JPS63261849A - Micro vacuum chuck - Google Patents
Micro vacuum chuckInfo
- Publication number
- JPS63261849A JPS63261849A JP62097702A JP9770287A JPS63261849A JP S63261849 A JPS63261849 A JP S63261849A JP 62097702 A JP62097702 A JP 62097702A JP 9770287 A JP9770287 A JP 9770287A JP S63261849 A JPS63261849 A JP S63261849A
- Authority
- JP
- Japan
- Prior art keywords
- chip
- vacuum chuck
- vacuum
- sucked
- suction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 8
- 229910052594 sapphire Inorganic materials 0.000 abstract description 3
- 239000010980 sapphire Substances 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Die Bonding (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Manipulator (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
可視光および赤外光に対して透明な材料からなり、微小
チップを吸引して移動できるマイクロ真空チャックを提
起し、チップを観察しながらチップを所定の位置に移動
できるようにして2位置合わせ精度を向上する。[Detailed Description of the Invention] [Summary] A micro vacuum chuck made of a material transparent to visible light and infrared light and capable of suctioning and moving a microchip is set up, and the chip is held in a predetermined position while observing the chip. This improves the accuracy of two-position alignment.
本発明は微小チップを吸引して移動できるマイクロ真空
チャックに関する。The present invention relates to a micro vacuum chuck that can suck and move microchips.
真空チャックは半導体等のチップをチップボンディング
、あるいはワイヤボンディングする時に使用するチップ
移動装置等に使用されている。Vacuum chucks are used in chip moving devices used for chip bonding or wire bonding of semiconductor chips and the like.
チップ移動装置においては、金属等のパイプを通してチ
ップを吸引する真空チャックが主に用いられているが、
チップ寸法が小さくなるに従ってパイプの径を小さくす
ることが必要となる。Vacuum chucks that suck chips through metal pipes are mainly used in chip transfer devices.
As the chip size decreases, it becomes necessary to decrease the diameter of the pipe.
しかしながら、パイプの径を200μm以下にするのは
加工精度上困難であり、移動できるチップ寸法には制限
があった。However, it is difficult to reduce the diameter of the pipe to 200 μm or less in terms of processing accuracy, and there is a limit to the size of the chip that can be moved.
第5図は従来の真空チャックとチップの関係を示す断面
図である。FIG. 5 is a sectional view showing the relationship between a conventional vacuum chuck and a chip.
図において、金属等のパイプからなる真空チャック51
は、チップ52を真空吸引して移動を行い所定位置に置
く。In the figure, a vacuum chuck 51 made of a metal pipe, etc.
The chip 52 is moved by vacuum suction and placed in a predetermined position.
従来例においては、真空チャック51の外径へはチップ
52の寸法Bより小さくなければならない。このため八
より寸法の小さいチップは移動不可能であった。In the conventional example, the outer diameter of the vacuum chuck 51 must be smaller than the dimension B of the chip 52. For this reason, chips smaller in size than 8 could not be moved.
また、チップ52上に真空チャック51があるので。Also, since there is a vacuum chuck 51 on the chip 52.
チップ51を真上から顕微鏡等で直接具ることができな
かった。従ってボンディングの際の位置合わせが困難で
あった。It was not possible to directly pick up the chip 51 from directly above using a microscope or the like. Therefore, alignment during bonding was difficult.
上記問題点の解決は、可視光および赤外光に対して透明
な材料からなる部材を有し、該部材は。A solution to the above problem includes a member made of a material transparent to visible light and infrared light.
チップを吸引する吸引孔と、吸引されたチップの占める
領域外に設けられ、かつ外部の排気系に接続する排気孔
と、該吸引孔と該排気孔間を接続する真空経路とを有し
てなり、該吸引孔にチップを吸引した際に該部材を通し
て千ノブを観察できるようにしたマイクロ真空チャック
により、あるいは、可視光および赤外光に対して透明な
材料からなる2枚の平板と、該2枚の平板間に気密を保
って挟まれ、かつ排気孔を有する筒状の部材とを有し、
一方の平板に吸引孔が開口されていることを特徴とする
マイクロ真空チャックにより達成される。It has a suction hole that suctions the chip, an exhaust hole that is provided outside the area occupied by the sucked chip and is connected to an external exhaust system, and a vacuum path that connects the suction hole and the exhaust hole. by means of a micro vacuum chuck that allows the thousand knobs to be observed through the member when the chip is sucked into the suction hole, or by two flat plates made of a material transparent to visible light and infrared light; a cylindrical member that is airtightly sandwiched between the two flat plates and has an exhaust hole;
This is achieved by a micro vacuum chuck characterized by having suction holes opened in one flat plate.
