JPS63278545A - Diamond synthesis method - Google Patents
Diamond synthesis methodInfo
- Publication number
- JPS63278545A JPS63278545A JP11543087A JP11543087A JPS63278545A JP S63278545 A JPS63278545 A JP S63278545A JP 11543087 A JP11543087 A JP 11543087A JP 11543087 A JP11543087 A JP 11543087A JP S63278545 A JPS63278545 A JP S63278545A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- solvent
- less
- ppm
- diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims description 8
- 229910003460 diamond Inorganic materials 0.000 title claims description 7
- 238000001308 synthesis method Methods 0.000 title 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 64
- 229910052757 nitrogen Inorganic materials 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002775 capsule Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052903 pyrophyllite Inorganic materials 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- -1 Zr and Ti Chemical compound 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/068—Crystal growth
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超高圧発生装置を用いてダイヤモンドを合成
する方法である。特に窒素を殆んど含まない高純度で、
無色透明なダイヤモンドを合成する方法に関するもので
ある。本方法によって合成した大型単結晶は、光学用意
材、超精密バイト、サージカルナイフ、等に用いられる
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is a method of synthesizing diamond using an ultra-high pressure generator. Especially with high purity containing almost no nitrogen,
This invention relates to a method for synthesizing colorless and transparent diamonds. Large single crystals synthesized by this method are used for optical preparation materials, ultra-precision cutting tools, surgical knives, etc.
無色透明で、窒素を殆んど含まないダイヤモンドの合成
方法は、U S P 4.043.066に記載の如く
Fe溶媒にMを3〜5重量%添加したものや、無機材研
研究報告N(139(1984) PI3に記載の如く
、Fe、Ni及び合金溶媒にZrやTi等の窒素と親和
力の強い金属を添加する方法であった。ところが、上述
の如<M、Zr、Ti等を添加すると、該金属との間に
窒化物あるいは、炭化物を生成する。又合成した単結晶
と溶媒のぬれ性が良くなる。従って下記の如き問題点が
あった。A colorless and transparent diamond that contains almost no nitrogen can be synthesized by adding 3 to 5% by weight of M to an Fe solvent as described in USP 4.043.066, or as described in Inorganic Materials Research Report N. (139 (1984) As described in PI3, the method was to add metals with a strong affinity for nitrogen, such as Zr and Ti, to Fe, Ni, and alloy solvents. However, as described above, when M, Zr, Ti, etc. When added, nitrides or carbides are formed between the metal and the solvent.It also improves the wettability of the synthesized single crystal with the solvent.Therefore, there are the following problems.
■ 添加金属の窒化物あるいは炭化物の微少な包含物が
、結晶中に取り込まれる。■ Fine inclusions of nitrides or carbides of added metals are incorporated into the crystal.
■ 金属溶媒そのものが、結晶中に巻き込まれ易くなる
。■ The metal solvent itself becomes easily entangled in the crystal.
本発明は、上述の欠点を改良し、包含物の無い高品質な
単結晶を提供するものである。The present invention aims to improve the above-mentioned drawbacks and provide a high quality single crystal without inclusions.
本発明の説明は、温度差法による単結晶合成を例に挙げ
行なう。The present invention will be explained by taking as an example a single crystal synthesis by a temperature difference method.
本発明の特徴は、前述の従来方法の如く、窒素と親和力
の強い金属を添加するのではなく、窒素が極めて少ない
環境を容易に作り出し、その中で単結晶を合成する点に
ある。The feature of the present invention is that instead of adding a metal that has a strong affinity for nitrogen as in the conventional method described above, an environment with extremely low nitrogen content is easily created and a single crystal is synthesized in that environment.
その為、本発明では窒素の供給源を考察し、その窒素を
単結晶合成前に除去する方法を行なった。Therefore, in the present invention, we considered the source of nitrogen and used a method to remove the nitrogen before synthesizing the single crystal.
窒素の供給源は第1図に示す如く、
■ セルの隙間に存在する空気中の窒素■ 周囲の圧力
媒体中に含まれる窒素
■ 炭素源中に含まれる窒素
■ 溶媒金属中に含まれる窒素
がある。As shown in Figure 1, the sources of nitrogen are: ■ Nitrogen in the air existing in the cell gap ■ Nitrogen contained in the surrounding pressure medium ■ Nitrogen contained in the carbon source ■ Nitrogen contained in the solvent metal be.
