[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63262058A - Power source - Google Patents

Power source

Info

Publication number
JPS63262058A
JPS63262058A JP9594187A JP9594187A JPS63262058A JP S63262058 A JPS63262058 A JP S63262058A JP 9594187 A JP9594187 A JP 9594187A JP 9594187 A JP9594187 A JP 9594187A JP S63262058 A JPS63262058 A JP S63262058A
Authority
JP
Japan
Prior art keywords
output
section
voltage
current
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9594187A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nomura
泰久 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9594187A priority Critical patent/JPS63262058A/en
Publication of JPS63262058A publication Critical patent/JPS63262058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To enhance the safety and the reliability of a power source by regulating voltage and current limiting means of the main bodies of a protection section, and then constructing so that predetermined output characteristic is obtained by the limiting means. CONSTITUTION:A power source converts the power of a commercial power source 1 by a rectifying and smoothing unit 2 to DC, and applies it to a switching element 3. The element 3 is connected in series with a current detector 4 and an inductance 5, and turned ON, OFF by a controller 9. A current I thus intermittently fed is so converted by the inductance 5 and a rectifying and smoothing unit 6 as to apply a predetermined DC voltage E to a load 8 through the series circuit. The voltage E is monitored by a voltage detector 7, and output to the controller 9. The controller 9 has a logic unit 93, a time limiter 92 and an output unit 91, and turns OFF the element 3 when a logic output D is '0'. Thus, the safety and the reliability of the power source are enhanced.

Description

【発明の詳細な説明】 本発明は、電流を断続することによシ安定な直流電圧を
得る方式の電源装置、いわゆるスイッチング レギュレ
ータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device that obtains a stable DC voltage by intermittent current flow, a so-called switching regulator.

この方式の電源装置には数多くの形式があるが、いずれ
もチロークやトフンスなどのインダクタンスに電流を断
続的に流し、その周期や断続比を制御することにより安
定した直流電圧を得ている。そして電流を高速で断続す
る必要性から、電流を断続する手段(以下スイッチング
素子と呼ぶ)として各種半導体素子例えばサイリスタ、
トランジスタ或いはF’ETなどが使われているが、こ
れらスイッチング素子は完全なオン状態か完全なオフ状
態かのどちらかの状態をとるような動作条件即ちスイッ
チング動作条件で使われており、従って過渡的な状態を
除けばスイッチング素子において消費される電力は非常
に小さく、断続周期を早くすることとあいまって、小容
量のスイッチング素子を用い、高効率で小形軽量の電源
装置が得られるものである。
There are many types of power supply devices using this method, but all of them generate a stable DC voltage by passing current intermittently through an inductance such as a chiroku or tofunsu inductance, and controlling the cycle and intermittent ratio. Due to the need to interrupt current at high speed, various semiconductor devices such as thyristors,
Transistors, F'ETs, etc. are used, but these switching elements are used under operating conditions that take either a completely on state or a completely off state, i.e., under switching operating conditions, and therefore, transient The power consumed by the switching element is very small, except under normal conditions. Combined with the shortening of the intermittent cycle, it is possible to use a small capacity switching element to create a highly efficient, compact and lightweight power supply device. .

しかし半導体のスイッチング素子はリレー等の機械的な
スイッチング素子に比べて過電流耐量が小さいため、出
力側の整流平滑部や負荷が未充電状態にある電源投入時
や入力側や出力側での異常発生時などに過電流が流れな
いよう保護する必要があり、又、この種電源装置の負荷
として接続される装置は半導体を主とした構成要素とす
るものが多いため、電源装置の出力電圧が何らかの原因
で高くな)過ぎだ場合には負荷に異常が発生するおそれ
が多分にありこれ又何らかの保護が必要である。
However, semiconductor switching elements have a lower overcurrent capability than mechanical switching elements such as relays, so when the power is turned on when the rectifier and smoothing section on the output side or the load is uncharged, or when an abnormality occurs on the input or output side. It is necessary to protect against overcurrent from flowing in the event of an overcurrent, and since many of the devices connected as loads for this type of power supply have semiconductor-based components, the output voltage of the power supply If it is too high for some reason, there is a high possibility that an abnormality will occur in the load, and some kind of protection is required.

