[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63260883A - Mn-zn base ferrite core with good high frequency properties - Google Patents

Mn-zn base ferrite core with good high frequency properties

Info

Publication number
JPS63260883A
JPS63260883A JP62232568A JP23256887A JPS63260883A JP S63260883 A JPS63260883 A JP S63260883A JP 62232568 A JP62232568 A JP 62232568A JP 23256887 A JP23256887 A JP 23256887A JP S63260883 A JPS63260883 A JP S63260883A
Authority
JP
Japan
Prior art keywords
high frequency
ferrite core
calcium
compound
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62232568A
Other languages
Japanese (ja)
Inventor
中村 広登
秀明 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62232568A priority Critical patent/JPS63260883A/en
Publication of JPS63260883A publication Critical patent/JPS63260883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、偏向ヨークやフライバックトランス、電源
用トランス等の用途に用いて好適な高周波特性に優れた
Mn −Zn系フェライトコアおよびその製造方法に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a Mn-Zn ferrite core with excellent high frequency characteristics suitable for use in deflection yokes, flyback transformers, power transformers, etc., and its production. It is about the method.

(従来の技術) 上記の如きトランスコアに対して要求される特性として
は、高周波域における鉄損が低いこと、ならびに飽和磁
束密度(Bs)および初透磁率が高いことが挙げられる
(Prior Art) Characteristics required of the transformer core as described above include low iron loss in a high frequency range, and high saturation magnetic flux density (Bs) and high initial magnetic permeability.

ここに周波数の高い領域において鉄損を減少させるため
には、ヒステリシス損を低減させる必要があるのは勿論
のこと、渦電流損も同時に下げなければならない。
In order to reduce iron loss in a high frequency region, it is necessary to reduce not only hysteresis loss but also eddy current loss at the same time.

渦電流損の低減方法としては、たとえば特公昭36−8
380号公報や特公昭36−2283号公報に開示され
ているように、素材中に0.05〜0.5wtχ程度の
酸化カルシウムを含有させてフェライトの結晶粒界にそ
れらを析出させ、粒界抵抗を高めることが有効な手段で
あることが知られている。
As a method for reducing eddy current loss, for example,
As disclosed in Japanese Patent Publication No. 380 and Japanese Patent Publication No. 36-2283, approximately 0.05 to 0.5 wtχ of calcium oxide is contained in the material and precipitated at the grain boundaries of ferrite. It is known that increasing resistance is an effective means.

また特公昭48−6759号公報には、Caのクロライ
ド塩の添加が有効であると報告されている。この方法に
よれば、Caのクロライド塩はフェライトの焼結温度即
ち900°Cから1350″Cにおいて、Fe、0゜や
Mn3O4、ZnO等と反応して酸化物スピネルを形成
する一方、塩素は反応時に蒸発して、固相中には残らな
い。しかもこうして作られたフェライトコア中のCaイ
オンは、スピネル構造に殆ど固溶することなく結晶粒界
に析出しやすい。従ってCaクロライド塩の添加は高抵
抗被膜の形成に役立つとされている。
Further, Japanese Patent Publication No. 48-6759 reports that addition of Ca chloride salt is effective. According to this method, Ca chloride salt reacts with Fe, 0°, Mn3O4, ZnO, etc. to form oxide spinel at the ferrite sintering temperature, that is, 900°C to 1350″C, while chlorine reacts with Ca ions in the ferrite core produced in this way tend to precipitate at the grain boundaries without being dissolved in the spinel structure.Therefore, the addition of Ca chloride salt is It is said to be useful in forming high-resistance films.

添加物としては上記したカルシウム化合物のほかにも、
CaO−Sin、 (NECRe5earch & D
evelopment。
In addition to the calcium compounds mentioned above, additives include
CaO-Sin, (NECRe5earch & D
development.

p、66+ Nα19(1970)参照) 、CaO−
VzOs (特公昭37−15077号公報参照)及び
CaO−VzOs −5i(h  (特開昭59−20
3768号公報参照)が知られ、これらの適当な配合で
の添加が高抵抗粒界相の形成に寄与する。
p, 66+ Nα19 (1970)), CaO−
VzOs (see Japanese Patent Publication No. 37-15077) and CaO-VzOs -5i(h (Japanese Patent Publication No. 59-20)
3768) are known, and their addition in an appropriate blend contributes to the formation of a high-resistance grain boundary phase.