本発明の第1の特徴は、第2図に示す如く、超高圧発生
装置の反応容器を気密容器で密閉し、真空に引く事によ
って、上述■の窒素を容易に除去する点にある。=刃車
結晶の合成部分をカプセル内に詰め、真空下で封入し、
該カプセルを超高圧セルの中に組み入れて、単結晶を合
成する試みは特開昭56−140017号公報に記載の
如く、過去に行なわれた事がある。従って、真空に引き
窒素の少ない環境下で合成する方法は既知である。The first feature of the present invention is that, as shown in FIG. 2, the reaction container of the ultra-high pressure generator is sealed with an airtight container and evacuated, thereby easily removing the nitrogen described in (2) above. = The synthetic part of the blade wheel crystal is packed into a capsule and sealed under vacuum,
Attempts have been made in the past to synthesize a single crystal by incorporating the capsule into an ultra-high pressure cell, as described in JP-A-56-140017. Therefore, a method for synthesizing in a vacuum and nitrogen-poor environment is known.
しかしながら、前述の如きカプセルを用いた方法では、
ア)真空下でのカプセル封入は手間が掛かる。イ)圧縮
時にカプセルが、破断し真空が破れる事がある。つ)粉
体あるいは型押体からなる圧力媒体を用いた場合には、
窒素が抜は切れず、無色透明にならない。工)カプセル
を用いる為、炭素源溶媒が小さくなり、大きな単結晶が
出来ないという欠点があった。本発明の第1の特徴であ
る前述の方法を用いる事により、上述のア)、イ)。However, in the method using capsules as described above,
a) Encapsulation under vacuum is time-consuming. b) During compression, the capsule may break and the vacuum may be broken. h) When using a pressure medium made of powder or stamped material,
Nitrogen cannot be completely removed and the product does not become colorless and transparent. (Engineering) Since a capsule is used, the carbon source solvent becomes small and has the disadvantage that large single crystals cannot be formed. By using the above-mentioned method, which is the first feature of the present invention, the above-mentioned a) and b) can be achieved.
工)の欠点を解決した。The shortcomings of (engineering) were solved.
又本発明では、真空度との関係とについても実験を行な
い10Torr以下の圧力で効果がある事が判明した。Further, in the present invention, experiments were conducted regarding the relationship with the degree of vacuum, and it was found that a pressure of 10 Torr or less is effective.
本発明の第2の特徴は、周囲の圧力媒体中に含まれ6.
る窒素を除去するのにTi、 Zr、、Hf、 V
、 Nb、Ta。A second feature of the invention is that 6.
Ti, Zr, , Hf, V
, Nb, Ta.
Cr、 Mo等の窒素と親和力が強い金属を圧力媒体中
に混ぜた点に有る。本発明により、真空に引くだけでは
除去出来なかった圧力媒体中の窒素を完全に取り去る事
が出来た。同時に前述のつ)の欠点も解決した。The reason is that metals that have a strong affinity for nitrogen, such as Cr and Mo, are mixed into the pressure medium. According to the present invention, it was possible to completely remove nitrogen from the pressure medium, which could not be removed simply by vacuuming. At the same time, the above-mentioned drawback (1) was also solved.
上述の金属は、一種あるいは複数種合わせて、板状で積
層しても粉末にし、混合しても良いが、好ましいのは後
者の方法である。One or more of the metals mentioned above may be laminated in plate form or powdered and mixed, but the latter method is preferred.
又、本発明では、上述金属の混合量と合成した単結晶の
関係についても実験を行なった。その結果、混合量が体
積%で0.5%以下では窒素の除去効果がなく、10%
以上では該金属と溶媒あるいはヒーターと反応が生じ、
再現性良く合成が出来ない不都合が生じた。Furthermore, in the present invention, experiments were also conducted regarding the relationship between the mixing amount of the above-mentioned metals and the synthesized single crystal. As a result, it was found that if the mixing amount was less than 0.5% by volume, there was no nitrogen removal effect;
In the above, a reaction occurs between the metal and the solvent or heater,
This resulted in the inconvenience that synthesis could not be performed with good reproducibility.