本発明は真空チャックの構成に可視光および赤外光に対
して透明な材料を用いることにより、前記のような、チ
ップの微小化にともないチャックの外径を小さくしなけ
ればならないという制約を取り除き、チップを真上から
顕微鏡等で直接観察できるようにしたものである。By using a material transparent to visible light and infrared light for the construction of the vacuum chuck, the present invention eliminates the above-mentioned restriction that the outer diameter of the chuck must be made smaller as chips become smaller. , which allows the chip to be observed directly from above using a microscope or the like.
第1図(1)、 (2)は第1の実施例を説明する真空
チャックの断面図と平面図である。FIGS. 1(1) and 1(2) are a sectional view and a plan view of a vacuum chuck illustrating a first embodiment.
図において、真空チャックは、可視光および赤外光に対
して透明な材料9例えばサファイアからなる平板状の部
材1内に、チップ5を吸引する吸引孔2と、吸引された
チップ5の占ある領域外に設けられ、かつ外部の排気系
(図示せず)に接続する排気孔3と、吸引孔2と排気孔
3間を接続する真空経路4を形成する。In the figure, the vacuum chuck has a suction hole 2 for suctioning a chip 5 in a flat member 1 made of a material 9 transparent to visible light and infrared light, for example, sapphire, and a hole 2 for sucking the chip 5. An exhaust hole 3 provided outside the area and connected to an external exhaust system (not shown), and a vacuum path 4 connecting the suction hole 2 and the exhaust hole 3 are formed.
部材1は厚さ800μmの円板を用い、吸引孔2は50
μmφ、真空経路4は400μmφ程度に加工する。ま
た1部材1の外径は吸引するチップの寸法以上の大きさ
にする。The member 1 uses a disk with a thickness of 800 μm, and the suction holes 2 have 50
The vacuum path 4 is machined to about 400 μmφ. Further, the outer diameter of one member 1 is made larger than the size of the tip to be aspirated.
排気孔3は排気管6に接続されて、真空引きを行う。The exhaust hole 3 is connected to an exhaust pipe 6 to perform evacuation.
以上の構成をもつ真空チャックは、吸引孔にチップを吸
引した際に部材1を通してチップを観察することができ
る。The vacuum chuck having the above configuration allows the chip to be observed through the member 1 when the chip is sucked into the suction hole.
また上記のように、チャックの厚さは1 mm程度まで
薄くできるので、顕微鏡のワーキングディスタンスを小
さくとれる。従って、20×以上の高倍率で観測でき、
チップの位置合わせ精度を向上することができる。Furthermore, as mentioned above, since the thickness of the chuck can be reduced to about 1 mm, the working distance of the microscope can be reduced. Therefore, it can be observed at a high magnification of 20x or more,
Chip positioning accuracy can be improved.
第2図(1)〜(3)は第2の実施例を説明する真空チ
ャックの断面図、平面図と溝の断面図である。FIGS. 2(1) to 2(3) are a cross-sectional view, a plan view, and a cross-sectional view of a groove of a vacuum chuck explaining a second embodiment.
第1図と異なる点は、平板状の部材1が、吸引孔2を形
成した部材IAと、真空経路4を形成した部材IBとを
重ねて構成されている点である。The difference from FIG. 1 is that the flat member 1 is constructed by overlapping a member IA in which a suction hole 2 is formed and a member IB in which a vacuum path 4 is formed.
部材IAは厚さ100μmの円板を用い、吸引孔2は5
0μmφに加工する。The member IA is a disk with a thickness of 100 μm, and the suction holes 2 are 5
Processed to 0 μmφ.
、部材IBは厚さ400〜800μm程度の円板を用い
。As member IB, a disk having a thickness of about 400 to 800 μm is used.
真空経路4は部材IBの表面に深さ200〜500μm
の溝を掘って形成する(第2図(3))。The vacuum path 4 is provided at a depth of 200 to 500 μm on the surface of member IB.