ここに上記した方法ではいずれも、酸化カルシウムや塩
化カルシウムなどの添加は原料粉末中に、粉末または溶
液の形で混合し、しかる後仮焼するか、あるいは原料粉
末を仮焼した後に十分粉砕し、しかる後粉末又は溶液の
形で混合する方法が採用されていた。
In all of the above methods, calcium oxide, calcium chloride, etc. are added to the raw material powder by mixing it in powder or solution form and then calcining it, or by thoroughly crushing the raw material powder after calcining it. , followed by mixing in powder or solution form.

(発明が解決しようとする問題点) 上記したような方法によって得られる焼結体は一般に、
添加物効果により粒界に高抵抗層が形成され、しかも微
細粒組織が得られるため、低損失化には有利ではあった
ものの、高透磁率化には不利なところに問題を残してい
た。。
(Problems to be solved by the invention) Generally, the sintered body obtained by the method described above is
A high resistance layer is formed at the grain boundaries due to the additive effect, and a fine grain structure can be obtained, which is advantageous in reducing loss, but it is disadvantageous in increasing magnetic permeability. .

すなわち、7頭にも述べたように各種トランス用コアに
は高周波域における鉄損が低いだけでなく、初透磁率が
高いことも併せて要求゛されるのであるが、従来の技術
では低損失化と高透磁率化を同時に満足することは難し
く、その改善が望まれていたのである。
In other words, as mentioned in Section 7, cores for various transformers are required not only to have low iron loss in the high frequency range, but also to have high initial magnetic permeability, but conventional technology does not have low iron loss. It is difficult to satisfy the requirements of high magnetic permeability and high magnetic permeability at the same time, and improvements have been desired.

この発明は、上述した現状に鑑みて開発されたもので、
高周波域における鉄損特性のみならず、初透磁率にも優
れたフェライトコアをその有利な製造方法と共に提案す
ることを目的とする。
This invention was developed in view of the above-mentioned current situation.
The purpose of this paper is to propose a ferrite core that has excellent initial permeability as well as iron loss characteristics in a high frequency range, along with an advantageous manufacturing method.

(問題点を解決するための手段) さて発明者等は、上記の問題を解決すべく数多くの実験
を重ねた結果、従来の添加物の添加方法を改め、成形体
に加工したのち、かかる成形体に添加物の溶液を含浸さ
せることによって焼結体に添加物の濃度勾配が付与され
、かくして低損失化と高透磁率化とが同時に満足される
ことの知見を得た。
(Means for solving the problem) As a result of numerous experiments to solve the above problem, the inventors modified the conventional method of adding additives, processed it into a molded product, and then It has been found that by impregnating the sintered body with a solution of the additive, a concentration gradient of the additive is imparted to the sintered body, thereby achieving both low loss and high magnetic permeability.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、表層に、表面付着量が0.1〜2
0■/CHI”のカルシウムの濃化層をそなえて成る高
周波特性に優れたMn−Zn系フェライトコア、および
表層に、表面付着量が0.1〜20■/cm”のカルシ
ウムとけい素及びバナジウムのいずれか1種又は2種と
の濃化層をそなえて成る高周波特性に優れたMn −Z
n系フェライトコアである。
That is, in this invention, the amount of surface adhesion is 0.1 to 2 on the surface layer.
Mn-Zn ferrite core with excellent high-frequency characteristics, which has a concentrated layer of calcium with a concentration of 0.0cm/CHI, and a surface layer containing calcium, silicon, and vanadium with a surface adhesion of 0.1 to 20cm/cm. Mn-Z with excellent high frequency characteristics, comprising a layer enriched with one or two of the following:
It is an n-type ferrite core.