更にAj!、Mn等の融点の低い金属を混合して、同様
の実験を行なったが、該金属と溶媒あるいはヒーターと
反応が生じた。More Aj! A similar experiment was conducted by mixing metals with low melting points such as Mn and Mn, but a reaction occurred between the metal and the solvent or heater.
本発明の第3の特徴は、高純度の原料を用い、炭素源及
び溶媒金属中の窒素を除去する点に有る。The third feature of the present invention is that high purity raw materials are used and nitrogen in the carbon source and solvent metal is removed.
炭素源には、窒素含有量が数ppn+以下の高純度の1
1a型砥粒を用いる事が好ましい。The carbon source is highly purified 1 with a nitrogen content of several ppn+ or less.
It is preferable to use type 1a abrasive grains.
又、本発明では、含有室−素量と合成した単結晶の関係
についても実験を行ない、炭素源では含有窒素量が20
ppm以下、溶媒金属では5 ppm以下であると効果
が有る事が判明した。又、本溶媒を作製するには、電子
ビーム溶解法が最も適している事を見い出した。In addition, in the present invention, we also conducted experiments on the relationship between the content chamber and the elementary amount and the synthesized single crystal, and found that in the carbon source, the nitrogen content was 20
It has been found that a concentration of 5 ppm or less for solvent metals is effective. We also found that electron beam dissolution is the most suitable method for producing this solvent.
〔発明の効果〕
本発明により、結晶中に窒化物、炭化物あるいは金属溶
媒の巻き込みが無く、窒素を殆んど含まない高品質な無
色透明な単結晶を容易かつ確実に合成出来るようになっ
た。[Effects of the Invention] According to the present invention, it has become possible to easily and reliably synthesize high-quality colorless and transparent single crystals that do not include nitrides, carbides, or metal solvents in the crystal and contain almost no nitrogen. .
実施例1
第2図に示す如く、超高圧発生装置の反応容器を気密容
器で密閉し、真空に引いた。真空度は第1表の如く、5
〜50Torrまで変化させた。Example 1 As shown in FIG. 2, the reaction vessel of the ultra-high pressure generator was sealed with an airtight container and evacuated. The degree of vacuum is 5 as shown in Table 1.
The pressure was varied up to 50 Torr.
結果を下表に示す。単結晶合成に用いたセル構成は第3
図に示す如く全実験とも同一で、圧力媒体はパイロフィ
ライトの粉末にZr粉末を2VoA%添加し、混合した
ものを型押した上で整形加工したものを用いた。The results are shown in the table below. The cell configuration used for single crystal synthesis is the third
As shown in the figure, all experiments were the same, and the pressure medium used was a mixture of pyrophyllite powder to which Zr powder was added at 2 VoA%, the mixture was pressed, and then shaped.
又、炭素源には、IIa型砥粒と分光分析用グラファイ
トを1:1に混合し、型押したものを用いた。Further, as a carbon source, a 1:1 mixture of Type IIa abrasive grains and graphite for spectroscopic analysis and stamping was used.
尚、型押体の窒素濃度を分析した所、12ppmであっ
た。又、溶媒金属はPaが50重量%のPa−Co合金
を用いた。溶媒の窒素濃度を分析した所、5 ppmで
あった。又、合成条件は5.5G P a 、 140
0℃で行なった。合成した単結晶は0.5〜0.71/
ケの重量であった。The nitrogen concentration of the embossed body was analyzed and found to be 12 ppm. Further, as the solvent metal, a Pa-Co alloy containing 50% by weight of Pa was used. The nitrogen concentration of the solvent was analyzed and found to be 5 ppm. In addition, the synthesis conditions are 5.5G Pa, 140
It was carried out at 0°C. The synthesized single crystal has a ratio of 0.5 to 0.71/
It weighed 1,000 yen.
実施例2
第2図に示す如き気密容器内を加圧前に5 Torrの
真空に引いた。又、第3図に示す如きセル構成を用い、
溶媒にはFeが50重量%のPa−Co合金を用いた。Example 2 The inside of an airtight container as shown in FIG. 2 was evacuated to 5 Torr before pressurization. Moreover, using a cell configuration as shown in FIG.