(Fig. 2 (3)).
溝の片端の排気孔3は排気管6に接続されて。An exhaust hole 3 at one end of the groove is connected to an exhaust pipe 6.
真空引きを行う。また溝の他端は封止カバー7により密
閉する。Perform vacuuming. Further, the other end of the groove is sealed by a sealing cover 7.
第1図の場合は3部材1に真空経路4を穿孔するのが困
難であるのに比べ、この場合は溝加工により容易に真空
経路4を形成することができる利点がある。In the case of FIG. 1, it is difficult to drill the vacuum path 4 in the three members 1, but this case has the advantage that the vacuum path 4 can be easily formed by groove machining.
第3図は第3の実施例を説明する真空チャックの断面図
と平面図である。FIG. 3 is a sectional view and a plan view of a vacuum chuck explaining a third embodiment.
第2図と異なる点は、吸引孔2を形成した部材IAと、
平板状の加工しない部材18間に、排気孔3を有する金
属製の筒状の部材8を気密を保って挟んで構成した点で
ある。The difference from FIG. 2 is that the member IA in which the suction hole 2 is formed,
A metal cylindrical member 8 having an exhaust hole 3 is sandwiched between flat unprocessed members 18 in an airtight manner.
この場合は、真空チャックの厚さは5 mm程度にしか
薄くできないが、吸引力を大きくとれる利点がある。In this case, the thickness of the vacuum chuck can only be reduced to about 5 mm, but it has the advantage of being able to provide a large suction force.
また1部材IBを部材IAに対して僅かに傾斜して構成
すると、顕mtk観察のときの反射光を防止して、観察
をしやすくすることができる。Furthermore, if one member IB is configured to be slightly inclined with respect to member IA, reflected light can be prevented during microscopic mtk observation, making observation easier.
以上の第1図〜第3図の実施例においては吸引孔を1個
だけ開けたが、チップの大きさによっては複数個開けて
もよい。Although only one suction hole is provided in the embodiments shown in FIGS. 1 to 3 above, a plurality of suction holes may be provided depending on the size of the chip.
第4図(11,(21は本発明の応用例を示す半導体チ
ップと、チップを搭載し、ボンディングする基板の断面
図である。FIG. 4 (11 and 21 are cross-sectional views of a semiconductor chip and a substrate on which the chip is mounted and bonded) showing an application example of the present invention.
第4図(1)はPIN(1’ type−Intrin
sic−N type)構造のフォトダイオード(PI
N ’PD)チップの断面図である。Figure 4 (1) shows the PIN (1' type-Intrin
sic-N type) structure photodiode (PI
N'PD) is a cross-sectional view of the chip.
チップ5はつぎのような構造をもっている。The chip 5 has the following structure.
すなわち、 InP基板5Aの受光領域にInGaAs
光吸収層5Bが形成され、この層は受光領域の周囲に形
成された溝’5Cにより周囲より分隔されている。That is, InGaAs is placed in the light receiving area of the InP substrate 5A.
A light absorbing layer 5B is formed, and this layer is separated from the surroundings by a groove '5C formed around the light receiving area.
チップ表面には、受光領域にp側電極Pが。On the chip surface, there is a p-side electrode P in the light receiving area.
またその周囲に溝43を隔ててn側電極Nが形成されて
いる。Further, an n-side electrode N is formed around it with a groove 43 in between.
チップ寸法は200μm角以下、厚さは40〜60μm
である。Chip size is 200μm square or less, thickness is 40-60μm
It is.
InPは厚さ100μm程度以下になると波長1.8μ
m程度の赤外光に対して透明となり、チップ裏面より真
空チャックで吸引しても電極P、 Nは観察でき1位置
合わせには支障をきたさない。InP has a wavelength of 1.8μ when the thickness is about 100μm or less.
It is transparent to infrared light of about 500 m, and electrodes P and N can be observed even if the chip is suctioned from the back side of the chip using a vacuum chuck, and alignment will not be affected.
第4図(2)はチップ5をセラミック基板41上に搭載
した図で、チップ5の電極P、 Nを基板41上に形成
された配線層42に位置合わせして載せ、ボンディング
して固定する。FIG. 4(2) is a diagram in which the chip 5 is mounted on a ceramic substrate 41. The electrodes P and N of the chip 5 are aligned and placed on the wiring layer 42 formed on the substrate 41, and fixed by bonding. .
