JPS63255355A - Modifying method by mixed gas penetration - Google Patents
Modifying method by mixed gas penetrationInfo
- Publication number
- JPS63255355A JPS63255355A JP8893587A JP8893587A JPS63255355A JP S63255355 A JPS63255355 A JP S63255355A JP 8893587 A JP8893587 A JP 8893587A JP 8893587 A JP8893587 A JP 8893587A JP S63255355 A JPS63255355 A JP S63255355A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- base material
- gas
- mixed gas
- gases
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000035515 penetration Effects 0.000 title abstract description 6
- 239000007789 gas Substances 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000002407 reforming Methods 0.000 claims description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 230000003204 osmotic effect Effects 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 5
- 238000007670 refining Methods 0.000 abstract description 4
- 238000006467 substitution reaction Methods 0.000 abstract 1
- 238000002715 modification method Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 238000007796 conventional method Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000006872 improvement Effects 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000920 Fe16N2 Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005271 boronizing Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、金属表面のガス混合浸透による改質方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for modifying a metal surface by gas mixture permeation.
[従来の技術]
機械部品・工具・治具・金型等の金属表面の改質方法は
、大別すると浸炭・窒化・浸硫・浸硼等数′11媒体の
元素を金属表層部に浸透・拡散させて表面を改質する方
法と、表面焼入・メッキ・化成処JIp・肉盛等で表層
部を物理的・化学的に反応させ改質する方法とに2分さ
れる。後者は、複雑で高度な技術が要求され、コストが
高く、母材が限定され、作業・品質管理に難点が多い。[Conventional technology] Methods for modifying the metal surface of machine parts, tools, jigs, molds, etc. can be roughly divided into carburizing, nitriding, sulfurizing, and boronizing, which penetrate elements of a number of 11 media into the metal surface layer. - There are two methods: methods that modify the surface by diffusion, and methods that modify the surface layer by physically and chemically reacting with surface hardening, plating, chemical treatment JIp, overlay, etc. The latter requires complex and advanced technology, is expensive, has limited base materials, and has many difficulties in work and quality control.
前者の浸透改質方法は改質媒体により次のように2分さ
れる。The former osmotic modification method is divided into two types depending on the modification medium as follows.
即ち、改質媒体に液体・固体を用いる方法と気体を用い
る方法である。That is, there are two methods: one uses liquid/solid as the reforming medium, and the other uses gas.
[発明が解決しようとする問題点]
改質媒体に液体・固体及び気体を用いる従来の方法には
、次のような問題点がある。[Problems to be Solved by the Invention] Conventional methods that use liquids, solids, and gases as reforming media have the following problems.
(1)例えば仕込塩としてNaCNとNaCN0の混塩
を用い、これを外熱式加熱炉で溶融し、所定温度で所定
時間改質を施す塩浴改質方法が現在量も多く用いられて
いるが、塩類が猛毒のため公害問題があり、その社会的
責任を問われるので公害防止設備に多額な費用がかかる
上、現在の技術水準としては完璧な防止法が未だ確立さ
れていない。(1) For example, a salt bath reforming method is currently widely used in which a mixed salt of NaCN and NaCN0 is used as a charging salt, melted in an external heating furnace, and reformed at a predetermined temperature for a predetermined period of time. However, salts are highly toxic and pose a pollution problem, which calls for social responsibility, requiring a large amount of money for pollution prevention equipment, and at the current state of technology, no perfect prevention method has yet been established.
(2)浸炭等による改質方法は、改質温度が高(母材を
損傷し、加熱エネルギーを損耗するという問題点がある
。この方法では通常900℃以上の高温で数時間保持せ
ねばならず、母材がIlmすると共に改質の後熱処理を
必要とし、製品の変形・変寸をひき起し、工数が多くか
かる。一方表面硬さも低い。(2) Modification methods such as carburization have the problem of high modification temperatures (damaging the base material and wasting heating energy. In this method, it is usually necessary to maintain the temperature at a high temperature of 900°C or higher for several hours. First, the base material hardens and requires heat treatment after modification, which causes deformation and dimensional changes in the product and requires a large number of man-hours.On the other hand, the surface hardness is low.
