JPS63266400A - Multi-layered x-ray reflecting - Google Patents
Multi-layered x-ray reflectingInfo
- Publication number
- JPS63266400A JPS63266400A JP62101348A JP10134887A JPS63266400A JP S63266400 A JPS63266400 A JP S63266400A JP 62101348 A JP62101348 A JP 62101348A JP 10134887 A JP10134887 A JP 10134887A JP S63266400 A JPS63266400 A JP S63266400A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- layers
- layer
- substrate
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 239000006185 dispersion Substances 0.000 claims abstract description 5
- 229910052787 antimony Inorganic materials 0.000 claims abstract 2
- 239000007769 metal material Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 abstract description 16
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 230000003287 optical effect Effects 0.000 abstract description 11
- 239000000758 substrate Substances 0.000 abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052802 copper Inorganic materials 0.000 abstract description 8
- 229910052759 nickel Inorganic materials 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910002804 graphite Inorganic materials 0.000 abstract description 4
- 239000010439 graphite Substances 0.000 abstract description 4
- 238000007740 vapor deposition Methods 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011521 glass Substances 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 239000010703 silicon Substances 0.000 abstract description 2
- 125000006850 spacer group Chemical group 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract 4
- 239000000377 silicon dioxide Substances 0.000 abstract 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract 4
- 229910052682 stishovite Inorganic materials 0.000 abstract 4
- 229910052905 tridymite Inorganic materials 0.000 abstract 4
- 238000010030 laminating Methods 0.000 abstract 2
- 238000002310 reflectometry Methods 0.000 abstract 2
- 239000013078 crystal Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/702—Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70233—Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、対象波長領域が1人から200人のX線光学
素子、特にX線条J!!!膜反射鏡に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applicable to an X-ray optical element having a target wavelength range of 1 to 200 people, particularly an X-ray strip J! ! ! This relates to a membrane reflector.
本発明は、波長が1人から200人の範囲のxiの反射
と分散を必要とする全ての分野に対して、例えば、分光
結晶、モノクロメータ9X線顕微鏡。The invention is suitable for all fields requiring reflection and dispersion of xi with wavelengths ranging from 1 to 200 nm, such as spectroscopic crystals, monochromators, 9 X-ray microscopes.
X線望遠鏡、X線リングラフィあるいはX線を利用した
分析計測機器などへの広範な応用を有する。It has a wide range of applications such as X-ray telescopes, X-ray phosphorography, and analytical measurement equipment that uses X-rays.
本発明のX線反射鏡においては、ガラス、シリコン、グ
ラファイトあるいは金属などの基板上に5iftと金属
層(V、 Cr、 Mn、 Fe、 Co、 Ni、
Cu、 Zn。In the X-ray reflecting mirror of the present invention, 5ift and a metal layer (V, Cr, Mn, Fe, Co, Ni,
Cu, Zn.
Zr、 Nbおよびsbの中から少な(とも一種以上の
元素を含む)とを交互に積層させることにより、形成さ
れている。このX線多層膜反射鏡は、結晶性の拘束を受
けず、反射率を制御することができる。It is formed by alternately stacking a small amount of Zr, Nb, and sb (all containing one or more elements). This X-ray multilayer mirror is not restricted by crystallinity and can control reflectance.
また、1次および高次の反射率が向上し、あるいは特別
な用途に対しては1次の反射率を増加させ高次の反射率
を実質的にゼロにすることができる。In addition, the first and higher order reflectances are improved, or for special applications, the first order reflectance can be increased and the higher order reflectance can be reduced to substantially zero.
本発明は、波長が1人から200人のXwAwI域にお
いて反射と分散を必要とするすべての分野に対して、倒
えば、分光結晶、モノクロメータ、X線顕微鏡、X線望
遠鏡、X線リソグラフィあるいはX線を利用する分析計
測機器などの分野への応用が可能である。The present invention is suitable for all fields that require reflection and dispersion in the XwAwI range of wavelengths from 1 to 200, including spectroscopic crystals, monochromators, X-ray microscopes, X-ray telescopes, X-ray lithography, It can be applied to fields such as analytical measurement equipment that uses X-rays.