このように、この種電源装置には各種保護部が必要不可
欠であるが、従来の設計思想は所要の入出力特性を得る
ことに主眼をおき、それが達成されてから付帯的に各種
保護部を追加していた。従って回路構成が冗漫複雑にな
り部品点数が増加するきらいがあった。
As described above, various protection parts are essential for this type of power supply device, but the conventional design concept focuses on obtaining the required input/output characteristics, and after that is achieved, various protection parts are added incidentally. was added. Therefore, the circuit configuration tends to become redundant and complicated, and the number of parts tends to increase.

本発明はこうした現状に濫み、従来の設計思想とは逆な
設計思想の下に為されたもので、まず保護部の主体であ
る電圧と電流の制限手段を調え、ついでその制限手段の
下で所要の出力特性を得ようとするものである。従って
従来付属的とされた各種保護部が構成の主体となり、装
置の安全性や信頼性が高まると共に全体の構成が極めて
簡単となる特長を有する。
The present invention has been developed based on a design concept that is contrary to the conventional design concept in order to overcome the current situation.Firstly, the voltage and current limiting means, which are the main components of the protection section, are investigated, and then the limiting means is The aim is to obtain the required output characteristics. Therefore, the various protection parts that were conventionally considered accessories become the main components of the device, which has the advantage of increasing the safety and reliability of the device and making the overall structure extremely simple.

以下、本発明を図面により説明する。Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本発明による電源装置の主要部のブロック図で
あって、商用′1ri源1から与えられる電力は整流平
滑部2によって直流に変換されてヌイ。
FIG. 1 is a block diagram of the main parts of the power supply device according to the present invention, in which power supplied from a commercial power source 1 is converted into direct current by a rectifying and smoothing section 2.

チング素子3に与えられる。スイッチング素子3は電流
検出部4及びインダクタンス5と直列接続されており、
その制御は制御部9によりオンオフ的に行なわれる。ス
イッチング素子3により断続された電流工は前記直列回
路を流れ、負荷8に所要の直流電圧Eが与えられるよう
、インダクタンス5及び整流平滑部うで変換される。直
流出力電圧Eは電圧検出部7により監視されている。尚
便宜上、インダクタンス5から商用電源1側を入力側、
インダクタンス5から負荷8側を出力側と呼ぶことにす
る。電流検出部4ばこれに流れる電流工の瞬時値を常に
監視しており、その値があらかじめ定められた電流値シ
よυ大か小によりl又は0の論理出力Aを出力する。電
圧検出部7は出力電圧Eを常に監視しており、その値が
あらかじめ定められた電圧1i1!シより大か小によυ
1又はOの論理出力Bを出力する。制御部9は内部に論
理部93、限時部92及び出力部9]を備えており、論
理部93は電流検出部4からの論理出力Aと、電圧検出
部7からの論理出力Bとを入力として論理和C=A+B
なる論理演算を行ない、論理出力Cを出力する。限時部
92は論理出力Cを受けて論理出力りを出力する否定形
限時素子であって、論理出力りは、論理出力Cが0のと
きは1、論理出力Cが1になった時から一定の限時時間
Tの間だけOを示す。出力部91は、論理出力りを受け
てスイッチング素子3を制御できる出力に変換するもの
で、論理出力りが1のときスイッチング素子3をオン状
態に、論理出力りがOのときスイッチング素子3をオフ
状態にする。
applied to the switching element 3. The switching element 3 is connected in series with the current detection section 4 and the inductance 5,
The control is performed on and off by the control section 9. The current cut off and on by the switching element 3 flows through the series circuit and is converted by the inductance 5 and the rectifying and smoothing part so that the required DC voltage E is applied to the load 8. The DC output voltage E is monitored by the voltage detection section 7. For convenience, the commercial power supply 1 side from inductance 5 is the input side,
The side from the inductance 5 to the load 8 will be called the output side. The current detection unit 4 constantly monitors the instantaneous value of the current flowing through it, and outputs a logical output A of 1 or 0 depending on whether the current value is larger or smaller than a predetermined current value. The voltage detection unit 7 constantly monitors the output voltage E, and its value is a predetermined voltage 1i1! Is it bigger or smaller than υ?
Outputs logic output B of 1 or O. The control section 9 includes a logic section 93, a time limit section 92, and an output section 9], and the logic section 93 receives the logic output A from the current detection section 4 and the logic output B from the voltage detection section 7. As logical sum C=A+B
It performs a logical operation and outputs a logical output C. The time limit section 92 is a negative type time limit element that receives the logic output C and outputs the logic output R, and the logic output R is 1 when the logic output C is 0, and is constant from the time the logic output C becomes 1. O is shown only during the time limit T of . The output section 91 receives a logic output and converts it into an output that can control the switching element 3. When the logic output is 1, the switching element 3 is turned on, and when the logic output is O, the switching element 3 is turned on. Turn off.