PIN PDはAPD(Avalanche Phot
odiode)のように増倍を伴わないため、応答速度
は速いが感度が低いので、セラミック基板の代わりに、
増幅器を造り込んだGaAs基板に搭載することもある
。PIN PD is APD (Avalanche Photo
Since it does not involve multiplication like diodes), the response speed is fast but the sensitivity is low, so instead of a ceramic substrate,
Sometimes it is mounted on a GaAs substrate with an amplifier built into it.
以上詳細に説明したように本発明によれば。 According to the present invention as described in detail above.
200μm以下の微小チップを吸引して移動することが
できる。It is possible to suction and move microchips of 200 μm or less.
また1、微小チップを真上からも、斜めからも観察する
ことがことができ、±4μm以下の良好な位置精度でチ
ップを所定の位置に置(ことができる。In addition, 1. The microchip can be observed both from directly above and from an angle, and the chip can be placed in a predetermined position with a good positional accuracy of ±4 μm or less.
第1図(1)、 (2)は第1の実施例を説明する真空
チャックの断面図と平面図。
第2図(11〜(3)は第2の実施例を説明する真空チ
の断面図と平面図。
第4図(1)、 (2)は本発明の応用例を示す半導体
チップと、チップを搭載し、ボンディングする基板の断
面図。
第5図は従来の真空チャックとチップの関係を示す断面
図である。
図において。
1はサファイアからなる平板状の部材。
IAは吸引孔2を形成した部材。
1Bは真空経路4を形成した部材。
2は吸引孔。
3は排気孔。
4は真空径路。
5はチップ。
6は排気管。
7は封止カバー。
8は排気孔3を有する金属製の筒状の部材第1の実旅イ
列の断面図と平面図
第1 図
q、!子よりハ゛’−4,1空経路
第2の寅諏イ列のUr断面図平面図
N2図
8、箇1ズの部材
第 3 図FIGS. 1(1) and 1(2) are a sectional view and a plan view of a vacuum chuck explaining a first embodiment. Fig. 2 (11 to (3)) are a cross-sectional view and a plan view of a vacuum chip explaining a second embodiment. Fig. 4 (1) and (2) are a semiconductor chip and a chip showing an application example of the present invention. A cross-sectional view of a substrate on which is mounted and bonded. Figure 5 is a cross-sectional view showing the relationship between a conventional vacuum chuck and a chip. In the figure. 1 is a flat member made of sapphire. IA is a suction hole 2 formed. 1B is a member that forms the vacuum path 4. 2 is a suction hole. 3 is an exhaust hole. 4 is a vacuum path. 5 is a chip. 6 is an exhaust pipe. 7 is a sealing cover. 8 has an exhaust hole 3 Cross-sectional view and plan view of the first actual travel row of metal cylindrical members Fig. 1 Figure q,! Figure 8, item 1 parts Figure 3
Claims (5)
占める領域外に設けられ、かつ外部の排気系に接続する
排気孔と、該吸引孔と該排気孔間を接続する真空経路と
を有し、かつ可視光および赤外光に対して透明な材料か
らなる部材を有し、該吸引孔にチップを吸引した際に該
部材を通してチップを観察できるようにしたことを特徴
とするマイクロ真空チャック。(1) A suction hole that suctions the chip, an exhaust hole that is provided outside the area occupied by the sucked chip and connects to an external exhaust system, and a vacuum path that connects the suction hole and the exhaust hole. and a member made of a material transparent to visible light and infrared light, and the chip can be observed through the member when the chip is sucked into the suction hole. Chuck.
いることを特徴とする特許請求の範囲第1項記載のマイ
クロ真空チャック。(2) The micro vacuum chuck according to claim 1, wherein the member is composed of one or two flat plates.
2枚の平板と、該2枚の平板間に気密を保って挟まれ、
かつ排気孔を有する筒状の部材とを有し、一方の平板に
吸引孔が開口されてなることを特徴とするマイクロ真空
チャック。(3) two flat plates made of a material transparent to visible light and infrared light; sandwiched between the two flat plates while maintaining airtightness;
A micro vacuum chuck characterized in that it has a cylindrical member having an exhaust hole, and a suction hole is opened in one flat plate.