本発明の対象波長領域である1人から”200人の範囲
は、使用する光学素子の面で隣接する波長5■域と大き
く異なっている。すなわち、はぼ200人を境にして、
それより長波長側では直入射光学系が使用でき、また1
人より短波長の領域では結晶光学が使われている。それ
に対して、その中間の1人から200人のX線波長領域
では、あらゆる物質の垂直入射に対する反射率が実用上
はとんどゼロになるため、反射面にすれすれに光を入射
される斜入射光学系が一般に用いられている。The target wavelength range of the present invention, which is a range of 1 to 200 people, is significantly different from the adjacent wavelength 5.5 cm range in terms of the optical elements used.
On the longer wavelength side, a direct incidence optical system can be used, and 1
Crystal optics are used in the wavelength range shorter than humans. On the other hand, in the X-ray wavelength region between 1 and 200, the reflectance of all materials for normal incidence is practically zero, so the angle at which the light is incident almost on the reflective surface is An incident optical system is commonly used.
また、X線領域において反射特性や分散特性を有するも
のとしては、LiF、熱分解グラファイト。In addition, LiF and pyrolytic graphite have reflection characteristics and dispersion characteristics in the X-ray region.
ラングミュア−プロジェット膜などが知られている。Langmuir-Prodgett membranes and the like are known.
従来の斜入射光学系を使ったものでは数10%の高い反
射率が得られるが、細い入射ビームに対しても大面積の
光学素子が必要になるばかりでなく、結像光学では収差
が極端に大きくなる。また、−最的に光路が長くなると
いう欠点がある。Conventional oblique-incidence optical systems can achieve high reflectance of several tens of percent, but not only do they require large-area optical elements even for narrow incident beams, but imaging optics suffer from extreme aberrations. becomes larger. Another drawback is that the optical path becomes longer.
LiF、熱分解グラファイトおよびラングミュア−プロ
ジェット膜などから形成された光学素子は、格子間隔の
拘束が大きいためにXIの使用波長領域が狭く、使用範
囲が限定されてしまう。さらに、これらの材料は反射率
がすべて望ましい値よりも大幅に小さいという欠点があ
る。Optical elements formed from LiF, pyrolytic graphite, Langmuir-Prodgett film, etc. have a narrow lattice spacing constraint, so the wavelength range in which XI can be used is narrow, and the range of use is limited. Furthermore, these materials all suffer from a reflectance that is significantly lower than the desired value.
そこで本発明は、従来のこのような欠点を解決するため
になされたものであり、直入射でも高い反射率を有し、
使用波長範囲が広いX線用反射鏡を提供することを目的
としている。また直入射ばかりでなく、ビームの方向を
高い効率で直角方向に曲げたり、偏光子やフィルタ、ビ
ームスプリフタの役割を果たす光学素子に対する要望を
も満たすことができる。Therefore, the present invention was made to solve these conventional drawbacks, and has a high reflectance even when directly incident on it.
The purpose of this invention is to provide an X-ray reflecting mirror that can be used in a wide range of wavelengths. In addition to direct incidence, it is also possible to bend the direction of the beam at right angles with high efficiency, and to satisfy the need for optical elements that play the role of polarizers, filters, and beam splitters.
上記の問題点を解決するために本発明は、5iO1と金
属層(V、 Cr、 Mn、 Fe、 Co、 Ni、
Cu、 Zn、 Zr。In order to solve the above problems, the present invention combines 5iO1 and metal layers (V, Cr, Mn, Fe, Co, Ni,
Cu, Zn, Zr.
Nbおよびsbの中から少なくとも一種以上の元素を含
む)とを交互に積層させて形成することにより、直入射
でも高い反射率を有し、使用可能なX線の波長範囲を1
人から200人までに拡大することができる。(containing at least one element selected from Nb and sb), it has a high reflectance even at direct incidence, and the wavelength range of usable X-rays is expanded to 1.
It can be expanded from 1 to 200 people.