言うまでもなく実際の構成では、主に検出回路の動作安
定のため各部にヒステリシス特性がもたされるが、説明
が煩雑になるため省略する。又、各部の動作要素は具体
的には大部分集積回路で実現されるため、これを個々の
単一動作を行なう部品で示すことは無意味と思われるが
、強いてその一部を個々の部品で示すと、例えば電流検
出部4は、電流工を流す抵抗体とその両端の電圧を増幅
して論理出力の形にするトランジスタ回路或いは電流工
をカーレントトランス−次側に流しその二次側出力をト
ランジスタ回路で論理出力の形に変換する等の方法で実
施できる。
Needless to say, in the actual configuration, hysteresis characteristics are provided in various parts mainly for stabilizing the operation of the detection circuit, but the explanation will be omitted since it will complicate the explanation. Also, most of the operating elements of each part are concretely realized by integrated circuits, so it seems meaningless to represent them as individual parts that perform a single operation, but some of them are forced to be expressed as individual parts. For example, the current detection unit 4 is a resistor through which a current flows, and a transistor circuit that amplifies the voltage across the resistor to form a logical output, or a current flow through a current transformer and its secondary side. This can be implemented by converting the output into a logical output form using a transistor circuit.

以上のように構成すれば、商用電源1が印加されると所
要の出力電圧が負荷8に与えられるが、これを第2図に
より説明する。
With the above configuration, when the commercial power supply 1 is applied, a required output voltage is applied to the load 8. This will be explained with reference to FIG. 2.

第2図は時刻tに対応する各部の動作波形を模式的に示
したものであって、時刻toにおいて商用電源1が印加
されると、整流平滑部2はこれを直流に変換してスイッ
チング素子3以下に供給するが、その時点では整流平滑
部6及び負荷8が未充電であるため出力電圧Eは低い。
FIG. 2 schematically shows the operating waveforms of each part corresponding to time t. When the commercial power supply 1 is applied at time to, the rectifying and smoothing part 2 converts this into direct current, and the switching element However, since the rectifying and smoothing section 6 and the load 8 are uncharged at that point, the output voltage E is low.

又、電流工が流れはじめたとしてもインダクタンス5が
あるためその値は小さい。従って論理出力A、Bは共に
Oでちり、当然A+Bなる論理出力Cも0である。
Furthermore, even if current begins to flow, its value is small because of the inductance 5. Therefore, both logical outputs A and B are O, and naturally the logical output C, which is A+B, is also zero.

このため論理出力りは1で、出力部91はスイッチング
素子3をオン側に制御する。その結果電流工は増加しは
じめるがインダクタンス5があるため急には立上らず、
インダクタンス5が線形を示す範囲では直線状に増加す
る。時刻t1になって電流下が設定値kに達すると、論
理出力Aが1となり当然論理出力Cもlとなって論理出
力りは0になる。従ってスイッチング素子3はオフ状態
になって論理出力A及びCは共に0になるが、限時部9
2の論理出力りは限時時間Tの間○を保持する。この間
、出力電圧Eば、時刻tにはある値まで高まるが、整流
平滑部6の充電や負荷8で消費されるため、限時時間T
後の時刻なにはある程度低下する。時刻物になると論理
出力りは1となり、電流下が再び流れ出す。以後この動
作を操シ返して出力電圧Eはだんだん高くなる。
Therefore, the logic output is 1, and the output section 91 controls the switching element 3 to be on. As a result, the electric current begins to increase, but because of the inductance 5, it does not rise suddenly.
In the range where the inductance 5 is linear, it increases linearly. When the current decrease reaches the set value k at time t1, the logic output A becomes 1, and naturally the logic output C also becomes 1, and the logic output becomes 0. Therefore, the switching element 3 is turned off and the logic outputs A and C both become 0, but the time limit section 9
The logic output of No. 2 holds O for the time limit T. During this period, the output voltage E increases to a certain value at time t, but it is consumed by charging the rectifying and smoothing section 6 and by the load 8, so the time limit T
At later times, it will drop to some extent. When it becomes a time object, the logic output becomes 1 and the current begins to flow again. Thereafter, this operation is repeated and the output voltage E gradually increases.

