JPS63275788A - Large pneumatic tire - Google Patents
Large pneumatic tireInfo
- Publication number
- JPS63275788A JPS63275788A JP11151787A JP11151787A JPS63275788A JP S63275788 A JPS63275788 A JP S63275788A JP 11151787 A JP11151787 A JP 11151787A JP 11151787 A JP11151787 A JP 11151787A JP S63275788 A JPS63275788 A JP S63275788A
- Authority
- JP
- Japan
- Prior art keywords
- cord
- sheath
- tire
- core
- steel cord
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 28
- 239000010959 steel Substances 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000000052 comparative effect Effects 0.000 description 13
- 230000035515 penetration Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910000677 High-carbon steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/062—Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
- D07B1/0626—Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2024—Strands twisted
- D07B2201/2029—Open winding
Landscapes
- Ropes Or Cables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はスチールコードで補強された大型空気タイヤ
において、特にトラック、バス用空気タイヤに使用する
スチールコードの改良に関するもので市る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to large pneumatic tires reinforced with steel cords, particularly to improvements in steel cords used in pneumatic tires for trucks and buses.
スチールコードをベルト等に補強使用した大型空気タイ
ヤは、通常のタイヤと異なり、良路を高速で走行する際
、ベルト間の層間セパレーション(BLB)の発生を規
制する良路性能(耐BLB性)と、悪路走行の際、トレ
ッド層とブレーカ一層のセパレーション(TLB)の発
生を抑制する悪路性能(耐TLB性)の両性能を同時に
充足することが好ましいとされている。Large pneumatic tires that use reinforced steel cords as belts, etc. differ from regular tires in that they have good road performance (BLB resistance) that prevents the occurrence of layer separation (BLB) between the belts when driving on good roads at high speeds. It is said that it is preferable to simultaneously satisfy both of the following performances: and rough road performance (TLB resistance) that suppresses the occurrence of separation (TLB) between the tread layer and the breaker layer when driving on rough roads.
この点従来、大型空気タイヤのベルトに使用したスチー
ルコードとして、例えば第5図に示す様に、3+9+1
5のコアー9、インナーシース10、アウターシース1
1からなる3層構造のスチールコードがあった。In this regard, conventional steel cords used for the belts of large pneumatic tires were, for example, 3+9+1 as shown in Figure 5.
5 core 9, inner sheath 10, outer sheath 1
There was a steel cord with a three-layer structure consisting of 1.
しかしながら従来のこの種の3層構造のスチールコード
は、カット傷等に起因する水分の侵入により、錆、接着
低下を生起し、耐BLB性、耐TLB性の点で好ましく
なかった。また素線同志が接触摩滅しやすく、耐疲労性
が劣る欠点がある。However, this type of conventional steel cord having a three-layer structure suffers from rust and deterioration of adhesion due to the intrusion of moisture due to cut scratches, etc., and is unfavorable in terms of BLB resistance and TLB resistance. Furthermore, the wires are likely to wear out when they come into contact with each other, resulting in poor fatigue resistance.
またベルト層において補強すると、トレッド部の剛性が
十分でなく、偏摩耗しやすい欠点も有していた。Further, when the belt layer is reinforced, the tread part does not have sufficient rigidity, and has the drawback of being prone to uneven wear.
そこでこの発明の目的とするところは、コード内へのゴ
ム侵入を向上改良することにより、釘や石、又は悪路走
行による、カット傷等に起因する水分等の侵入を受けて
も、コード内に水分が浸透せず、錆の発生を抑制し、接
着性の低下を抑え、耐BLB性及び耐TLB性を改良し
ようとする点にある。Therefore, the purpose of this invention is to improve and improve the penetration of rubber into the cord, so that even if the cord is penetrated by moisture caused by nails, stones, cuts, etc. caused by driving on rough roads, the cord can be prevented from entering. The purpose is to prevent moisture from penetrating into the surface, suppress the occurrence of rust, suppress deterioration of adhesive properties, and improve BLB resistance and TLB resistance.