本発明のX線用多N膜反射鏡は、境界面で互いに拡散せ
ず、しかも光学定数の大きく異なる2種類の物質、すな
わち、Singと金属を交互に蒸着し、超精密研磨基板
上に1層の厚さが数人〜数100人の緻密な連続膜を積
層させたものである。各層対のうち金属層はX線を反射
する役割をもち、Singの層はスペイサ−の役割をす
る。この層対を連続的に多層化することによって、X線
は各層で多重反射し反射率を増大させることができる。The multi-N film reflector for X-rays of the present invention is produced by alternately depositing two types of materials, namely Sing and metal, which do not diffuse into each other at the boundary surface and have greatly different optical constants, and then deposits one material on an ultra-precision polished substrate. It is a stack of dense continuous films with a thickness of several to several hundred layers. Of each layer pair, the metal layer has a role of reflecting X-rays, and the Sing layer has a role of a spacer. By successively forming multiple layer pairs, X-rays can be reflected multiple times in each layer, increasing the reflectance.
また各層の膜厚を数人から数100人の間の適切な値に
することによって、X線の波長が1人から200人の範
囲でX線用の反射鏡として利用することができ、反射率
は1人付近で20%以上、200人では30%以上のも
のが得られた。In addition, by setting the film thickness of each layer to an appropriate value between several people and several hundred people, it can be used as a reflecting mirror for X-rays whose wavelength ranges from one person to 200 people. The rate was over 20% for around 1 person, and over 30% for 200 people.
以下本発明を実施例にもとすいて説明する。 The present invention will be explained below using examples.
本発明のX線多層膜反射鏡は、分子線エピタキシー法、
スパッタリング法、イオンビームスパッタ法、真空蒸着
法などによって作製することができるが、ここでは膜作
製に多蒸発源の真空蒸着装置を用いた。装置蒸着室内の
真空度はできるだけ高真空が望ましいので、タライオボ
ンブを使って7 X 10− ’Torrに保ち蒸着を
行った。加熱には電子ビームを用い、各金属(V、 C
r、 Mn、 Fe、 Co、 Ni。The X-ray multilayer film reflector of the present invention uses a molecular beam epitaxy method,
Although it can be produced by a sputtering method, an ion beam sputtering method, a vacuum evaporation method, etc., a multi-evaporation source vacuum evaporation apparatus was used for film production here. Since it is desirable that the degree of vacuum in the deposition chamber of the apparatus be as high as possible, deposition was performed while maintaining the vacuum at 7 x 10-' Torr using a Talio bomb. An electron beam is used for heating, and each metal (V, C
r, Mn, Fe, Co, Ni.
Cu、 Zn、 Zr、 Nbおよびsbの中から少な
(とも一種以上の元素)と酸化シリコンの2つの蒸着源
がそれぞれ独立に加熱される。各金属と5iO1の蒸着
層の厚さは、それぞれ独立の二つのシャッターによって
制御する。さらにプログラミング機構をもつ水晶発振式
膜厚計を用いて、金属と酸化シリコンとの膜厚を設定し
、二つのシャッターの開閉を自動的に行い規則正しい蒸
着を繰り返して行わせることによって膜厚と層対の数を
制御する。基板にはガラス、シリコンウェハ、グラファ
イト、各種金属を用いた。基板の表面粗さは10Å以下
であった。蒸着中は基板の温度が上昇しないように基板
を水冷あるいは液体窒素で冷却した。Two vapor deposition sources of a small amount (all one or more elements) of Cu, Zn, Zr, Nb, and sb and silicon oxide are heated independently. The thickness of the deposited layer of each metal and 5iO1 is controlled by two independent shutters. Furthermore, a crystal oscillation type film thickness meter with a programming mechanism is used to set the film thickness of metal and silicon oxide, and by automatically opening and closing two shutters to repeat regular vapor deposition, the film thickness and layer can be adjusted. Control the number of pairs. Glass, silicon wafer, graphite, and various metals were used for the substrate. The surface roughness of the substrate was 10 Å or less. During the deposition, the substrate was cooled with water or liquid nitrogen to prevent the temperature of the substrate from rising.
