[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63285715A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS63285715A
JPS63285715A JP12081187A JP12081187A JPS63285715A JP S63285715 A JPS63285715 A JP S63285715A JP 12081187 A JP12081187 A JP 12081187A JP 12081187 A JP12081187 A JP 12081187A JP S63285715 A JPS63285715 A JP S63285715A
Authority
JP
Japan
Prior art keywords
thin films
magnetic
magnetic head
thickness
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12081187A
Other languages
Japanese (ja)
Inventor
Takashi Yanai
柳井 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12081187A priority Critical patent/JPS63285715A/en
Publication of JPS63285715A publication Critical patent/JPS63285715A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/1875"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers
    • G11B5/1877"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film
    • G11B5/1878"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film disposed immediately adjacent to the transducing gap, e.g. "Metal-In-Gap" structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magnetic head superior in wear resisting property, by forming a ferromagnetic metallic thin film on the joining face of each of paired magnetic core half bodies made of a ferromagnetic oxide with an Fe-Si thin film composed mainly of Fe in between, and constituting an operating gap by butting the thin films against each other. CONSTITUTION:This magnetic head is constituted of magnetic core half bodies 3a and 3b made of an Mn-Zn ferrite, ferromagnetic metallic thin films 2a and 2b made of sendust, and Fe-Si thin films 6a and 6b for easing distortion which are formed between the half bodies 3a and 3b and thin films 2a and 2b, respectively. The thin films 6a and 6b have a chemical composition of 96% Fe and 4% Si and a film thickness of 1mum. Since the Fe is a ferromagnetic substance, the magnetic reluctance of the core does not increase even if the film thickness is increased and, therefore, the thickness can be increased sufficiently so as to eliminate distortion completely. In addition, since the material is high in hardness, the thin films are superior in wear resisting property. In connection with the thin films 6a and 6b, moreover, it is desirable to set the Si content within a range of 2-6% and film thickness within a range of 2,000Angstrom -5mum, because if the thickness <2,000Angstrom distortion cannot be eased sufficiently and if the thickness if >=5mum the magnetic flux density in the vicinity of the gap 1 drops.

Description

【発明の詳細な説明】 0)韮粟上の利用分野 本発明は磁気ヘッドに関するものでるり、特に高抗磁力
のメタルテープに対応するために磁気コアのギャップ近
傍部に高飽和磁束@藏の強磁性金属薄膜を配置した所謂
複合型の磁気ヘッドに関するものでめる。
DETAILED DESCRIPTION OF THE INVENTION 0) Fields of application of diagonals The present invention relates to magnetic heads, and in particular, in order to cope with metal tapes with high coercive force, high saturation magnetic flux is applied to the vicinity of the gap of the magnetic core. This article concerns a so-called composite magnetic head in which a ferromagnetic metal thin film is arranged.

(ロ)従来の妖術 近年、VTR(ビデオテープレコーダ)、DAT(デジ
タルオーディオテープレコーダ)等の磁気記録再生装置
においては、記録信号の高密度化が進められており、こ
の高ffi[記録に対応して高残留磁束密度、高抗磁力
のメタルテープが使用されるようになりて−る。そして
、この高抗磁力のメタルテープに対応する磁気ヘッドと
しては、通常磁気ヘッドとして要求される磁気コアの高
周波特性や耐摩耗性の他に、磁気コアのギャップ近傍部
の飽和磁束密度が大きいことが要求される。
(b) Conventional witchcraft In recent years, magnetic recording and reproducing devices such as VTRs (video tape recorders) and DATs (digital audio tape recorders) have been increasing the density of recording signals. As a result, metal tapes with high residual magnetic flux density and high coercive force have come into use. In addition to the high-frequency characteristics and wear resistance of the magnetic core that are normally required for a magnetic head, a magnetic head compatible with this high coercive force metal tape must have a high saturation magnetic flux density near the gap of the magnetic core. is required.