ところでスチールコードの3層構造の問題点について検
討を加えると、3層構造は、27本もの多数の素線から
構成され、しかも2.3のシース間が異方向に撚られ、
かつゴムが入らないことに起因して、2.3のシース間
が点接触し、素線同志の摩滅が起りやすく、疲労性に欠
ける点にある。By the way, if we consider the problems with the three-layer structure of steel cord, the three-layer structure is made up of as many as 27 strands, and the 2.3 sheaths are twisted in different directions.
In addition, due to the absence of rubber, point contact occurs between the sheaths 2 and 3, which tends to cause the strands to wear together, resulting in a lack of fatigue properties.
従ってこの見地からすれば、構成本数を減らして素線間
の接触点の数を減じ、さらにゴムをよく侵入させれば、
素線間の摩滅を減少させ、耐疲労性を改良することがで
きる。Therefore, from this point of view, if the number of constituent wires is reduced, the number of contact points between wires is reduced, and the rubber penetrates well,
Wear between the strands can be reduced and fatigue resistance can be improved.
そこでこの発明は、ゴム侵入を向上させるため、スチー
ルコードをシースとコアーの2層構造を採用するととも
に、弐〇=(2,1547・dx+dz ) sin
j−fl−Q−−dz (dx =:]アー素線の直
径(mm)、dz=シース素線の直径(mm)、n=シ
ース素線の本数)で表わされるシース素線間距離Gを、
0.03〜0.25 mmとし、しかもコアーを3本の
素線で構成した。シース間距離Gが0.03 mm未満
では、ゴム侵入が阻害され、0.25mm以上では第7
図に示す様に、撚線後の形状安定性が劣り、シース素線
12が片寄り接触しやすく、ゴムが入らない。またコア
ーが4本撚以上の本数では、コアーの中心空隙が大きく
なり過ぎ、この部分におけるゴムの侵入性が著しく問題
となる。これに対し2本にすると、第8図に示す様に、
コードコアー13が2本の素線で撚られているため、こ
のコアー13素線がよこ一列の時(第8図(A))とた
て−列の時(第8図(B))が長手方向に生じ、しかも
1/4ピツチ毎にこの現象が生じるため、部分的に曲剛
性が異なることになり、特にタイヤへの適用時に、曲剛
性が軟らかい第8図(A>に示された、よこ−列のコー
ド断面において、集中的な疲労破壊を生ずるほか、更に
第8図(A)及び(B)に示す様に、シース14素線が
、コード層の外接円より内側へ落込みやすいことから、
一層両位置間の曲剛性差を生じ、耐疲労性に問題が生じ
る。Therefore, in this invention, in order to improve the penetration of rubber, a two-layer structure of a sheath and a core is adopted for the steel cord.
j-fl-Q--dz (dx = diameter of earth wire (mm), dz = diameter of sheath wire (mm), n = number of sheath wires) G of,
The thickness was 0.03 to 0.25 mm, and the core was composed of three strands. When the inter-sheath distance G is less than 0.03 mm, rubber penetration is inhibited, and when it is 0.25 mm or more, the seventh
As shown in the figure, the shape stability after twisting is poor, the sheath wires 12 tend to come into contact with each other on one side, and rubber does not enter. Furthermore, when the number of twisted cores is four or more, the center gap of the core becomes too large, and the intrusion of rubber in this portion becomes a serious problem. On the other hand, if there are two, as shown in Figure 8,
Since the cord core 13 is twisted with two wires, when the wires of the core 13 are arranged horizontally (Fig. 8 (A)) and vertically (Fig. 8 (B)), This phenomenon occurs in the longitudinal direction and occurs every 1/4 pitch, so the bending stiffness differs locally. Especially when applied to tires, the bending stiffness is soft as shown in Figure 8 (A>). In addition to causing concentrated fatigue failure in the cross-section of the horizontal row of cords, the 14 sheathed wires also fall inward from the circumscribed circle of the cord layer, as shown in FIGS. 8(A) and (B). Because it is easy,
This further causes a difference in bending stiffness between the two positions, causing a problem in fatigue resistance.