またこの発明は、主要成分としてのPet’sに、Mn
OとZnOを所定量配合したのち、混合、粉砕、仮焼、
造粒工程を経て成形し、ついで該成形体にカルシウム化
合物を0.1〜15.Owtχの範囲で含む処理液を含
浸させ、しかるのち乾燥ついで焼成することから成る高
周波特性に優れたMn −Zn系フェライトコアの製造
方法及び主要成分としてのFe、O,に、MnOとZn
Oを所定量配合したのち、混合、粉砕、仮焼、造粒工程
を経て成形し、ついで該成形体にカルシウム化合物とけ
い素化合物及びバナジウム化合物のいずれか1種又は2
種とを0.1〜10.0wtχの範囲で含む処理液を含
浸させ、しかるのち乾燥ついで焼成することを特徴とす
る高周波特性に優れたMn −Zn系フェライトコアの
製造方法である。
In addition, this invention provides Pet's as a main component, Mn
After mixing O and ZnO in predetermined amounts, mixing, crushing, calcining,
The molded body is molded through a granulation process, and then 0.1 to 15% of a calcium compound is added to the molded body. A method for manufacturing an Mn-Zn ferrite core having excellent high frequency characteristics, which comprises impregnating a treatment liquid containing a treatment liquid in a range of Owtχ, followed by drying and firing;
After blending a predetermined amount of O, it is molded through a mixing, pulverizing, calcining, and granulating process, and then one or two of a calcium compound, a silicon compound, and a vanadium compound are added to the molded body.
This is a method for manufacturing an Mn--Zn-based ferrite core with excellent high frequency characteristics, which is characterized by impregnating the core with a treatment solution containing seeds in a range of 0.1 to 10.0 wtx, followed by drying and firing.

以下この発明を具体的に説明する。This invention will be specifically explained below.

前述したとおり、鉄損の大部分を占める渦電流損を下げ
るためには、高抵抗層の形成と結晶粒の均一微細化が必
要である。一方高透磁率化のためには磁壁の動きを容易
にすること、即ち結晶粒を大きくすることが必要である
As mentioned above, in order to reduce eddy current loss, which accounts for the majority of iron loss, it is necessary to form a high resistance layer and uniformly refine crystal grains. On the other hand, in order to increase magnetic permeability, it is necessary to facilitate the movement of domain walls, that is, to increase the size of crystal grains.

この発明では、成形体にカルシウム化合物を含む溶液、
又はカルシウム化合物とけい素化合物及びバナジウム化
合物のいずれか1種又は2種とを含む溶液を含浸させる
ことによって成形体表面から内部にわたりカルシウム又
は、カルシウムとけい素および/又はバナジウムの元素
(以下濃化元素と総称する)の濃度勾配を与え、しかる
のち充分乾燥してから焼成する。このような方法によれ
ば、焼結体の表層部は微細結晶粒でかつ高抵抗層が形成
される一方、内部は比較的結晶粒が大きい組織が得られ
、かくして初透磁率を低下させることなくしかも高周波
鉄損特性を著しく向上させ得るのである。
In this invention, a solution containing a calcium compound in the molded body,
Alternatively, by impregnating a solution containing a calcium compound and one or two of a silicon compound and a vanadium compound, calcium or calcium and silicon and/or vanadium elements (hereinafter referred to as enriched elements) can be formed from the surface to the inside of the molded body. A concentration gradient of (generally referred to as) is applied, and then, after sufficient drying, firing is performed. According to this method, a high resistance layer with fine crystal grains is formed in the surface layer of the sintered body, while a structure with relatively large crystal grains is obtained in the interior, thus reducing the initial magnetic permeability. Moreover, the high frequency iron loss characteristics can be significantly improved.

(作 用) 以下、この発明に従うフェライトコアの製造方法を、工
程順に具体的に説明する。
(Function) Hereinafter, the method for manufacturing a ferrite core according to the present invention will be specifically explained in order of steps.

まず原料としては、酸化第2鉄(Fezes)を主原料
として、MnおよびZnの金属酸化物を所定量配合した
ものを用いる。必要に応じて、例えば粒径が適当でない
場合等には、各々配合前に粉砕工程を入れてもかまわな
い。
First, as a raw material, a material containing ferric oxide (Fezes) as the main raw material and a predetermined amount of metal oxides of Mn and Zn is used. If necessary, for example, if the particle size is not appropriate, a pulverization step may be added before each compounding.

ついでこの原料を、ボールミルや振動ミルによって好ま
しくは平均粒径0.8〜1.2μm程度まで混合、粉砕
したのち、仮焼する。ここに仮焼は、本焼成における均
質な反応を助勢し、かつ反応により過度の収縮を緩和す
る意味で重要であり、本焼成よりも100〜300°C
低い800〜1100°C程度の温度で行うことが好ま
しい。
Next, the raw materials are mixed and pulverized using a ball mill or a vibration mill, preferably to an average particle size of about 0.8 to 1.2 μm, and then calcined. Here, calcination is important in the sense of promoting a homogeneous reaction in the main firing and mitigating excessive shrinkage due to the reaction.
It is preferable to carry out at a low temperature of about 800 to 1100°C.