上述の要求を満たすために第10図に示すように作動ギ
ャップIllの近傍部にセンダスト、アモルファス金属
等の強磁性金属薄膜(2a)(2b)全形成し、他の部
分の磁気コア半体(5a)(3b)’1Mn−Zn系フ
ェライト等の強磁性金属酸化物で形成した複合型の磁気
ヘッドが提案されている。<4)(4)fl前記一対の
磁気コア半体(3a)(3b)全接合するガラス、(5
)は巻m溝である。
In order to meet the above requirements, as shown in FIG. 10, ferromagnetic metal thin films (2a) (2b) such as sendust or amorphous metal are entirely formed in the vicinity of the working gap Ill, and the magnetic core half (2b) is formed in the other parts. 5a)(3b)' A composite magnetic head formed of a ferromagnetic metal oxide such as 1Mn-Zn ferrite has been proposed. <4) (4) fl The pair of magnetic core halves (3a) (3b) fully bonded glass, (5
) is the winding m groove.

上述のような磁気ヘッドでは、強磁性金属薄膜(2a)
(2b)は磁気コア半体(3a ) (3k))f:形
成する基板上にスパッタリング上行うことにより被着形
成される。この際、被着粒子は大量の熱エネルギー、運
動エネルギーを持った状態で基板に衝突し、数100℃
の温度から室温まで低下する。そして、この時、基板と
強磁性金属薄膜との熱膨張係数との差によυ、両者の間
に歪が発生する。、そして、00走により基板の巻線溝
加工時、基板のガラスミM時、コアブロックの切断時等
に〜前記基板に゛ヒビが発生したり、前記強磁性金属#
膜が剥離したりする。また1例え前述のヒビの発生や薄
膜の剥離tgえることが出来ても、前述の虫により磁気
コア半体(3a)(3b)及び強磁性金属薄膜(2a)
(2b)の電磁変換特性が劣化する。
In the above magnetic head, the ferromagnetic metal thin film (2a)
(2b) is formed by depositing the magnetic core halves (3a) (3k))f on the substrate by sputtering. At this time, the adhered particles collide with the substrate with a large amount of thermal energy and kinetic energy, and the temperature rises to several hundred degrees Celsius.
temperature to room temperature. At this time, strain occurs between the substrate and the ferromagnetic metal thin film due to the difference in thermal expansion coefficient υ. , 00 runs may cause cracks in the substrate when processing the winding grooves on the substrate, when glass-milling the substrate, when cutting the core block, etc., or when the ferromagnetic metal #
The film may peel off. Furthermore, even if the above-mentioned cracks occur or the thin film peels off, the magnetic core halves (3a) (3b) and the ferromagnetic metal thin film (2a) are damaged by the above-mentioned insects.
The electromagnetic conversion characteristics of (2b) deteriorate.

このような欠点ft解消したものとしては例えば特開t
@61−172203号公報(011B5/127)に
開示されているようにフェライト基板上に5102膜’
1300A被着し、その上にarymts。
For example, JP-A-T which eliminates such drawbacks
5102 film on a ferrite substrate as disclosed in @61-172203 (011B5/127).
1300A deposited and arymts on top.

OA被着した後、強磁性金属薄膜を被層して、前記51
02膜及びClr1gl?歪緩和膜として用いた磁気ヘ
ッドがある。
After the OA deposition, a ferromagnetic metal thin film is coated to form the above 51
02 membrane and Clr1gl? There is a magnetic head that is used as a strain relaxation film.

しかし乍ら、上述の磁気ヘッドでは、記録再生時磁束線
非磁性材料である810211%及びOr膜を通シ、十
分な歪緩和を得るためにこの薄膜の膜厚を大きくすると
迅磁率が低下するとiう欠点があった。
However, in the above-mentioned magnetic head, magnetic flux lines during recording and reproduction pass through the 810211% and Or films, which are non-magnetic materials, and if the thickness of this thin film is increased in order to obtain sufficient strain relaxation, the magnetic flux decreases. There were some drawbacks.