(3)例えば窒素単体気体浸透による改質方法は、改質
時間が長いという問題点がある。当初の炉内空気の置換
を行なった後、加熱−保持一加熱一長時間保持一炉中冷
却を施す
サイクルで長いものは100時間以上を費し、短いもの
でも30時間以上を必要とし、従って、熱エネルギーが
大となり、多借のガスを演費し多額の操業費がかかり、
また納期も長くかかる。これは気体の性状が金属への浸
透に」−分な2時間を必要とするためである。(3) For example, a reforming method using nitrogen gas permeation has a problem in that the reforming time is long. After the initial air replacement in the furnace, the cycle of heating - holding - heating - long-term holding - cooling in the furnace takes more than 100 hours, and even short ones take more than 30 hours. , the thermal energy is large, and a large amount of gas is used, resulting in a large operating cost.
It also takes a long time to deliver. This is due to the nature of the gas, which requires two hours to penetrate into the metal.
、(4)例えば上述の塩浴改質方法では表面改質層は化
合物層に限られるので、表面改質層の厚ミLL [i
?h でitI <、1/100111m台であり、層
厚みが調整管理できず、用途的に高圧荷重には耐えられ
ないという問題点がある。, (4) For example, in the salt bath modification method described above, the surface modified layer is limited to a compound layer, so the thickness of the surface modified layer is
? ItI is less than 1/100111 m at h, and there is a problem that the layer thickness cannot be adjusted and managed, and it cannot withstand high pressure loads in terms of usage.
(5)表面改質される母材の形状の中には改質できない
形状が存在するという問題点がある。(5) There is a problem that some shapes of the base material to be surface modified exist that cannot be modified.
例えばイオン窒化による改質方法では、イオンのとびつ
きににって処理品が加熱される。For example, in a modification method using ion nitriding, the treated product is heated as ions jump.
イオンは直線方向にとぶ直進性のため、イオンの進めな
い陰の部分に表面改質のできない部分が発生する。即ち
、狭小渦部、微細孔内面、底面、長物内面などへの均一
層形成は極めて(ホ)難である。また、形状が?J2雑
なものへの均一層形成2表面積や質量差の大きい場合の
同時処理も望めない。その上、水冷や油冷などによる急
速冷却もできない。Since ions travel in a straight line, there are areas where surface modification cannot be performed in the shadow areas where ions cannot travel. That is, it is extremely difficult to form a uniform layer on a narrow vortex, the inner surface of a fine hole, the bottom surface, the inner surface of a long object, etc. Also, what about the shape? J2 Uniform layer formation on coarse objects 2 Simultaneous processing cannot be expected when the difference in surface area or mass is large. Furthermore, rapid cooling using water or oil cooling is not possible.
(6)母材が限定されるという問題点がある。母材の中
には金属でもA1及びA1合金のように所定の改質層が
得られぬ材質も多い。CrやMOのような化合(窒化)
物形成元素を含む材料が必須要件となる。(6) There is a problem that the base material is limited. Among the base materials, there are many metals such as A1 and A1 alloys in which a predetermined modified layer cannot be obtained. Compounds like Cr and MO (nitriding)
A material containing substance-forming elements is an essential requirement.
(7)表面あらさの劣化という問題点がある。特に塩浴
改質方法では表面劣化を来し、表面あらさを低下させる
。(7) There is a problem of deterioration of surface roughness. In particular, the salt bath modification method causes surface deterioration and reduces surface roughness.
(8)処理による熱影響で母材を膨張・収縮させること
による寸法の狂いを生じさせるという問題点がある。ま
た、中には表面層に堆積させる層の厚みにより寸法増加
を来し不良となるものもある。(8) There is a problem in that the base material expands and contracts due to the thermal effects of processing, resulting in dimensional deviations. In addition, some of them are defective due to an increase in size due to the thickness of the layer deposited on the surface layer.
本発明の目的は、上述のような表面改質方法の問題点を
解決し、廉価で、且つ高効率で安定した耐摩、耐熱、耐
食の表面性状が得られる特殊ガス複合浸透改質方法を提
供することにある。The purpose of the present invention is to solve the problems of the surface modification methods described above, and to provide a special gas complex permeation modification method that is inexpensive, highly efficient, and can provide stable wear-resistant, heat-resistant, and corrosion-resistant surface properties. It's about doing.