また従来の3層構造では、素線径が0.23mm未満の
ものが使用されていたので、素線径が細いため、コード
の横方向の剛性が低くなり、これをベルトに使用すると
タイヤトレッドの剛性が充分得られず、これに起因して
タイヤ走行の摩耗状態が偏摩耗になり易かった。そこで
この発明では、コード剛性を向上させるため、0.3m
m以上の素線を用いることによりトレッド部の剛性を向
上させ、均一摩耗性を改良した。なお好ましくは、コア
ーとシースの線径を異ならしめ、この異径線を組合せる
ことが適切で、これにより適度の剛性を付与でき、トレ
ッド部が一層変形しにくく、かつ偏摩耗しにくい効果を
奏する。In addition, in the conventional three-layer structure, wires with a diameter of less than 0.23 mm were used, so the thin diameter of the wires lowered the lateral rigidity of the cord, and when used in belts, the tire tread Because of this, the tires tend to wear unevenly when running. Therefore, in this invention, in order to improve cord rigidity,
By using wires with a diameter of m or more, the rigidity of the tread portion was improved and uniform wearability was improved. Preferably, the wire diameters of the core and sheath are different, and it is appropriate to combine these wires with different diameters.This makes it possible to impart appropriate rigidity, making the tread part more difficult to deform and uneven wear. play.
なお耐疲労性を一層向上させるためには、ゴム侵入化を
改良するほかに、シースコードの点接触を線接触化する
ことが重要で、そのため同方向撚とすることが一層好ま
しい。また素線径を大にすると、疲労性は低下するが、
炭素含有量が従来の ・0.72%より高い0.75〜
0.85%であるスチールコードを使うと、疲労性が向
上するので好ましい。In order to further improve the fatigue resistance, in addition to improving the rubber penetration, it is important to change the point contact of the sheath cord to a line contact, and therefore it is more preferable to twist in the same direction. In addition, increasing the wire diameter reduces fatigue resistance, but
Carbon content is 0.75~ higher than conventional ・0.72%
It is preferable to use a steel cord having a content of 0.85% because it improves fatigue resistance.
この発明は上述の通りなので、ゴム侵入が改良され、ゴ
ムがコード内に良好に侵入し、耐錆性を十分発揮するほ
か、水分等による接着低下も大幅に改善されるので、ト
レッドベルト、ベルト間のセパレーション故障が改良さ
れ、タイヤ寿命が著しく向上する。またコード剛性も向
上するので、トレッド剛性が上るため、トレッド部の変
形が小ざく、偏摩耗し難く、さらにまた摩耗性能も向上
する。また同一方向撚りとした場合は素線間同志の摩滅
が阻止されるので一層疲労性が改善され、また高炭素鋼
線を使用した場合はたとえ素線径を大にしても摩滅によ
る疲労性に支障は生じず、従来になくきわめて長寿命で
品質の良好なタイヤとなる。Since this invention is as described above, the rubber penetration is improved, the rubber penetrates well into the cord, and not only does it exhibit sufficient rust resistance, but also the deterioration of adhesion due to moisture etc. is greatly improved. Separation failure between tires is improved, significantly extending tire life. Furthermore, since the cord rigidity is improved, the tread rigidity is increased, so the deformation of the tread portion is small, uneven wear is less likely to occur, and wear performance is further improved. In addition, when the wires are twisted in the same direction, fatigue resistance is further improved because wear and tear between the strands is prevented, and when high carbon steel wire is used, even if the diameter of the strands is increased, fatigue resistance due to abrasion is further improved. There are no problems, and the result is a tire with an extremely long life and high quality, unlike anything before.
以下添付図面を参照してこの発明に係る実施例を比較例
との対比において説明する。なお第1表は、実施例及び
比較例に係るスチールコードの構造、特性値等を示し、
あわせて当該コードをベルト補強に使用し、タイヤ12
0OR24として試作した当該タイヤの特性値を示して
いる。Embodiments of the present invention will be described below in comparison with comparative examples with reference to the accompanying drawings. Table 1 shows the structure, characteristic values, etc. of the steel cords according to the examples and comparative examples.
In addition, the cord is used to reinforce the belt, and the tire 12
The characteristic values of the tire prototyped as 0OR24 are shown.
実施例1は、第1図に示す3+8X0.35構造のコア
ー1及びシース2からなるスチールコードを用いたタイ
ヤT−1、実施例2は、第2図に示す3X0.36+9
X0.33構造のコアー3及びシース4からなるスチー
ルコードを用いたタイヤ丁−2、実施例3は、第3図に
示す3X0.34+8X0.36構造のコアー5及びシ
ース6からなるスチールコードを用いたタイヤT−3で
ある。実施例4は3X8X0.35構造のコアー及びシ
ースからなり、線素材が5WR887Aであるスチール
コードを用いたタイヤT−4、実施例5は3+8X0.