(ハ)発明が解決しようとする問題点 本発明は上記従来例の欠点に産みなされたもので1り9
、透磁率等の磁気特性を劣化させることなく、磁気コア
と強磁性金属薄膜との間゛に一生じる全全十分に緩和す
ることが出来る磁気ヘッドを提供すること全目的とする
ものである。
(c) Problems to be solved by the invention The present invention was born out of the drawbacks of the above-mentioned conventional example.
The overall object of the present invention is to provide a magnetic head that can sufficiently relax the effects that occur between a magnetic core and a ferromagnetic metal thin film without deteriorating magnetic properties such as magnetic permeability.

(ホ)作 用 上記構成に依れば、F e −B i系薄膜はその主成
分であるreが強磁性金属材料であるため膜厚を大きく
しても透磁率が劣化することはなく、十分な歪緩和を行
うことが出来、しかもSlによシ前記F・−81系薄g
!は硬度が高くな)、十分な耐摩耗性を得ることが出来
る。
(E) Effect According to the above configuration, since re, which is the main component of the Fe-Bi based thin film, is a ferromagnetic metal material, the magnetic permeability does not deteriorate even if the film thickness is increased. Sufficient strain relaxation can be performed, and the above-mentioned F-81 series thin g
! (hardness is high), sufficient wear resistance can be obtained.

(へ)実施例 以下図面を参照しつつ本発明の一実施例を詳細に説明す
る。
(F) Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本実施例の磁気ヘッドの外観を示す斜視図、第
2図はそのテープ摺接1fit示す図であり、第10図
と同一部分には同一符号を付し、その説明は第10図の
説明を援用する。
FIG. 1 is a perspective view showing the external appearance of the magnetic head of this embodiment, and FIG. 2 is a view showing one fit of the tape sliding contact. The same parts as in FIG. Reference is made to the illustrations.

この磁気ヘッドはMn−Zn系フェライトよりなる磁気
コア半体(3a)(3b)とセンダストよフなる強磁性
金属薄膜(2a)(2b)との間に歪緩和用のFe−1
31系薄膜(6a)(6b)が介在されている。前記F
e−Si系薄膜(6a)(6b)t!F’eが96%、
Slが4%の組成で、その膜厚は1μmである。
This magnetic head has Fe-1 for strain relaxation between magnetic core halves (3a) (3b) made of Mn-Zn ferrite and ferromagnetic metal thin films (2a) (2b) made of Sendust.
31 series thin films (6a) (6b) are interposed. Said F
e-Si thin film (6a) (6b)t! F'e is 96%,
The composition is 4% Sl, and the film thickness is 1 μm.

次に、この磁気ヘッドの製造方法につめて説明する。Next, a method of manufacturing this magnetic head will be explained in detail.

先ず、所望の寸法・形状に切シ出されたMn−Znフェ
ライトよりなる2枚の基板(7a)(7b)t−用意し
、該基板(7a)(7b)の上面全鏡面研磨する。そし
て、この基板(7a)(7b)の上面に第5図に示すよ
うにFe−81系薄膜(Pe96%、814%)(6a
)(6b)t−1μmスパッタリング、真空蒸着、イオ
ングレーティング等によシ成膜する。
First, two substrates (7a) (7b) made of Mn--Zn ferrite cut into desired dimensions and shapes are prepared, and the upper surfaces of the substrates (7a) (7b) are entirely mirror-polished. Then, as shown in FIG. 5, a Fe-81 thin film (Pe 96%, 814%) (6a
) (6b) A film is formed by t-1 μm sputtering, vacuum evaporation, ion grating, etc.