次に、仮焼粉を粉砕した後スプレードライヤーなどで造
粒する。
Next, the calcined powder is pulverized and then granulated using a spray dryer or the like.

なおこの発明では、上記した混合、粉砕、仮焼および造
粒は、必ずしも上述したとおりの順序で行う必要はなく
、たとえば粉砕工程と仮焼工程とを逆の順序としてもよ
い。
In the present invention, the above mixing, pulverization, calcination, and granulation do not necessarily have to be performed in the order as described above, and for example, the pulverization step and the calcination step may be performed in the reverse order.

しかるのち、プレス加工等により所定の形状に成形する
わけであるが、この発明では、かくして得られた成形体
に対して、濃化元素の化合物を含む処理液を含浸させる
ところに特徴がある。
Thereafter, it is molded into a predetermined shape by pressing or the like, and the present invention is characterized in that the molded product thus obtained is impregnated with a treatment liquid containing a compound of a concentrating element.

第1図に、FezQ、、 : 70.9htχ(以下単
に%で示す)。
In FIG. 1, FezQ: 70.9htχ (hereinafter simply shown in %).

MnO: 19.6%、 ZnO: 9.5%の組成に
なる成形体に種々の濃度になる塩化カルシウム水溶液を
含浸させ、しかるのち乾燥、焼成して得た焼結体の磁気
特性について調べた結果を示す。
The magnetic properties of the sintered bodies obtained by impregnating a molded body with a composition of MnO: 19.6% and ZnO: 9.5% with calcium chloride aqueous solutions of various concentrations, then drying and firing were investigated. Show the results.

同図より明らかなように、塩化カルシウムの濃度が0.
1〜15%の水溶液を含浸処理した試料の磁気特性がと
りわけ優れていた。
As is clear from the figure, the concentration of calcium chloride is 0.
The magnetic properties of the samples impregnated with a 1-15% aqueous solution were particularly excellent.

塩化カルシウム濃度が0.1%未満の水溶液を含浸させ
た試料の磁気特性は同図から明らかなように鉄損の向上
が認められない。この理由は、塩化カルシウムの濃度が
低過ぎるために焼結体の固有抵抗増加に寄与しなかった
ものと考えられる。一方15%を超える塩化カルシウム
水溶液を含浸させた試料では鉄損の向上はわずかに見ら
れるものの、反面で初透磁率の低下が著しい、この理由
は塩化カルシウム量が過度に多過ぎたことにより粒成長
の抑制効果が強く働らきすぎ、焼結体の結晶組織が極度
に小さくなったためと考えられる。
As is clear from the figure, no improvement in core loss was observed in the magnetic properties of the sample impregnated with an aqueous solution containing calcium chloride at a concentration of less than 0.1%. The reason for this is considered to be that the concentration of calcium chloride was too low and did not contribute to an increase in the resistivity of the sintered body. On the other hand, samples impregnated with an aqueous solution of calcium chloride exceeding 15% showed a slight improvement in iron loss, but on the other hand, a significant decrease in initial permeability was observed. This is thought to be because the growth suppressing effect was too strong and the crystal structure of the sintered body became extremely small.

以上の理由から、この発明では、含浸処理液中における
カルシウム化合物濃度を0.1〜15%の範囲に限定し
た。
For the above reasons, in the present invention, the calcium compound concentration in the impregnating solution is limited to a range of 0.1 to 15%.

また同様の実験を、処理液にカルシウム化合物、けい素
化合物およびバナジウム化合物のスラリー(重量比Ca
b/(Sift +VzOs)= 3.8)を用いて行
ったところ、処理液の濃度が0.1〜10.0%のスラ
リーを含浸処理した試料の磁気特性が優れていたため、
カルシウム化合物とけい素化合物およびバナジウム化合
物のいずれか1種又は2種とを含む処理液の化合物濃度
は0.1〜10.0%の範囲に限定した。この場合スラ
リーは、濃度を均一にするため、適当な撹拌機を用いて
、均一混合させる。
Similar experiments were also carried out using a slurry of calcium compounds, silicon compounds, and vanadium compounds (weight ratio Ca
b/(Sift + VzOs) = 3.8), the magnetic properties of the samples impregnated with the slurry with a treatment solution concentration of 0.1 to 10.0% were excellent;
The compound concentration of the treatment liquid containing a calcium compound and one or both of a silicon compound and a vanadium compound was limited to a range of 0.1 to 10.0%. In this case, the slurry is uniformly mixed using a suitable stirrer to make the concentration uniform.