35のコアー及びシースからなり、線素材が5WR37
2Aであるスチールコードを用いたタイヤT−5である
。また比較例1は、第6図に示す3+9X0.33構造
のコアー7及びシース8かうなり、シース素線間距離G
=0.026mmであるスチールコードを用いたタイヤ
T−6、比較例2は、記述した第5図に示す従来の3+
9+15X0.23のコアー9、インナーシース10、
アウターシース11からなる3M構造のスチールコード
を用いたタイヤT−7である。Example 1 is a tire T-1 using a steel cord consisting of a core 1 and a sheath 2 with a 3+8X0.35 structure as shown in FIG. 1, and Example 2 is a 3X0.36+9 tire as shown in FIG.
Tire-2 using a steel cord consisting of a core 3 and a sheath 4 having an X0.33 structure, Example 3 uses a steel cord consisting of a core 5 and a sheath 6 having a 3X0.34+8X0.36 structure as shown in FIG. This is the tire T-3. Example 4 is a tire T-4 which uses a steel cord having a core and sheath with a 3X8X0.35 structure and whose wire material is 5WR887A, and Example 5 is a 3+8X0.35 tire T-4.
Consisting of 35 cores and sheaths, the wire material is 5WR37
This is a tire T-5 using a 2A steel cord. Further, in Comparative Example 1, the core 7 and sheath 8 have a 3+9X0.33 structure as shown in FIG.
Comparative Example 2, a tire T-6 using a steel cord having a diameter of 0.026 mm, was compared to the conventional 3+ shown in FIG.
9+15X0.23 core 9, inner sheath 10,
This is a tire T-7 using a 3M steel cord consisting of an outer sheath 11.
第1表
〔注〕
*曲げ剛性指数
1本のスチールコードを支点間25mmで、中心部を曲
げた時の最大曲げ力を比較例2のコードを100として
表わす。Table 1 [Note] *Bending Stiffness Index The maximum bending force when one steel cord is bent at the center with a distance of 25 mm between supports is expressed with the cord of Comparative Example 2 as 100.
*空気透過性
5Qmm長のゴム片中心にスチールコードを埋め込み、
一方から2kgf/Cm2の圧縮空気を吹込み、スチー
ルコード内を流れる空気量を測定した。* Air permeability A steel cord is embedded in the center of a 5Qmm long rubber piece,
Compressed air of 2 kgf/Cm2 was blown from one side, and the amount of air flowing inside the steel cord was measured.
*良路走行10万km摩耗指数
1103k走行後のトレッド溝の摩耗量(lIIII&
)を測定し、1 mm当りに走行できた距離を比較例
2を’100とした指数で表わす。*Tread groove wear amount after 100,000 km of driving on good roads and wear index of 1103 km (lIII &
), and the distance traveled per 1 mm is expressed as an index with Comparative Example 2 set as '100.
*コード強力保持率
1103k走行したタイヤを分解し、ベルトコードを取
出し、強力を測定。*Cord strength retention rate: We disassembled the tire that had been driven for 1103km, removed the belt cord, and measured the strength.
第5図に示す従来の3層構造に係るスチールコードをベ
ルトに使用したタイヤT−7(比較例2)は、悪路テス
トで、カット傷からの水分侵入により、接着力が低下し
、ベルト間及びベルト・トレッドゴム間においてセパレ
ーションが発生した。Tire T-7 (Comparative Example 2), which uses the conventional three-layer steel cord shown in Figure 5 for its belt, was tested on rough roads, and the adhesive strength decreased due to moisture infiltration through cut scratches. Separation occurred between belt and tread rubber.
また2層構造であっても、シース素線開路11tiGが
0.03mm、を下回るコードを用いた第6図に示すタ
イヤT−6(比較例1)は、ゴム侵入が不充分であるた
め、カット傷からの水分侵入により、ベルト間のセパレ
ーションが発生し、更新できなかった。Furthermore, even with a two-layer structure, the tire T-6 shown in FIG. 6 (Comparative Example 1) using a cord with a sheath wire opening 11tiG of less than 0.03 mm has insufficient rubber penetration. Separation between the belts occurred due to moisture ingress through the cuts, making it impossible to renew.