次に、この基板(7a)(7b)の上面に第4図に示す
ようにセンダストよりなる強磁性金属薄膜(2a)(2
b)?5〜20μs程度成映し、更にその上面に!91
02、Aj’203等のギャップ形成用の非磁性薄膜(
図示せず)t02〜0.5μm根度被着する。
Next, as shown in FIG. 4, ferromagnetic metal thin films (2a) (2
b)? The image is projected for about 5 to 20 μs, and then on the top! 91
Non-magnetic thin film for gap formation such as 02, Aj'203 (
(not shown) A root thickness of t02 to 0.5 μm is deposited.

次に、この基@(7a)(7b)の上面に第5図に示す
ようにトラック幅規制溝(81(812形成し、更にそ
のうち一方の基板(7b)には前記トラック幅規制溝(
8)と直交するようにガラス棒挿入溝(9)(9)及び
巻線溝(lalt−形成する。
Next, track width regulating grooves (81 (812) are formed on the upper surfaces of these substrates (7a) and (7b) as shown in FIG.
Glass rod insertion grooves (9) (9) and winding grooves (alt-) are formed so as to be orthogonal to 8).

そして次に、第6図に示すようにこの2枚の基板(7a
)(7b)の上面同士を衝き合わせ、ガラス棒挿入溝(
9H9)にガラス棒(ill(1112挿入し、真空雰
囲気中成iはN2ガス、Arガス等の不活性ガス中で圧
力(Et’)CF)’に加えながら熱処理を行うことに
よフ上記2枚の基板(7a)(7b)t’ガラス接合し
てコアブロック住邊ヲ形成する。
Next, as shown in FIG.
) (7b) and insert the glass rod insertion groove (
9H9) is inserted into a glass rod (1112), and heat-treated in a vacuum atmosphere while applying pressure (Et')CF)' in an inert gas such as N2 gas or Ar gas. The two substrates (7a) and (7b) are bonded with glass to form a core block.

その後、前記コアブロックUシを第7図に示すように一
点鎖線(13に沿って不安な部分を切断、研削等によシ
除去した後、一点鎖線Iに沿ってテープ摺接面をR付研
磨し、更に一点鎖線(151に沿ってスライシングを行
うことによシ第1図に示す本実施例のへッドコアテッグ
を得る。
After that, as shown in FIG. 7, the unstable portions of the core block U are removed by cutting, grinding, etc. along the dashed-dotted line (13), and the tape sliding contact surface is rounded along the dashed-dotted line I. By polishing and slicing along the dashed line (151), the head coreg of this embodiment shown in FIG. 1 is obtained.

数115 x 10−’/deP とほとんど等しく、
これはM n −Z nフェライトよりなる基板(7a
)(7b)の熱膨張係数110〜120X10″′″/
dePの範囲内にあり、Fe−Si系薄膜(6a)(6
1))と基板(7a)(7b)との間には熱膨張係数の
違いによる企は生じない。また、Fe−8L系薄膜(6
a)(6b)はセンダストの主成分であるFe′f!:
多量に含んでいるので、センダストよりなる強磁性金属
薄膜(2a)(2b)との接着性も良い。更に、前記F
 e −S i系薄膜(6a)(6b)は主成分のFe
が強磁性金属材料であるので、その膜厚を大きくしても
コアの磁気抵抗は増加せず、膜厚を十分大きく出来、走
を完全に除去出来る。また、Fe−81系薄膜(6a)
(6b)は81によシ硬度が高くなり耐摩耗性に優れて
いる。
Almost equal to the number 115 x 10-'/deP,
This is a substrate (7a) made of Mn-Zn ferrite.
) (7b) thermal expansion coefficient 110-120X10''''/
deP, Fe-Si thin film (6a) (6
1)) and the substrates (7a) (7b), there is no problem due to the difference in coefficient of thermal expansion. In addition, Fe-8L thin film (6
a) (6b) is Fe′f! which is the main component of Sendust. :
Since it contains a large amount, it has good adhesion to the ferromagnetic metal thin films (2a) and (2b) made of sendust. Furthermore, the F
The e-Si thin films (6a) (6b) have Fe as the main component.
Since it is a ferromagnetic metal material, the magnetic resistance of the core does not increase even if the film thickness is increased, and the film thickness can be made sufficiently large to completely eliminate running. In addition, Fe-81 thin film (6a)
(6b) has a higher hardness than 81 and has excellent wear resistance.