A Pa-Co alloy containing 50% by weight of Fe was used as the solvent.
又、炭素源として分光分析用の高純度グラファイトを用
いた。それぞれ窒素分析を行なった所、含有量は16p
pmと3 ppmであった。又、圧力媒体としてパイロ
フィライトの粉末にTiを0.2〜15Vo 1%変化
させて混ぜたものを、型押成形して用いた。In addition, high-purity graphite for spectroscopic analysis was used as a carbon source. When nitrogen analysis was performed on each, the content was 16p.
pm and 3 ppm. Further, as a pressure medium, a mixture of pyrophyllite powder and Ti varying from 0.2 to 15Vo by 1% was pressed and used.
合成条件は、5.6 G Pa 、 1420℃で行な
い得られた単結晶の重量は0.4〜0,6 ct/ケで
あった。The synthesis conditions were 5.6 GPa and 1420°C, and the weight of the single crystal obtained was 0.4 to 0.6 ct/piece.
実験結果を第2表に示す。The experimental results are shown in Table 2.
Pe、 Co、 Mn、 Ni、 Crの一種又は多種
元素よりなる他の溶媒を用いても同一の結果が得られた
。The same results were obtained using other solvents consisting of one or more elements of Pe, Co, Mn, Ni, and Cr.
実施例3
第2図に示す如き、気密容器内を加圧前に5 Torr
の真空に引いた。又第3図に示す如きセル構成を用い、
溶媒にはPeが70重量%、Mnが30重量%のPe−
Mn合金を用いた。含有窒素量は4 ppmであった。Example 3 As shown in Fig. 2, the inside of the airtight container was heated to 5 Torr before pressurization.
It was pulled to a vacuum. Also, using a cell configuration as shown in Figure 3,
The solvent contained Pe-, which contained 70% by weight of Pe and 30% by weight of Mn.
A Mn alloy was used. The nitrogen content was 4 ppm.
圧力媒体として、パイロフィライトの粉末にZ「を2V
oA%混ぜたものを型押成形して用いた。As a pressure medium, apply Z'' to pyrophyllite powder at 2V.
A mixture of oA% was pressed and used.
更に炭素源として、分光分析用グラファイトと一般用途
黒鉛粉末を混ぜ、窒素濃度を8〜50ppmまで変化さ
せ、実験を行なった結果を第3表に示す。Table 3 shows the results of an experiment in which graphite for spectroscopic analysis and graphite powder for general use were mixed as a carbon source, and the nitrogen concentration was varied from 8 to 50 ppm.
合成条件は、5.60 Pa 、 1400℃で行ない
得られた単結晶の重量は0.4〜0,6 ct/ケであ
った。The synthesis conditions were 5.60 Pa and 1400°C, and the weight of the single crystal obtained was 0.4 to 0.6 ct/piece.
Pa、 Co、 Mn、 Crの一種又は多種元素より
なる他の溶媒を用いても同一の結果が得られた。The same results were obtained using other solvents consisting of one or more elements of Pa, Co, Mn, and Cr.
実施例4
第2図に示す如き、気密容器内を加圧前に5 Torr
の真空に引いた。又第3図に示す如きセル構成を用い、
溶媒にはFeが70重量%のPa −30Co合金を用
いた。電子ビーム溶解、真空溶解を用いて窒素含有量が
、3〜20ppmの金属溶媒を作製した。圧力媒体とし
てはパイロフィライトの粉末にNbを5Vo1%混ぜた
ものを型押成形して用いた。Example 4 As shown in Fig. 2, the inside of the airtight container was heated to 5 Torr before pressurization.
It was pulled to a vacuum. Also, using a cell configuration as shown in Figure 3,
A Pa-30Co alloy containing 70% by weight of Fe was used as the solvent. A metal solvent having a nitrogen content of 3 to 20 ppm was prepared using electron beam melting and vacuum melting. As the pressure medium, a mixture of pyrophyllite powder and 5Vo1% of Nb was pressed and molded.
又、炭素源として、分光分析用グラファイトを用いた。Furthermore, graphite for spectroscopic analysis was used as a carbon source.