なお含浸の方法は、化合物を上記した各範囲で含有する
処理液中に数秒間浸漬させるか或いはエアーガン、スプ
レーガン等で上記処理液を成形体に吹き付けても良い。
The impregnation may be carried out by immersing the molded body in a treatment liquid containing the compound within the above-mentioned range for several seconds, or by spraying the treatment liquid onto the molded body using an air gun, a spray gun, or the like.

ただし前者の方法を用いる場合、浸漬時間が長過ぎると
焼結後にひび割れを生じたり、高濃度のカルシウムが内
部にまで浸透し過ぎて、初透磁率の低下や、鉄損の増加
等の特性劣化を招くおそれが大きいので、カルシウム化
合物を含む処理液での浸漬時間は1〜5秒程度に、一方
力ルウシム化合物とけい素およびバナジウム化合物とを
含む処理液での浸漬時間は1〜10秒程度にすることが
好ましい。さらに処理液にスラリーを用いる場合は充分
に撹拌して均一な組成にしておくことが望ましく、また
濃化元素の重量比、すなわちCab/Sin、 、 C
aO/V、0.またはCaO/(SiOz+Vies)
の重量比は0.2未満であると鉄損低下の効果が少ない
ので、重量比は0.2以上とすることが好ましい。
However, when using the former method, if the immersion time is too long, cracks may occur after sintering, or high concentrations of calcium may penetrate too far into the interior, resulting in property deterioration such as a decrease in initial magnetic permeability and an increase in iron loss. Therefore, the immersion time in a treatment solution containing a calcium compound should be about 1 to 5 seconds, while the immersion time in a treatment solution containing a lucium compound and a silicon and vanadium compound should be about 1 to 10 seconds. It is preferable to do so. Furthermore, when using a slurry for the processing liquid, it is desirable to sufficiently stir it to make the composition uniform, and also to adjust the weight ratio of the concentrating elements, i.e., Cab/Sin, , C
aO/V, 0. or CaO/(SiOz+Vies)
If the weight ratio is less than 0.2, the effect of reducing iron loss will be small, so the weight ratio is preferably 0.2 or more.

ついで常法に従い、80〜120°C程度の温度で乾燥
させたのち、酸素分圧を調整しながら1200〜140
0°C22〜4時間程度の焼成を施して、完全にフェラ
イト化させた焼結体とするのである。
Next, according to the usual method, after drying at a temperature of about 80 to 120 °C, drying at a temperature of about 1200 to 140 °C while adjusting the oxygen partial pressure.
The material is fired at 0° C. for about 22 to 4 hours to form a sintered body that is completely ferrite-formed.

また上記した適切な処理液の含浸によって得られた磁気
特性の良好な試料について調査したところ、どの試料に
おいても濃化元素の表面付着量は0.1〜20■/cm
”の範囲にあることがわかった。
In addition, when we investigated samples with good magnetic properties obtained by impregnation with the above-mentioned appropriate treatment liquid, it was found that the amount of surface adhesion of concentrated elements was 0.1 to 20 μ/cm in all samples.
” was found to be in the range.

さらにこの表面付着量と濃化層の濃度勾配との関係につ
いて調べた結果を、第2図(a)、 (b)にそれぞれ
示す。なお濃度勾配は、試料の厚みにわたる電気固有抵
抗の測定値にて表わした。
Furthermore, the results of investigating the relationship between the amount of surface adhesion and the concentration gradient of the concentrated layer are shown in FIGS. 2(a) and 2(b), respectively. Note that the concentration gradient was expressed by the measured value of electrical resistivity over the thickness of the sample.

同図から明らかなように、表面付着量が上記の範囲から
外れると有効な濃度勾配が付与されていない。
As is clear from the figure, when the amount of surface adhesion is outside the above range, no effective concentration gradient is provided.