これに対し実施例1〜5のタイヤT−1〜T−5は、悪
路性能も改善され、特に素線の炭素含有量が0.75〜
0.85%の範囲にある実施例1〜3は、悪路走行でも
全く故障がなく、更新することができた。また良路走行
テストにおいて、比較例2のタイヤT−7はトレッド部
が柔らかなため、変形を受けやすく、段状摩耗が発生し
、ショルダ一部においては肩落ち摩耗が生じたが、剛性
の高いコードを使用したタイヤT−1〜T−5は、摩耗
指数で比較例2であるタイヤT−7より5〜8%高く、
タイヤ寿命の向上が認められ、かつ摩耗状態も良好であ
る。ざらにまたコード強力保持率をみると、比較例では
いずれのタイヤも、素線同志の摩滅により7〜10%の
強力の低下が認められるが、実施例ではいずれも摩滅が
小ざく、1〜2%の低下に止まることが認められる。On the other hand, the tires T-1 to T-5 of Examples 1 to 5 had improved rough road performance, and in particular, the carbon content of the strands was 0.75 to 0.75.
Examples 1 to 3 within the range of 0.85% had no failures even when driving on rough roads, and could be updated. In addition, in a driving test on a good road, the tire T-7 of Comparative Example 2 had a soft tread, so it was easily deformed, and step-like wear occurred, and shoulder drop wear occurred in a part of the shoulder. Tires T-1 to T-5 using high cords had a wear index 5 to 8% higher than tire T-7, which was Comparative Example 2, and
The tire life has been improved, and the wear condition is also good. Looking at the cord strength retention rate, in all comparative examples, it is observed that the strength decreases by 7 to 10% due to wear of the strands, but in the examples, the wear is small, 1 to 10%. It is recognized that the decrease is limited to 2%.
なお第4図は疲労テスト結果を示すグラフで、炭素含有
量の低い5WR372Aの線素材を用いたタイヤT−5
(実施例5)より、炭素含有量の比較的高い5WR38
2Aの線素材を用いたT−1(実施例1)の方が耐疲労
性の向上が認められる。ただし炭素含有量が0.85%
を越える5WR387Aを使用したタイヤT−4になる
と、悪路性能の低下傾向が認められる。Figure 4 is a graph showing the fatigue test results for tire T-5 using 5WR372A wire material with low carbon content.
(Example 5), 5WR38 with relatively high carbon content
T-1 (Example 1) using a 2A wire material has improved fatigue resistance. However, the carbon content is 0.85%
When it comes to tires T-4 using 5WR387A, which exceeds 5WR, there is a tendency for poor road performance to deteriorate.
以上の様にこの発明は、コアーとシースの2層で構成さ
れるスチールコードで補強された大型空気タイヤで、ス
チールコードのコアーは、直径0.3mm以上の3本の
素線で構成され、かつ式G−(2,1547−dt +
dz ) sin ”” −dz(d1=コアー素線の
直径(mm)、d2=シース素線の直径(mm)、n=
シース素線の本数)で表わされるシース素線間距離Gの
値が、0.03mm〜0.25mmである構成を採用し
たので、コード内へのゴム侵入が向上し、耐錆性をはじ
め、水分等による接着力の低下が大幅に改善され、トレ
ッドベルト、ベルト間のセパレーション故障が改良され
、タイヤ寿命が著しく向上した大型空気タイヤが提供で
きた。またコード剛性も上り、トレッド剛性も上るため
、トレッド部の変形が小さく、偏摩耗し難いほか、ざら
に摩耗性能の向上も達成された。また同一方向撚りの場
合、シースコードが線接触化するためざらに耐疲労性に
おいて好ましく、また高炭素鋼線を使用すれば、摩滅に
よる耐疲労性が格別向上し、従来になく長寿命で品質の
良好なタイヤが提供できる。As described above, the present invention is a large pneumatic tire reinforced with a steel cord composed of two layers, a core and a sheath, and the core of the steel cord is composed of three wires each having a diameter of 0.3 mm or more. and the formula G-(2,1547-dt +
dz) sin "" -dz (d1 = diameter of core wire (mm), d2 = diameter of sheath wire (mm), n =
Since we have adopted a configuration in which the value of the distance G between the sheath wires (expressed by the number of sheath wires) is 0.03 mm to 0.25 mm, rubber penetration into the cord is improved, and rust resistance and other properties are improved. We have been able to provide a large pneumatic tire with significantly improved adhesive strength due to moisture, improved tread belt and separation failure between belts, and significantly improved tire life. In addition, cord rigidity and tread rigidity have also been increased, resulting in less deformation of the tread, less uneven wear, and a rough improvement in wear performance. In addition, in the case of twisting in the same direction, the sheath cord comes into wire contact, which is preferable in terms of fatigue resistance, and if high carbon steel wire is used, the fatigue resistance due to abrasion is significantly improved, resulting in a longer life and higher quality than ever before. We can provide high quality tires.