尚、前記Fe−81系薄膜(6a)(6bHIS1の含
有量の2〜6%の範囲内にあるのが好ましく、それより
も多くなると透磁率がイδ化し、ま九それよシも少くな
ると十分な耐摩耗性が得られない。
The content of the Fe-81 thin film (6a) (6bHIS1) is preferably within the range of 2 to 6%, and if the content is higher than that, the magnetic permeability will become low, and even less. Sufficient wear resistance cannot be obtained.

また、前記Pa−Si糸薄膜(6a)(6b)f120
00 A未満でに歪の嫉和が十分でな(、また、5μm
以上になるとギャップ(11近&!都の磁束また擬似ギ
ャップを防止するために磁気コア^と強磁性金属薄膜と
の境界線がギャップに対して50〜60傾斜している磁
気ヘッドが提案されているが、このヘッドにおいても第
8図に示すように磁気コア半体(16a)(16b)と
強磁性金属薄膜(17a)(17b)との間にFe−8
1系薄膜(18a)(18b)全介在させることは可能
でおる。
In addition, the Pa-Si thread thin film (6a) (6b) f120
There is not enough distortion at less than 00 A (also, 5 μm
In order to prevent the gap (nearly 11 &!) magnetic flux and pseudo-gap, a magnetic head has been proposed in which the boundary line between the magnetic core and the ferromagnetic metal thin film is inclined by 50 to 60 degrees with respect to the gap. However, in this head as well, as shown in FIG.
It is possible to have all the type 1 thin films (18a) and (18b) interposed therein.

この磁気ヘッドの製造において、フェライトの基板(1
9の上面に形成された傾斜溝c!txo横に第9図の点
線−で示すトラックlIl#i&f’I”)規制溝を施
す際、前記基板(19a)の上面に露出しているFe−
81系薄l1l(18a)も−緒に除去することにより
、第8図に示すように作動ギャップtllの向き合わせ
而を強磁性金属薄膜(17a)(17カ)のみで形成す
ることが出来る。
In manufacturing this magnetic head, a ferrite substrate (1
Inclined groove c! formed on the top surface of 9! When forming the track lIl#i&f'I") regulating groove shown by the dotted line in FIG. 9 beside the txo, the Fe-
By removing the 81 series thin l1l (18a) at the same time, the ferromagnetic metal thin film (17a) (17 films) alone can form the facing part of the operating gap tll as shown in FIG.

尚、上述の実施例ではセンダストエυなる強磁性金属薄
膜について述べてきたが、Co−Zr−Nb系等のアモ
ルファス金属薄膜についても本発明は適用可能で同様の
効果が得られる。
In the above-described embodiments, a ferromagnetic metal thin film called Sendust E υ has been described, but the present invention can also be applied to an amorphous metal thin film such as Co--Zr--Nb, and similar effects can be obtained.

(ト)発明の効果 本発明に依れば、透磁率等の磁気t#at−劣化させず
に磁気コアと強磁性金属薄膜との間に生じるM’に除去
し、更に耐摩耗性にも潰れた磁気ヘッドを提供し得る。
(G) Effects of the Invention According to the present invention, the magnetic t#at- such as magnetic permeability can be removed to M' generated between the magnetic core and the ferromagnetic metal thin film without deteriorating, and the wear resistance can also be improved. A collapsed magnetic head can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第9図は本発明に係り、第1図は磁気ヘッド
の外M?示す斜視図、第2図は上記磁気ヘッドのテープ
摺接面金示す図、第5図、第4図、第5図、第6図、及
び第7図は上記磁気ヘッドの1番 製造方法を示す図、第8図、他の磁気ヘッドのテープ摺
接面を示す図、第9図に上記磁気ヘッドの製造方法を示
す図である。第10図は従来の磁気ヘッドの外観を示す
斜視図である。
1 to 9 relate to the present invention, and FIG. 1 shows the outside of the magnetic head. FIG. 2 is a perspective view showing the tape sliding surface of the magnetic head, and FIGS. 5, 4, 5, 6, and 7 show the first manufacturing method of the magnetic head. FIG. 8 is a diagram showing a tape sliding contact surface of another magnetic head, and FIG. 9 is a diagram showing a method of manufacturing the magnetic head. FIG. 10 is a perspective view showing the appearance of a conventional magnetic head.