そこで濃化層における濃化元素の表面付着量を、0.1
〜20■/c112の範囲に限定した。ちなみに、以上
の実験に供した試料の濃化層における平均濃度勾配は、
1〜3■/cmであった。
Therefore, the amount of surface adhesion of the concentrated element in the concentrated layer was set to 0.1
It was limited to a range of ~20 .mu./c112. By the way, the average concentration gradient in the concentrated layer of the sample used in the above experiment is
It was 1 to 3 .mu./cm.

(実施例) 尖履桝土 酸化第二鉄<FetOx) : 70.9%、酸化マン
ガン(MnO) : 19.6%及び酸化亜鉛(ZnO
) : 9.5%の組成に配合した原料を湿式混合後、
造粒してから、920°Cの温度で2時間空気中で仮焼
した。ついで、粉砕後、約100 p mの直径に造粒
してフェライト粉末としたのち、得られた粉末を機械プ
レスでトロイダル型に成形した。このとき成形密度は2
.85〜2.90g/cm”に親制御、f、−0このよ
うなトロイダル型成形体(外径36閣、内径24■)を
それぞれ21個準備した0次いでCaC1x +Ca(
NOx)t 、CaBrz及びCa1.の各水溶液濃度
をそれぞれ0.08%、1%、5%、12%、16%と
した20種の処理液中に各1個づつ数秒間浸漬させた。
(Example) Ferric oxide <FetOx): 70.9%, manganese oxide (MnO): 19.6% and zinc oxide (ZnO)
): After wet mixing raw materials with a composition of 9.5%,
After granulation, it was calcined in air at a temperature of 920°C for 2 hours. After pulverization, the powder was granulated to a diameter of about 100 pm to obtain ferrite powder, and the resulting powder was molded into a toroidal shape using a mechanical press. At this time, the molding density is 2
.. 85 to 2.90 g/cm'', parent control, f, -0 21 such toroidal molded bodies (outer diameter 36cm, inner diameter 24cm) were prepared respectively.
NOx)t, CaBrz and Ca1. One piece each was immersed for several seconds in 20 types of treatment solutions with respective aqueous solution concentrations of 0.08%, 1%, 5%, 12%, and 16%.

かかる浸漬による含浸処理後直ちに恒温槽にて24時間
乾燥したのち、酸素分圧を調整しながら1300°Cで
3時間焼成した。
Immediately after the impregnation treatment by immersion, it was dried in a constant temperature bath for 24 hours, and then fired at 1300°C for 3 hours while adjusting the oxygen partial pressure.

かくして得られた各焼結体の磁気特性を室温(25°C
)で測定した結果を表1に示す。
The magnetic properties of each sintered body thus obtained were measured at room temperature (25°C).
) are shown in Table 1.

なお同表には比較のため、含浸処理を施さないもの、な
らびに上記した原料粉組成の仮焼粉を粉)′、! 砕したのち、塩化カルシウム粉末をそれぞれ原料に対し
0.01%、0.1%および0.7%添加し、ついで約
100μmの直径に造粒して得られた粉末を機械プレス
でトロイダル型に成形し、しかるのち上記と同じ焼成条
件で処理して得た焼結体についての測定結果も併せて示
す。
For comparison, the same table includes those without impregnation treatment, as well as calcined powders with the above raw material powder composition)',! After crushing, 0.01%, 0.1%, and 0.7% of calcium chloride powder was added to the raw materials, respectively, and the powder was then granulated to a diameter of about 100 μm. The resulting powder was shaped into a toroidal shape using a mechanical press. Measurement results for a sintered body obtained by molding and then processing under the same firing conditions as above are also shown.

同表より、この発明に従う濃度の水溶液で含浸させた焼
結体の試料と、含浸させない試料(参考例)とを比較す
ると初透磁率と飽和磁束密度は殆ど変化なく、鉄損が向
上していることがわかる。
From the same table, when comparing a sample of a sintered body impregnated with an aqueous solution with a concentration according to the present invention and a sample not impregnated (reference example), the initial magnetic permeability and saturation magnetic flux density hardly change, and the iron loss improves. I know that there is.