第1図はこの発明に係る実施例において使用した3+8
X0.35構造のコード断面図、第2図は同地実施例に
おいて使用した
3X0.36+9X0.33構造のコード断面図、第3
図は同地実施例において使用した
3X0.34+8X0.36構造のコード断面図、第4
図は炭素含有量の差異による実施例1と5に係るコード
の疲労テスト結果を示す図、第5図は従来の3+9+1
5の3層構造のコード断面図、
第6図及び第7図は3+9構造、3+7構造の比較例に
係るコード断面図、
第8図は2+7構造の比較例に係るコード断面図で、(
A>はコアーがよこ一列;(B)はたて−列のときの断
面図である。Figure 1 shows the 3+8 used in the embodiment of this invention.
Figure 2 is a cross-sectional view of the cord of the X0.35 structure.
The figure is a cross-sectional view of the cord of the 3X0.34+8X0.36 structure used in the example at
The figure shows the fatigue test results of the cords according to Examples 1 and 5 due to the difference in carbon content, and Figure 5 shows the results of the conventional 3+9+1
Figures 6 and 7 are cross-sectional views of a cord with a 3-layer structure as shown in Figure 5. Figures 6 and 7 are cross-sectional views of a cord with comparative examples of 3+9 and 3+7 structures. Figure 8 is a cross-sectional view of a cord with a comparative example of a 2+7 structure.
A> is a cross-sectional view when the cores are in a horizontal row; (B) is a cross-sectional view when the cores are in a vertical row.
Claims (4)
ドで補強された大型空気タイヤにおいて、スチールコー
ドのコアーは、直径0.3mm以上の3本の素線で構成
され、かつ式G=(2.1547・d_1+d_2)s
in(180/n)−d_2(d_1=コアー素線の直
径(mm)、d_2=シース素線の直径(mm)、n=
シース素線の本数)で表わされるシース素線間距離Gの
値が、0.03mm〜0.25mmであることを特徴と
するスチールコードで補強された大型空気タイヤ。(1) In a large pneumatic tire reinforced with a steel cord composed of two layers, a core and a sheath, the core of the steel cord is composed of three strands with a diameter of 0.3 mm or more, and the formula G = ( 2.1547・d_1+d_2)s
in (180/n) - d_2 (d_1 = diameter of core wire (mm), d_2 = diameter of sheath wire (mm), n =
A large pneumatic tire reinforced with a steel cord, characterized in that the distance G between the sheath wires (number of sheath wires) is 0.03 mm to 0.25 mm.
特許請求の範囲第1項記載の大型空気タイヤ。(2) The large pneumatic tire according to claim 1, wherein the carbon content of the strands is 0.75 to 0.85%.
範囲第1項または第2項記載の大型空気タイヤ。(3) A large pneumatic tire according to claim 1 or 2, wherein the core and sheath are twisted in the same direction.