Claims (1)

【特許請求の範囲】[Claims] (1)強磁性酸化物よりなる一対の磁気コア半体の接合
面にFeを主成分とするFe−Si系薄膜を介して強磁
性金属薄膜を形成し、該強磁性金属薄膜同士を働き合わ
せて作動ギャップを構成してなる磁気ヘッド。
(1) A ferromagnetic metal thin film is formed on the joint surface of a pair of magnetic core halves made of ferromagnetic oxide through an Fe-Si thin film mainly composed of Fe, and the ferromagnetic metal thin films work together. A magnetic head is formed by forming an operating gap.
JP12081187A 1987-05-18 1987-05-18 Magnetic head Pending JPS63285715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12081187A JPS63285715A (en) 1987-05-18 1987-05-18 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12081187A JPS63285715A (en) 1987-05-18 1987-05-18 Magnetic head

Publications (1)

Publication Number Publication Date
JPS63285715A true JPS63285715A (en) 1988-11-22

Family

ID=14795562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12081187A Pending JPS63285715A (en) 1987-05-18 1987-05-18 Magnetic head

Country Status (1)

Country Link
JP (1) JPS63285715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303614A (en) * 1988-06-01 1989-12-07 Fuji Elelctrochem Co Ltd Magnetic head
EP0379248A2 (en) * 1989-01-18 1990-07-25 Koninklijke Philips Electronics N.V. A method of producing a magnetic head as well as a magnetic head produceable in accordance with the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303614A (en) * 1988-06-01 1989-12-07 Fuji Elelctrochem Co Ltd Magnetic head
EP0379248A2 (en) * 1989-01-18 1990-07-25 Koninklijke Philips Electronics N.V. A method of producing a magnetic head as well as a magnetic head produceable in accordance with the method
EP0379248A3 (en) * 1989-01-18 1991-11-13 Koninklijke Philips Electronics N.V. A method of producing a magnetic head as well as a magnetic head produceable in accordance with the method

Similar Documents

Publication Publication Date Title
EP0342227B1 (en) Laminated sendust metal-in-gap video head
JPS63285715A (en) Magnetic head
JPS6220607B2 (en)
KR940011673B1 (en) Magnetic head and manufacturing method thereof
US5636433A (en) Method of manufacturing a magnetic head
KR100239478B1 (en) Manufacturing method of magnetic head
KR0155468B1 (en) Magnetic head and method of fabrication thereof
KR940004482B1 (en) Magnetic head and manufacturing method thereof
KR0119801B1 (en) Complex magnetic head manufacture method
KR950007905Y1 (en) Mixed magnetic head
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
JPS6015807A (en) Magnetic head
JPH08255308A (en) Production of composite magnetic head
JPH0240113A (en) Manufacture of magnetic head
JPS62128013A (en) Magnetic head
JPH025206A (en) Production of magnetic head
JPH0156445B2 (en)
JPH0312805A (en) Magnetic head and its manufacture
JPS60185214A (en) Magnetic head
JPS62162208A (en) Magnetic head
JPH03152706A (en) Composite magnetic head
JPH08279105A (en) Magnetic head
JPS62154210A (en) Composite type magnetic head
JPS59221817A (en) Magnetic head
JPH04341908A (en) Composite magnetic head