時刻tnになって出力電圧Eが設定値Ecに達すると、
電流下が設定値ICに達しなくても、電圧検出部7の論
理出力Bが1従って論理出力Cが1となって論理出力り
が0となり、スイッチング素子3はオフ状態になって電
流下は断たれる。その結果出力電圧Eが設定値Ecよシ
低下すると、その低下分を補う分だけスイッチング素子
3はオン状態になって電流下が流れる。以後これを操シ
返して出力電圧Eは、はぼ一定電圧&に保たれる。
When the output voltage E reaches the set value Ec at time tn,
Even if the current drop does not reach the set value IC, the logic output B of the voltage detection section 7 becomes 1, so the logic output C becomes 1, and the logic output becomes 0, and the switching element 3 becomes OFF, and the current drop becomes 0. Cut off. As a result, when the output voltage E decreases by more than the set value Ec, the switching element 3 is turned on and a current flows by an amount that compensates for the decrease. Thereafter, this operation is repeated so that the output voltage E is kept at a more or less constant voltage &.

時刻tyu4から時刻tnr3の間に示すように、負荷
量の急変などがあって限時時間Tの間に出力電圧Eが設
定値Eeより低下した場合、スイッチング素子3は直ち
にオン状態にはならず、時刻two←から限時時間Tを
経過してはじめてスイッチング素子3はオン状態になる
。その際出力電圧Eは定常な場合の値より若干余分に低
下するが、その分は次のスイッチング素子3のオン状態
時に補なわれ、出力電圧Eは設定値kにほぼ保たれる。
As shown between time tyu4 and time tnr3, if the output voltage E falls below the set value Ee during the time limit T due to a sudden change in load, etc., the switching element 3 does not turn on immediately; The switching element 3 is turned on only after the time limit T has elapsed from the time two←. At this time, the output voltage E decreases a little more than the value in the steady case, but this amount is compensated for when the switching element 3 is next turned on, and the output voltage E is almost maintained at the set value k.

尚前述したように、各部にはヒステリシスがあるため、
出力電圧Eは設定値Ec付近で若干上下してリップル部
分が発生するが、これはオンオフ制御により定電圧を得
る方式のこの種電源装置いわゆるスイッチング レギュ
レータにおいては不可避の現象である。
As mentioned above, each part has hysteresis, so
The output voltage E slightly fluctuates around the set value Ec and a ripple portion occurs, but this is an unavoidable phenomenon in this type of power supply device, a so-called switching regulator, which obtains a constant voltage through on/off control.