第1図は本発明のX線多層膜反射鏡の構成図を示したも
のである。入射X線ビームlは、反射鏡の各層対の金属
層3で反射される。また一部は5iO1層の中で多重反
射されて反射Xiビーム2を構成する。FIG. 1 shows a configuration diagram of the X-ray multilayer film reflecting mirror of the present invention. The incident X-ray beam l is reflected by the metal layer 3 of each layer pair of the reflector. Further, a part of the beam is multiple-reflected within the 5iO1 layer and constitutes the reflected Xi beam 2.
第1表は真空蒸着法で作ったCr 5ift多層膜に
ついてX線波長が1,5人から200人の範囲で測定し
た反射率の値である。 Crと5iftの膜厚と層対の
数を変化させることによって各X線波長において反射率
23〜53%が得られた。Table 1 shows reflectance values measured at X-ray wavelengths in the range of 1.5 to 200 nm for a Cr 5ift multilayer film made by vacuum evaporation. By varying the film thickness of Cr and 5ift and the number of layer pairs, reflectances of 23 to 53% were obtained at each X-ray wavelength.
第2表は同様にして作製したNb Sing多層膜に
ついて第1表のCr −Sto!の場合と同様な反射率
の測定結果を示すものである。X線の入射角は5゜から
356の範囲で測定している。Cr5iO1の場合とほ
ぼ同様な反射率の値がNb Stowでも得られるこ
とがわかった。Table 2 shows the Cr-Sto! of Table 1 for the Nb Sing multilayer film produced in the same manner. This shows the same reflectance measurement results as in the case of . The incident angle of X-rays was measured in the range of 5° to 356°. It has been found that almost the same reflectance values as in the case of Cr5iO1 can be obtained with Nb Stow.
第 1 表
第 2 表
CCr−5ta、 NNb−5in以外にも金属層とし
て■。Table 1 Table 2 In addition to CCr-5ta and NNb-5in, there are other metal layers.
Mn、 Fe、 Co、 Nt、 Cu、 Zn、 Z
r、 Nbおよびsbを用いた場合にもほぼ同様の結果
が得られた。またXfi波長が数人の領域では金属と5
t01との層対の数を増加させるほど反射率が向上する
という結果が得られている。しかし、現実的には多層膜
作製上の装置的制約や基板の平滑性などの制約から10
07EI以上の多層膜を作ることは困難である。Mn, Fe, Co, Nt, Cu, Zn, Z
Almost similar results were obtained when r, Nb and sb were used. In addition, in the area where the Xfi wavelength is 5
Results have been obtained that the reflectance improves as the number of layer pairs with t01 increases. However, in reality, due to equipment constraints in multilayer film production and constraints such as substrate smoothness,
It is difficult to make a multilayer film of 07EI or higher.
金属材料層としてV、 Cr、 Mn、 Fe、 Co
、 Ni、 Cu。V, Cr, Mn, Fe, Co as a metal material layer
, Ni, Cu.
Zn、 Zr、 Nbおよびsbの中から適当な組合讐
の合金を作ることによっても単元素のみによる金属層の
場合と同様の効果を期待することができる。By making an alloy of a suitable combination of Zn, Zr, Nb and sb, the same effect as in the case of a metal layer made of only a single element can be expected.
第3表はV、 Mn、 Fe、 Co、 Ni、 Cu
、 Zn、 Zr、 Nbおよびsbの各金属層とSi
ngとの層対36WJll!JについてX線波長が8.
34人と1)4人のときの反射率の測定値を示す表であ
る。X線の入射角は10″で測定している。それぞれの
波長において各金属とSingとの組合せによる多層膜
は反射率12〜67%の範囲の値が得られた。Table 3 shows V, Mn, Fe, Co, Ni, Cu
, Zn, Zr, Nb and sb metal layers and Si
Layer vs. 36WJll with ng! The X-ray wavelength for J is 8.
It is a table showing the measured values of reflectance for 34 people and 1) 4 people. The incident angle of X-rays was measured at 10''. At each wavelength, the multilayer film obtained by combining each metal and Sing had a reflectance in the range of 12 to 67%.