囲第1項、第2項、または第3項記載のスチールコード
で補強された大型空気タイヤ。(4) A large pneumatic tire reinforced with a steel cord according to claim 1, 2, or 3, wherein the steel cord is applied to the belt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11151787A JPS63275788A (en) | 1987-05-06 | 1987-05-06 | Large pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11151787A JPS63275788A (en) | 1987-05-06 | 1987-05-06 | Large pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63275788A true JPS63275788A (en) | 1988-11-14 |
Family
ID=14563323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11151787A Pending JPS63275788A (en) | 1987-05-06 | 1987-05-06 | Large pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63275788A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175983A (en) * | 1988-12-28 | 1990-07-09 | Yokohama Rubber Co Ltd:The | Radial tire and steel cord for tire reinforcement |
JPH0450389A (en) * | 1990-06-13 | 1992-02-19 | Kanai Hiroyuki | Steel cord for reinforcing rubber article |
JPH0491503U (en) * | 1990-12-25 | 1992-08-10 | ||
JPH0519394U (en) * | 1991-07-29 | 1993-03-09 | 東京製綱株式会社 | Steel cord |
US5327713A (en) * | 1992-03-09 | 1994-07-12 | Sumitomo Rubber Industries, Ltd. | Tire cord and tire |
KR20030018447A (en) * | 2001-08-28 | 2003-03-06 | 금호산업 주식회사 | Structure of the steel code in heavy duty tire |
JP2007537083A (en) * | 2004-05-12 | 2007-12-20 | ソシエテ ド テクノロジー ミシュラン | Tires and metal / rubber composites for tires |
-
1987
- 1987-05-06 JP JP11151787A patent/JPS63275788A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175983A (en) * | 1988-12-28 | 1990-07-09 | Yokohama Rubber Co Ltd:The | Radial tire and steel cord for tire reinforcement |
JPH0450389A (en) * | 1990-06-13 | 1992-02-19 | Kanai Hiroyuki | Steel cord for reinforcing rubber article |
JPH0491503U (en) * | 1990-12-25 | 1992-08-10 | ||
JPH0519394U (en) * | 1991-07-29 | 1993-03-09 | 東京製綱株式会社 | Steel cord |
US5327713A (en) * | 1992-03-09 | 1994-07-12 | Sumitomo Rubber Industries, Ltd. | Tire cord and tire |
US5410868A (en) * | 1992-03-09 | 1995-05-02 | Sumitomo Rubber Industries, Ltd. | Tire cord and tire |
KR20030018447A (en) * | 2001-08-28 | 2003-03-06 | 금호산업 주식회사 | Structure of the steel code in heavy duty tire |
JP2007537083A (en) * | 2004-05-12 | 2007-12-20 | ソシエテ ド テクノロジー ミシュラン | Tires and metal / rubber composites for tires |
JP4800301B2 (en) * | 2004-05-12 | 2011-10-26 | ソシエテ ド テクノロジー ミシュラン | Tires and metal / rubber composites for tires |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0269036B1 (en) | Pneumatic radial-ply tire for heavy load | |
CA1246945A (en) | Reinforcing cord with wrap-around wire | |
CA1119086A (en) | Pneumatic radial tires | |
EP1167082B1 (en) | Radial tire | |
JPS63275788A (en) | Large pneumatic tire | |
EP0413582B1 (en) | Pneumatic radial tires | |
JP3707643B2 (en) | Steel cord for reinforcing rubber articles and pneumatic radial tire | |
JP4683150B2 (en) | Pneumatic tire | |
JPH09226318A (en) | Pneumatic radial tire for bad road running | |
JPH0112682B2 (en) | ||
JP2904688B2 (en) | Pneumatic radial tire for heavy loads | |
JPH0665877A (en) | Steel cord for reinforcing belt part of pneumatic tire for middle or heavy load | |
JPS5938102A (en) | Radial tire | |
JP3205390B2 (en) | Pneumatic radial tire | |
JPH1178410A (en) | Pneumatic radial tire for passenger car | |
JP3191123B2 (en) | Pneumatic radial tire | |
JP3322934B2 (en) | Pneumatic radial tire | |
JP2002087017A (en) | Pneumatic radial tire | |
JPH044162B2 (en) | ||
JP3028496B2 (en) | Pneumatic radial tire for heavy loads | |
JPS6348725B2 (en) | ||
JP3467538B2 (en) | Steel cord for radial tire and method of manufacturing the same | |
JP3560664B2 (en) | Pneumatic tire | |
JP3247469B2 (en) | Steel cord reinforced rubber belt | |
KR20010063257A (en) | Single wire steel cord for reinforcing rubber |