以上の説明でわかるように本発明による電源装置におい
ては、入力電圧の上昇や負荷の短絡などいかなる要因が
加わってもスイッチング素子3及びこれと直列に接続さ
れているインダクタンス5には設定値IC以上の電流は
流れない。又出力電圧が設定値&以上になると、電力変
換の根本であるスイッチング素子3をオフ状態にしてし
まうため、出力電圧Eが過昇することも絶無になる。更
にインダクタンス5に流れる最大電流は設定値下Cで、
電流のしゃ断されている時間は限時部92の限時時間T
でそれぞれ任意に設定でき又それが動作の基本となって
いるため、スイッチング レギュレータでしばしば問題
となるインダクタンスの過飽和現象やリセット不足現象
を完全に防止することができる。尚これら電流の設定値
下C1限時時間Tの値は、電源装置の出力容量、スイッ
チング素子の定格、インダクタンスの必要リセット時間
等を考慮して定められるのは周知の通りである。又イン
ダクタンス5に流れる最大電流と、その電流が断たれて
いる時間とが確定されているということは、負荷8に供
給される最大電力が確定されるということであり、出力
電流がある値より増加すると出力電圧Eが低くなるいわ
ゆる垂下特性を示すということである。従って、負荷側
での事故時の安全性が高まると共に、電源装置の並列運
転も極めて容易となる。一方垂下特性の部分を積極的に
利用すれば、負特性の負荷例えば放電燈の電源として安
定器を省略できるというような新規な用途も開発できる
As can be seen from the above explanation, in the power supply device according to the present invention, even if any factor such as an increase in input voltage or a short circuit in the load is added, the switching element 3 and the inductance 5 connected in series with it will have a value higher than the set value IC. current does not flow. Furthermore, when the output voltage exceeds the set value &, the switching element 3, which is the basis of power conversion, is turned off, so that there is no possibility that the output voltage E will rise excessively. Furthermore, the maximum current flowing through the inductance 5 is below the set value C,
The time during which the current is cut off is the time limit time T of the time limit section 92.
Each can be set arbitrarily, and since these are the basis of operation, it is possible to completely prevent inductance oversaturation and insufficient reset phenomena, which often occur in switching regulators. It is well known that the value of the C1 time limit T below the set value of these currents is determined in consideration of the output capacity of the power supply, the rating of the switching element, the required reset time of the inductance, etc. Also, the fact that the maximum current flowing through the inductance 5 and the time during which the current is cut off is determined means that the maximum power supplied to the load 8 is determined, and the output current is lower than a certain value. This means that as the voltage increases, the output voltage E decreases, which is a so-called drooping characteristic. Therefore, safety in the event of an accident on the load side is improved, and parallel operation of the power supply devices becomes extremely easy. On the other hand, if the droop characteristic is actively utilized, new applications can be developed, such as a power source for a load with a negative characteristic, such as a discharge lamp, where a ballast can be omitted.

以上説明したように本発明によれば、入力側においてス
イッチング素子3とこれに流れる電流下が設定値により
大又は小に従って論理出力1又はOを出力する電流検出
部4とインダクタンス5とをそれぞれ直列に接続し、出
力側に出力電圧Eが設定値Ecよね大又は小に従って論
理出力1又は0を出力する電圧検出部7をもうけ、内部
に論理和演算を行なう論理部93その論理出力を受けて
限時動作を行ない且つ入力に対して否定形の論理出力を
出力する限時部更にその論理出力を受ける出力部91を
備えた制御部9をもうけ、前記電流検出部4と電圧検出
部7の論理出力を入力として論理部93に与えるよう接
続し、出力部91の論理出力が1又は0に従ってスイッ
チング素子3をオン又はオフ状態に制御するよう接続す
るという極めて単純な回路構成で、安全性及び信頼性の
高い電源装置を得ることができる。
As explained above, according to the present invention, on the input side, the switching element 3 and the inductance 5 are connected in series with the current detecting section 4 which outputs the logic output 1 or O according to the setting value of the current flowing therein. , and has a voltage detecting section 7 on the output side that outputs a logic output of 1 or 0 according to whether the output voltage E is larger or smaller than the set value Ec, and has a logic section 93 inside which performs an OR operation and receives the logic output. A control section 9 is provided, which includes a time limit section that performs a time limit operation and outputs a negative logic output in response to an input, and an output section 91 that receives the logic output, and outputs the logic outputs of the current detection section 4 and voltage detection section 7. is connected to the logic section 93 as an input, and connected so that the logic output of the output section 91 controls the switching element 3 to be on or off according to 1 or 0, and has a high level of safety and reliability. You can get a high power supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電源装置の主要部のブロック図、
第2図は第1図に示した電源装置各部の動作波形を模式
的に示したものである。 1−一商用電源。2.6一−整流平滑部。3−−スイッ
チング素子。4−一電流検出部。5−−インダクタンス
。7一−電圧検出部。8−一負荷。 9−一制御部。91−一出力部。92−一限時部。93
−一輪理部。
FIG. 1 is a block diagram of the main parts of the power supply device according to the present invention,
FIG. 2 schematically shows operating waveforms of each part of the power supply device shown in FIG. 1. 1-1 Commercial power supply. 2.6 - Rectifying smooth section. 3--Switching element. 4--Current detection section. 5--Inductance. 7- Voltage detection section. 8-One load. 9-1 control unit. 91-1 output section. 92-One-time period. 93
-Ichirin Ribu.