第 3 表
第2図は、Cu 510g58層膜反射鏡についてX
線波長23,6人での反射率の測定結果を示すものであ
る。X線の入射角は0°から30°まで変化させて測定
した。また、Cuの膜厚は23人、5i(hの膜厚は4
6人である。(この膜厚は多N膜作製時に設定した値で
あるが実際のII!I厚の測定値とはほとんど違わない
)図よりわかるように、入射角が0″″のときの全反射
から0″近傍での斜入射領域にかけて反射率の大きな範
囲があり、その後はX線の波長と層対の膜厚との関係か
ら特定の入射角の付近に反射率のピークがあられれる部
分が観測される。Table 3 Figure 2 shows the X
This shows the results of measuring reflectance at a line wavelength of 23 and by 6 people. The measurement was performed while changing the incident angle of X-rays from 0° to 30°. In addition, the film thickness of Cu is 23, and the film thickness of 5i (h is 4
There are 6 people. (This film thickness is the value set at the time of manufacturing the multi-N film, but there is almost no difference from the actual II!I thickness measurement.) As can be seen from the figure, from total reflection when the incident angle is 0'' There is a large range of reflectance up to the oblique incidence region in the vicinity, and after that, a region where the reflectance peaks around a specific angle of incidence is observed due to the relationship between the wavelength of the X-ray and the thickness of the layer pair. Ru.
この図の結果からでは0′″から30″までの入射角の
範囲で一次と二次のピークがあられれる。From the results shown in this figure, primary and secondary peaks can be seen in the range of incident angles from 0'' to 30''.
以上説明したように、本発明はガラス、シリコンウェハ
、グラファイトあるいは各種金属などの基板上にSi0
1層と金属N(V、 Cr、 Mn、 Fe、 Go。As explained above, the present invention provides Si0
1 layer and metal N (V, Cr, Mn, Fe, Go.
Ni+ Cu、Zn、Zr、 NbおよびsbO中から
少なくとも一種以上の元素を含むN)を交互に積層させ
ることにより形成されるX線波長1人から200人の範
囲で使用可能な多層膜反射鏡である。このX線反射鏡は
、結晶性の拘束を受けることなく、制御された反射率を
有し、1次および高次の反射率を向上させ、あるいは特
別な用途に対しては1次の反射を増加させ高次の反射を
実質的にゼロにすることができる。A multilayer reflector that can be used in the range of X-ray wavelengths from 1 to 200, formed by alternately stacking Ni+N containing at least one element from Cu, Zn, Zr, Nb and sbO. be. This X-ray reflector has a controlled reflectance without crystalline constraints, improving the first and higher order reflectance, or eliminating the first order reflection for special applications. can be increased to virtually eliminate higher order reflections.
第1図は本発明に関わるX線多層膜反射鏡の構成を示す
断面図、第2図はCu −SiO□多層膜反射鏡につい
ての反射率の測定結果を示す説明図である。
1・・・入射X線ビーム
2・・・反射X線ビーム
3・・・金属層
4・・・sto、N
5・・・基板
以上
出願人 セイコー電子工業株式会社
×碌反射鏡のllfr面図
第1図
反射率(−〇FIG. 1 is a sectional view showing the structure of an X-ray multilayer film reflecting mirror according to the present invention, and FIG. 2 is an explanatory diagram showing the measurement results of reflectance of the Cu--SiO□ multilayer film reflecting mirror. 1... Incident X-ray beam 2... Reflected X-ray beam 3... Metal layer 4... sto, N 5... Substrate and above Applicant Seiko Electronics Co., Ltd. Figure 1 Reflectance (-〇
Claims (2)
の層対は対象波長領域が1Åから200Åの波長領域で
X線分散特性を有し、各層対の一層がSiO_2であり
、また各層対の第二層は金属材料によって構成されてい
ることを特徴とするX線多層膜反射鏡。(1) A plurality of layer pairs are formed on top of each other, the layer pairs have X-ray dispersion properties in a wavelength range of 1 Å to 200 Å, and one layer of each layer pair is made of SiO_2. , and an X-ray multilayer film reflecting mirror characterized in that the second layer of each layer pair is made of a metal material.