を特徴とする特許請求の範囲第3項記載のマイクロ真空
チャック。(4) The micro vacuum chuck according to claim 3, wherein the two flat plates are arranged substantially parallel to each other.
されていることを特徴とする特許請求の範囲第3項記載
のマイクロ真空チャック。(5) The micro vacuum chuck according to claim 3, wherein the two flat plates are arranged at a slight angle to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62097702A JPS63261849A (en) | 1987-04-20 | 1987-04-20 | Micro vacuum chuck |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62097702A JPS63261849A (en) | 1987-04-20 | 1987-04-20 | Micro vacuum chuck |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63261849A true JPS63261849A (en) | 1988-10-28 |
JPH0581178B2 JPH0581178B2 (en) | 1993-11-11 |
Family
ID=14199256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62097702A Granted JPS63261849A (en) | 1987-04-20 | 1987-04-20 | Micro vacuum chuck |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63261849A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049511A (en) * | 2010-07-27 | 2012-03-08 | Nsk Ltd | Component processing device and component joining device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07268898A (en) * | 1994-03-31 | 1995-10-17 | Masago Kogyo Kk | Hydraulic grab bucket |
US7348076B2 (en) * | 2004-04-08 | 2008-03-25 | Saint-Gobain Ceramics & Plastics, Inc. | Single crystals and methods for fabricating same |
US11047650B2 (en) | 2017-09-29 | 2021-06-29 | Saint-Gobain Ceramics & Plastics, Inc. | Transparent composite having a laminated structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5198978A (en) * | 1975-02-26 | 1976-08-31 | ic bondayokoretsuto | |
JPS554575U (en) * | 1978-06-26 | 1980-01-12 | ||
JPS5575147U (en) * | 1978-11-20 | 1980-05-23 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5463183A (en) * | 1977-10-31 | 1979-05-21 | Yokohama Rubber Co Ltd | Roller head extruder |
-
1987
- 1987-04-20 JP JP62097702A patent/JPS63261849A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5198978A (en) * | 1975-02-26 | 1976-08-31 | ic bondayokoretsuto | |
JPS554575U (en) * | 1978-06-26 | 1980-01-12 | ||
JPS5575147U (en) * | 1978-11-20 | 1980-05-23 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049511A (en) * | 2010-07-27 | 2012-03-08 | Nsk Ltd | Component processing device and component joining device |
Also Published As
Publication number | Publication date |
---|---|
JPH0581178B2 (en) | 1993-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5169196A (en) | Non-contact pick-up head | |
JP6338555B2 (en) | Adsorption mechanism, adsorption method, production apparatus and production method | |
US8484820B2 (en) | Semiconductor device fabricating method and fabricating apparatus | |
US20120079672A1 (en) | Unit for removing foreign matter and apparatus and method for semiconductor packaging using the same | |
JPH08250574A (en) | Vacuum collet for semiconductor die pickup | |
KR20020089459A (en) | Top illuminated opto-electronic devices integrated with micro-optics and electronic integrated circuits | |
US5023426A (en) | Robotic laser soldering apparatus for automated surface assembly of microscopic components | |
KR102399929B1 (en) | Die bonder | |
KR20190119031A (en) | Method and device for bonding chips | |
KR20140120845A (en) | Plate-like object having with alignment mark | |
JPS63261849A (en) | Micro vacuum chuck | |
CN219419001U (en) | End effector, robot and device for carrying wafer | |
US4634043A (en) | Engaging second articles to engaged first articles | |
CN100466301C (en) | Semiconductor light-receiving device and method for manufacturing same | |
US9609191B2 (en) | Image pickup unit and method for manufacturing the same | |
JP2002337034A (en) | Plane emission type suction table | |
CN113990790A (en) | Bonding system and bonding method | |
JPH04196189A (en) | Semiconductor laser | |
US11551921B1 (en) | Miniaturized vacuum package and methods of making same | |
JP2005136109A (en) | Collet for die bonding | |
CN115083985A (en) | Wafer non-contact type taking and placing hand | |
JP3134795B2 (en) | Pressure sensor and method of manufacturing the same | |
JP2000323504A (en) | Collet for adsorbing semiconductor chip | |
KR20210095347A (en) | Magnetic collet applicable to collet holder with flat contact surface | |
JP3217399U (en) | tweezers |