Claims (1)

【特許請求の範囲】[Claims] 入力側においてスイッチング素子3と電流検出部4とイ
ンダクタンス5とを直列に接続し、出力側に電圧検出部
7を配置し、内部に論理和演算を行なう論理部93とそ
の論理出力を受けて限時動作を行なう限時部92と更に
その論理出力を受けてスイッチング素子3を制御する出
力部91とを備えた制御部9を設うけ、電流検出部4と
電圧検出部7のそれぞれの論理出力を制御部9内部の論
理部93に与えるよう構成した電源装置。
The switching element 3, the current detection section 4, and the inductance 5 are connected in series on the input side, and the voltage detection section 7 is arranged on the output side. A control section 9 is provided, which includes a time limit section 92 that operates and an output section 91 that controls the switching element 3 in response to the logic output thereof, and controls the respective logic outputs of the current detection section 4 and the voltage detection section 7. A power supply device configured to supply power to the logic section 93 inside the section 9.
JP9594187A 1987-04-18 1987-04-18 Power source Pending JPS63262058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9594187A JPS63262058A (en) 1987-04-18 1987-04-18 Power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9594187A JPS63262058A (en) 1987-04-18 1987-04-18 Power source

Publications (1)

Publication Number Publication Date
JPS63262058A true JPS63262058A (en) 1988-10-28

Family

ID=14151293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9594187A Pending JPS63262058A (en) 1987-04-18 1987-04-18 Power source

Country Status (1)

Country Link
JP (1) JPS63262058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112380A (en) * 1989-04-10 1992-05-12 Kyowa Hakko Kogyo Co., Ltd. Preservative for plants comprising alkenylphosphonic acids and, optionally, dipicolinic acid
US5171351A (en) * 1989-04-10 1992-12-15 Kyowa Hakko Kogyo Co. Preservative for plants comprising epoxy compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112380A (en) * 1989-04-10 1992-05-12 Kyowa Hakko Kogyo Co., Ltd. Preservative for plants comprising alkenylphosphonic acids and, optionally, dipicolinic acid
US5171351A (en) * 1989-04-10 1992-12-15 Kyowa Hakko Kogyo Co. Preservative for plants comprising epoxy compounds

Similar Documents

Publication Publication Date Title
US8018694B1 (en) Over-current protection for a power converter
JP3415759B2 (en) Overcurrent protection circuit for switching power supply
US3521150A (en) Parallel series voltage regulator with current limiting
JP2000245141A (en) Dc-to-dc converter, switching regulator and lsi system provided therewith
US4024451A (en) Stabilized DC power supply device
JPS63262058A (en) Power source
US6577485B2 (en) Ultra-wide input range power supply for circuit protection devices
JP3493672B2 (en) Elevator inverter device
KR20070097093A (en) Converter
JP4294567B2 (en) Switching power supply device with overvoltage protection circuit
JPS634419B2 (en)
SU1078416A1 (en) Multichannel stabilized electric power source
JP2765704B2 (en) Overload protection circuit for switching regulator
JPH06217448A (en) Rush current preventer
JPH0274149A (en) Chopper
JPH0132084Y2 (en)
JPH06233533A (en) Overcurrent control circuit of variable output regulator
JPS61220012A (en) Dc stabilizing power source device
JPS60194754A (en) Power source
SU1273895A1 (en) Stabilized source of electric power
SU752295A1 (en) Dc voltage stabilizer
JPH05300738A (en) Dc power-supply apparatus
JP4034228B2 (en) Battery voltage compensation system
JPS6352667A (en) Auxiliary power source
JPH04322159A (en) Switching power source