、Cu、Zn、Zr、NbおよびSbの中から少なくと
も一種以上の元素を含むことを特徴とする特許請求の範
囲第1項に記載のX線多層膜反射鏡。(2) Metal material layer is V, Cr, Mn, Fe, Co, Ni
, Cu, Zn, Zr, Nb, and Sb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62101348A JPS63266400A (en) | 1987-04-24 | 1987-04-24 | Multi-layered x-ray reflecting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62101348A JPS63266400A (en) | 1987-04-24 | 1987-04-24 | Multi-layered x-ray reflecting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63266400A true JPS63266400A (en) | 1988-11-02 |
Family
ID=14298330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62101348A Pending JPS63266400A (en) | 1987-04-24 | 1987-04-24 | Multi-layered x-ray reflecting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63266400A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955565A2 (en) | 1998-05-08 | 1999-11-10 | Nikon Corporation | Mirror for soft x-ray exposure apparatus |
EP2009470A1 (en) * | 2006-04-14 | 2008-12-31 | Japan Atomic Energy Agency | Multi-layer film type diffraction grating |
EP2513686B1 (en) * | 2009-12-15 | 2019-04-10 | Carl Zeiss SMT GmbH | Reflective optical element for euv lithography |
-
1987
- 1987-04-24 JP JP62101348A patent/JPS63266400A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955565A2 (en) | 1998-05-08 | 1999-11-10 | Nikon Corporation | Mirror for soft x-ray exposure apparatus |
EP0955565A3 (en) * | 1998-05-08 | 2001-05-30 | Nikon Corporation | Mirror for soft x-ray exposure apparatus |
EP2009470A1 (en) * | 2006-04-14 | 2008-12-31 | Japan Atomic Energy Agency | Multi-layer film type diffraction grating |
EP2009470A4 (en) * | 2006-04-14 | 2011-05-18 | Japan Atomic Energy Agency | Multi-layer film type diffraction grating |
EP2513686B1 (en) * | 2009-12-15 | 2019-04-10 | Carl Zeiss SMT GmbH | Reflective optical element for euv lithography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6160867A (en) | Multi-layer X-ray-reflecting mirrors with reduced internal stress | |
JPH0763915A (en) | Thin film nd filter and its production | |
JP2723955B2 (en) | Multilayer reflector for soft X-ray and vacuum ultraviolet | |
JPH0545498A (en) | Multilayer film reflector | |
US7342715B2 (en) | Multilayer film reflector for soft X-rays and manufacturing method thereof | |
JPH0534500A (en) | X-ray multilayered film reflecting mirror | |
JPS63266400A (en) | Multi-layered x-ray reflecting | |
JPH075296A (en) | Mutlilayered film for soft x-ray | |
JP2648599B2 (en) | Method of making multilayer reflector for X-ray or vacuum ultraviolet | |
JPH04169898A (en) | Multi-layer mirror structure for x-ray | |
JP2692881B2 (en) | Method for producing multilayer film for soft X-ray or vacuum ultraviolet ray and optical element | |
JPS63266397A (en) | X-ray reflecting mirror | |
US11385536B2 (en) | EUV mask blanks and methods of manufacture | |
JPS63266396A (en) | Multi-layered x-ray reflecting mirror | |
JPS63266398A (en) | X-ray reflecting mirror | |
JPS58223101A (en) | Production of polygonal mirror | |
JPS63266399A (en) | X-ray reflecting mirror | |
JPS6388503A (en) | Reflection mirror consisting of multi-layered film for soft x-ray and vacuum ultraviolet ray | |
JP2535038B2 (en) | Multi-layer film mirror for X-ray / VUV | |
JPS63271200A (en) | X-ray reflecting mirror | |
JPH01309000A (en) | X-ray reflector | |
JP2935765B2 (en) | Manufacturing method of dichroic mirror | |
JP3648791B2 (en) | Manufacturing method of multilayer mirror | |
JP2535037B2 (en) | Multi-layer film mirror for X-ray / VUV | |
JPH07280999A (en) | Multilayer film x-ray reflector |