窒素含有量は15ppa+であった。The nitrogen content was 15 ppa+.
合成条件は、5.7 G Pa 、 1450℃で行な
い、実験結果を第4表にしめすが、得られた単結晶の重
量は0.3〜0.4 ct/ケであった。The synthesis conditions were 5.7 GPa and 1450 DEG C. The experimental results are shown in Table 4, and the weight of the single crystal obtained was 0.3 to 0.4 ct/piece.
第4表Table 4
第1図は従来の温度差法によるダイヤモンド合成用セル
構成を示す。1はアンビル、2は円筒ダイ、3はセルの
隙間、4は圧力媒体、5は炭素源、6は溶媒金属、7は
種結晶、8は電極をそれぞれ示す。
第2図は本発明による真空気密部分を示す。A。
Bが該真空気密部分、11はアンビル、12はアンビル
補強ケース、13はダイ、14はダイ補強ケース、15
は真空引き方向、16は気密容器、17は真空封止用0
リング、18は電極、19は炭素源、20は種結晶、2
1は溶媒金属、22は圧力媒体、23はカーボンヒータ
ーをそれぞれ示す。
第3図は本発明によるセル構成を示す。31はアンビル
、32は円筒ダイ、33はガスケット、34は本発明に
よる圧力媒体、35はカーボンヒーター、36は本発明
による低窒素濃度炭素源、37は本発明による低窒素濃
度金属溶媒、38は種結晶をそれぞれ示す。
/、アンビ°ル 4.圧力づ1本 7.4重
、6も晶2、円筒ダイ 57次粂48.霊独
3、+tル/11鬼目 2 ネ媒4メ鳴茅2図FIG. 1 shows a conventional cell configuration for diamond synthesis using the temperature difference method. 1 is an anvil, 2 is a cylindrical die, 3 is a cell gap, 4 is a pressure medium, 5 is a carbon source, 6 is a solvent metal, 7 is a seed crystal, and 8 is an electrode. FIG. 2 shows a vacuum-tight section according to the invention. A. B is the vacuum-tight part, 11 is an anvil, 12 is an anvil reinforcing case, 13 is a die, 14 is a die reinforcing case, 15
is the vacuum direction, 16 is the airtight container, and 17 is 0 for vacuum sealing.
ring, 18 is an electrode, 19 is a carbon source, 20 is a seed crystal, 2
1 is a solvent metal, 22 is a pressure medium, and 23 is a carbon heater. FIG. 3 shows a cell configuration according to the invention. 31 is an anvil, 32 is a cylindrical die, 33 is a gasket, 34 is a pressure medium according to the present invention, 35 is a carbon heater, 36 is a low nitrogen concentration carbon source according to the present invention, 37 is a low nitrogen concentration metal solvent according to the present invention, 38 is a Seed crystals are shown in each case. /, Ambill 4. Pressure 1 piece 7.4 weights, 6 crystals 2, cylindrical die 57 pieces 48. Reitoku 3, +tru/11 demon eyes 2 Ne medium 4 Me Mei Kay 2 figures
Claims (1)
反応容器又は、該容器の一部を気密容器で密閉し、該気
密容器内を10Torr以下の真空に引き、あらかじめ
Ti、Zr、Hf、V、Nb、Mo、Ta、Cr、Mn
の内一種又は2種以上よりなる金属粉末を、0.5〜1
0体積%混合した圧力媒体及び窒素含有濃度が20pp
m以下である炭素原料と5ppm以下であるFe、Co
、Ni、Mn、Crの内一種又は2種以上の元素よりな
る金属溶媒を該反応容器内に配置し、ダイヤモンド安定
領域まで加圧加熱し、種結晶上にダイヤモンドを成長さ
せる事を特徴とする窒素含有量が、2ppm以下である
ダイヤモンドの合成方法。(1) The reaction vessel of the ultra-high pressure generator consisting of an anvil or die, or a part of the vessel, is sealed with an airtight container, the inside of the airtight container is evacuated to 10 Torr or less, and Ti, Zr, Hf, V, Nb, Mo, Ta, Cr, Mn
0.5 to 1 metal powder consisting of one or more of the following.