実施例2 実施例1と同様に製遺したトロイダル型成形体を21個
準備し、CaCO5+ Sing + CaCO5+ 
VgOsおよびCaCO3+ Sing + V!O5
の水分散スラリー(容fft500 dの容器に約20
0 mの溶液を入れて各化合物を撹拌機で均一に分散さ
せておく)にそれぞれ数秒間浸漬した後、約100°C
で3時間乾燥し、ついで実施例1と同様の処理を経てか
ら磁気特性について測定した結果を表2に示す。
Example 2 Twenty-one toroidal molded bodies were prepared in the same manner as in Example 1, and CaCO5+ Sing + CaCO5+
VgOs and CaCO3+ Sing + V! O5
water dispersion slurry (approx.
0 m solution and disperse each compound uniformly with a stirrer) for a few seconds, and then heated to approximately 100 °C.
Table 2 shows the results of measurements of magnetic properties after drying for 3 hours and then undergoing the same treatment as in Example 1.

表2から、(Ca : 5 +St :  1 ) f
f1g/cm”の試料および(Ca : 2 + Si
 :  1 ) mg/cm”の試料は、含浸しない例
に比べて、初透磁率、飽和磁束密度を低下させることな
しに鉄損の大幅な低下が達成されていることがわかる。
From Table 2, (Ca: 5 +St: 1) f
f1g/cm” sample and (Ca: 2 + Si
1) mg/cm'' sample, a significant reduction in iron loss was achieved without reducing the initial permeability and saturation magnetic flux density, compared to the non-impregnated example.

一方(Ca : 0.05 + Si: 0.01)■
/cm”と表面付着量が少ない試料では、含浸しない場
合に比べての改善効果がなく、逆に表面付着量が多いと
初透磁率および飽和磁束密度の低下が著しい。
On the other hand (Ca: 0.05 + Si: 0.01)■
For samples with a small amount of surface adhesion (/cm"), there is no improvement effect compared to the case without impregnation; on the other hand, when the amount of surface adhesion is large, the initial magnetic permeability and saturation magnetic flux density decrease significantly.

この傾向は、炭酸カルシウムと酸化バナジウムおよびこ
れらと酸化けい素との複合添加のスラリーにて含浸処理
を行った場合についても同様である。
This tendency is the same when the impregnation treatment is performed with a slurry containing calcium carbonate, vanadium oxide, and a composite addition of these and silicon oxide.

(発明の効果) か(してこの発明によれば、鉄損特性のみならず初透磁
率、飽和磁束密度にも優れたMn −Zn系フェライト
コアを容易に得ることができ、とくに電源用コアやテレ
ビ用コアが高周波化されている現状において、初透磁率
や飽和磁束密度を低下させることなしになおかつ鉄損を
大幅に低減できることは、機器の小型化ならびに発熱対
策上、多大の利点がある。
(Effects of the Invention) According to the present invention, it is possible to easily obtain a Mn-Zn-based ferrite core that is excellent not only in iron loss characteristics but also in initial magnetic permeability and saturation magnetic flux density, and is particularly useful as a power supply core. In the current situation where cores for TVs and TVs are used at higher frequencies, being able to significantly reduce iron loss without reducing initial magnetic permeability or saturation magnetic flux density has great advantages in terms of downsizing equipment and countering heat generation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、含浸処理における処理液中の塩化カルシウム
濃度と焼結体の磁気特性との関係を示したグラフ、 第2図は、この発明に従い得られた焼結体の厚み方向に
わたる固有抵抗値の変化を示したグラフである。
Figure 1 is a graph showing the relationship between the concentration of calcium chloride in the treatment solution during impregnation treatment and the magnetic properties of the sintered body. Figure 2 is the specific resistance across the thickness of the sintered body obtained according to the present invention. It is a graph showing changes in values.

Claims (1)

