser irradiation on the anode lead wire drawing surface.
JP17124586A 1986-07-21 1986-07-21 Solid electrolytic capacitor Pending JPS6328029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17124586A JPS6328029A (en) 1986-07-21 1986-07-21 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17124586A JPS6328029A (en) 1986-07-21 1986-07-21 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS6328029A true JPS6328029A (en) 1988-02-05

Family

ID=15919736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17124586A Pending JPS6328029A (en) 1986-07-21 1986-07-21 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6328029A (en)

Similar Documents

Publication Publication Date Title
US6188566B1 (en) Solid electrolytic capacitor having a second lead with a throughhole filled with an arc-extinguishing material
US4093972A (en) Anode termination means for an electrical device component
JPS59143316A (en) Bonding of lead wire to tantalum anode
US3516150A (en) Method of manufacturing solid electrolytic capacitors
JPH06232014A (en) Chip type solid electrolytic capacitor with built-in fuse and its manufacture
US6785124B2 (en) Capacitor element for solid electrolytic capacitor, process of making the same and solid electrolytic capacitor utilizing the capacitor element
US6319292B1 (en) Method for making capacitor pellet and lead assembly
JPH04246813A (en) Solid electrolytic capacitor containing fuse
EP0078001B1 (en) Electrolytic capacitor and a process for producing the same
JP3084895B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6328029A (en) Solid electrolytic capacitor
US5818687A (en) Method of producing solid electrolytic capacitor element
JPH0499308A (en) Solid electrolytic capacitor
JPH01268014A (en) Manufacture of tantalum solid electrolytic capacitor
JP4090021B2 (en) Capacitor element in solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element
KR102527714B1 (en) Tantalum capacitor and method of fabricating the same
JP3266205B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
US11830681B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH09213570A (en) Chip type tantalum solid state electrolytic capacitor
JPS6293920A (en) Manufacture of solid electrolytic capacitor
JP2850819B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JPS6344468B2 (en)
JPH01259520A (en) Mold chip tantalum solid electrolytic capacitor