Pressure medium mixed with 0% by volume and nitrogen content concentration is 20pp
m or less carbon raw material and 5 ppm or less Fe, Co
, a metal solvent made of one or more elements among Ni, Mn, and Cr is placed in the reaction vessel and heated under pressure to a diamond stable region to grow diamond on the seed crystal. A method for synthesizing diamond having a nitrogen content of 2 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11543087A JPS63278545A (en) | 1987-05-11 | 1987-05-11 | Diamond synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11543087A JPS63278545A (en) | 1987-05-11 | 1987-05-11 | Diamond synthesis method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63278545A true JPS63278545A (en) | 1988-11-16 |
Family
ID=14662373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11543087A Pending JPS63278545A (en) | 1987-05-11 | 1987-05-11 | Diamond synthesis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63278545A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0525207A1 (en) * | 1991-02-15 | 1993-02-03 | Sumitomo Electric Industries, Ltd. | Process for synthesizing diamond |
EP0603995A1 (en) * | 1992-12-22 | 1994-06-29 | Sumitomo Electric Industries, Limited | Process for the synthesising diamond single crystals |
CN104014280A (en) * | 2014-06-18 | 2014-09-03 | 吉林大学 | Sintering method of polycrystalline diamond |
CN104826553A (en) * | 2015-05-14 | 2015-08-12 | 桂林特邦新材料有限公司 | Synthesizing assembly for enhancing flatness of composite sheet |
-
1987
- 1987-05-11 JP JP11543087A patent/JPS63278545A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0525207A1 (en) * | 1991-02-15 | 1993-02-03 | Sumitomo Electric Industries, Ltd. | Process for synthesizing diamond |
US6129900A (en) * | 1991-02-15 | 2000-10-10 | Sumitomo Electric Industries, Ltd. | Process for the synthesis of diamond |
EP0603995A1 (en) * | 1992-12-22 | 1994-06-29 | Sumitomo Electric Industries, Limited | Process for the synthesising diamond single crystals |
CN104014280A (en) * | 2014-06-18 | 2014-09-03 | 吉林大学 | Sintering method of polycrystalline diamond |
CN104826553A (en) * | 2015-05-14 | 2015-08-12 | 桂林特邦新材料有限公司 | Synthesizing assembly for enhancing flatness of composite sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4610699A (en) | Hard diamond sintered body and the method for producing the same | |
JP2001073128A (en) | Production of high density sputtering target composed of two or more kinds of metals | |
JPH0745012B2 (en) | Method for producing crushable diamond particles | |
JPS5939362B2 (en) | Boron nitride compound and its manufacturing method | |
JP3259384B2 (en) | Method of synthesizing diamond single crystal | |
EP0197790B1 (en) | Wire drawing die | |
JPS63278545A (en) | Diamond synthesis method | |
JPH04363129A (en) | Method for producing cubic system boron nitride | |
JPS60251235A (en) | Consumable electrode for refining nb-ti alloy | |
EP0206820A2 (en) | Diamond synthesis | |
EP0652980B1 (en) | Master alloys for beta 21s titanium-based alloys and method of making same | |
JP2010137997A (en) | Method for synthesizing cubic boron nitride and method for producing cubic boron nitride sintered body | |
EP0332353B1 (en) | A method of synthesizing diamond | |
JP3291804B2 (en) | Method of synthesizing diamond single crystal | |
JPH0673623B2 (en) | Synthesis of diamond with phosphorus catalyst | |
JPS58213601A (en) | Preparation of alkali metal hydride complex compound | |
JPS6225601B2 (en) | ||
JP3206050B2 (en) | Method of synthesizing diamond single crystal | |
JP3282249B2 (en) | Method of synthesizing diamond single crystal | |
RU2188249C2 (en) | Method of synthesis of fullerene-containing phases | |
KR960010597B1 (en) | Method of manufacturing tough and porous getter by means of hydrogen pulverization and getters produced thereby | |
JPH01275702A (en) | Production of sintered powder material | |
JPS60145958A (en) | Synthesis method of boron nitride | |
JPH0288706A (en) | Coarse grinding method and equipment for hafnium crystal bars | |
JPH11207167A (en) | Production of ultrahigh pressure product |