【特許請求の範囲】 1、表層に、表面付着量が0.1〜20mg/cm^2
のカルシウムの濃化層をそなえて成る高周波特性に優れ
たMn−Zn系フェライトコア。 2、主要成分としてのFe_2O_3に、MnOとZn
Oを所定量配合したのち、混合、粉砕、仮焼、造粒工程
を経て成形し、ついで該成形体にカルシウム化合物を0
.1〜15.0wt%の範囲で含む処理液を含浸させ、
しかるのち乾燥ついで焼成することを特徴とする高周波
特性に優れたMn−Zn系フェライトコアの製造方法。 3、表層に、表面付着量が0.1〜20mg/cm^2
のカルシウムとけい素及びバナジウムのいずれか1種又
は2種との濃化層をそなえて成る高周波特性に優れたM
n−Zn系フェライトコア。 4、主要成分としてのFe_2O_3に、MnOとZn
Oを所定量配合したのち、混合、粉砕、仮焼、造粒工程
を経て成形し、ついで該成形体にカルシウム化合物とけ
い素化合物及びバナジウム化合物のいずれか1種又は2
種とを0.1〜10.0wt%の範囲で含む処理液を含
浸させ、しかるのち乾燥ついで焼成することを特徴とす
る高周波特性に優れたMn−Zn系フェライトコアの製
造方法。
[Claims] 1. Surface adhesion amount on the surface layer is 0.1 to 20 mg/cm^2
A Mn-Zn based ferrite core with excellent high frequency characteristics and a calcium concentrated layer. 2. Fe_2O_3 as the main component, MnO and Zn
After blending a predetermined amount of O, it is molded through mixing, pulverization, calcining, and granulation steps, and then a calcium compound is added to the molded body.
.. Impregnated with a treatment liquid containing in the range of 1 to 15.0 wt%,
A method for producing an Mn--Zn-based ferrite core having excellent high frequency characteristics, which comprises drying and firing. 3. Surface adhesion amount is 0.1 to 20 mg/cm^2 on the surface layer.
M with excellent high frequency characteristics, comprising a concentrated layer of calcium and one or two of silicon and vanadium.
n-Zn ferrite core. 4. Fe_2O_3 as the main component, MnO and Zn
After blending a predetermined amount of O, it is molded through a mixing, pulverizing, calcining, and granulating process, and then one or two of a calcium compound, a silicon compound, and a vanadium compound are added to the molded body.
A method for manufacturing an Mn-Zn ferrite core having excellent high frequency characteristics, which comprises impregnating the core with a treatment solution containing seeds in a range of 0.1 to 10.0 wt%, followed by drying and firing.
JP62232568A 1986-12-15 1987-09-18 Mn-zn base ferrite core with good high frequency properties Pending JPS63260883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62232568A JPS63260883A (en) 1986-12-15 1987-09-18 Mn-zn base ferrite core with good high frequency properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29667586 1986-12-15
JP61-296675 1986-12-15
JP62232568A JPS63260883A (en) 1986-12-15 1987-09-18 Mn-zn base ferrite core with good high frequency properties

Publications (1)

Publication Number Publication Date
JPS63260883A true JPS63260883A (en) 1988-10-27

Family

ID=26530530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62232568A Pending JPS63260883A (en) 1986-12-15 1987-09-18 Mn-zn base ferrite core with good high frequency properties

Country Status (1)

Country Link
JP (1) JPS63260883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177289A (en) * 2012-02-10 2013-09-09 Tdk Corp Ferrite core and transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177289A (en) * 2012-02-10 2013-09-09 Tdk Corp Ferrite core and transformer

Similar Documents

Publication Publication Date Title
US7294284B2 (en) Method for producing Mn-Zn ferrite
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
US4372865A (en) Carbonate/hydroxide coprecipitation process
EP1547988A1 (en) Ferrite material
CN113185276A (en) Normal-temperature high-standard soft magnetic ferrite material and preparation method thereof
US6419847B1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
CN111362680A (en) High-frequency low-loss FeMnZnNi ferrite material and preparation method thereof
Jain et al. Influence of V2O5 on the densification and the magnetic properties of Ni—Zn ferrite
JPS63260883A (en) Mn-zn base ferrite core with good high frequency properties
CN107140967A (en) A kind of MgMnZn based ferrites and its preparation technology
KR20130134970A (en) Method for producing ferrite core and the ferrite core
JPS6131601B2 (en)
KR920004024B1 (en) Magnet core on the basis of lithium-zink-mangan-ferrite
CN110511012A (en) A kind of preparation method of the ferrite permanent-magnet materials with ultra-fine grained structure
JP2004262710A (en) Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
CN115650719B (en) high-Tc high-permeability manganese zinc ferrite material and preparation method thereof
JPS56134522A (en) Preparation of magnetic powder for magnetic recording use
JP6423705B2 (en) Metal magnetic powder, method for producing the same, and device
JPH02183501A (en) Manufacture of mn-zn soft ferrite
JP2007197255A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPH06267724A (en) Oxide magnetic material
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP3406382B2 (en) Method for producing ferrite magnetic powder
JPH04219321A (en) Zinc raw material for soft ferrite and production of oxide raw material for soft ferrite using the same
JPH0696934A (en) Manufacture of mn-zn soft ferrite