[問題点を解決するための手段]
上記問題点を解決するために本発明は、浸透改質炉内へ
金属母材を挿入し、抜気して炉内を真空に保持した後、
アンモニア、N 、Co2.H2゜Ar、ENDO,
EXO等のガスを甲独に又は複数個混合させて炉内に注
入し、室温から昇温し、次に前記ガスから選ばれた混合
ガス中で連続加熱し、さらに前記ガスから選ばれた混合
ガス中で保持し、さらにその状態で前記ガスから選ばれ
た混合ガスを供給しながら保持し、かつN2ガスを炉中
循環させるガス複合浸透改質方法である。更には処理後
急冷、徐冷等を適宜選定し、調質と効率化が図れる。[Means for Solving the Problems] In order to solve the above problems, the present invention includes inserting a metal base material into a permeation reforming furnace, evacuating air, and maintaining the inside of the furnace in a vacuum.
Ammonia, N, Co2. H2゜Ar, ENDO,
A mixture of EXO and other gases or a plurality of gases is injected into the furnace, heated from room temperature, then continuously heated in a mixed gas selected from the above gases, and then a mixture selected from the above gases. This is a gas composite permeation reforming method in which the reactor is held in a gas, and in that state, a mixed gas selected from the gases is supplied while N2 gas is circulated in the furnace. Furthermore, by appropriately selecting quenching, slow cooling, etc. after treatment, refining and efficiency can be achieved.
なお、前記連続加熱、混合ガス中での保持、さらに加熱
・保持を多段階行なってより成果をあげることもできる
。Note that the continuous heating, holding in a mixed gas, and further heating and holding can be performed in multiple stages to achieve better results.
[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.
第1図は本発明のガス複合浸透改質方法に用いられる装
置のブロック図である。FIG. 1 is a block diagram of an apparatus used in the gas composite permeation reforming method of the present invention.
第1図において、浸透改質炉1は真空槽を用い、管路と
パルプ(図示せず)を介して真空ポンプ2につながって
いる。浸透改質炉1の内部には、雰囲気の純化を図り酸
化を防ぎ、水分及び酸素濃度を常に低く保つ為の外熱式
レトルト等を装備する。In FIG. 1, a osmotic reforming furnace 1 uses a vacuum tank and is connected to a vacuum pump 2 via pipes and pulp (not shown). The interior of the permeation reforming furnace 1 is equipped with an external heating retort and the like to purify the atmosphere, prevent oxidation, and keep moisture and oxygen concentrations low at all times.
ボンベA、[3,C,D、Eにはそれぞれ保護ガスとし
てアンモニア、N 、CO、H、Δr。Cylinder A, [3, C, D, and E contain ammonia, N, CO, H, and Δr as protective gases, respectively.
ENDO,EXO等が封入されており、浸透改質炉1内
を抜気後、管路とバルブ(図示せず)を介して手動又は
自動でそれぞれのガスを単独に又は複数混合させて炉内
に注入する。このガスの選択は、金属母材の材質2寸法
、形状、改質層の性状に応じて行なう。また、類1内に
は送風機が備えてあり、高効率に均一な雰囲気循環を施
すと共に、例えば、ボンベBよりN2を注入し、循環さ
けて冷却し、調質と効率化が図れる。ENDO, EXO, etc. are sealed, and after evacuating the inside of the permeation reforming furnace 1, each gas is manually or automatically mixed singly or in combination through pipes and valves (not shown). Inject into. This gas is selected depending on the material, dimensions and shape of the metal base material, and the properties of the modified layer. In addition, a blower is provided in Class 1 to circulate the atmosphere uniformly with high efficiency. For example, N2 is injected from cylinder B to avoid circulation and cool it, thereby achieving thermal refining and efficiency.
なお、温度一時間の関係は、0.5〜10時間で400
°C〜700℃まで直線的に昇温させ、そのまま数時間
保持した後忠冷又は徐冷する。In addition, the relationship between temperature and hour is 400℃ for 0.5 to 10 hours.
The temperature is raised linearly from °C to 700 °C, maintained as it is for several hours, and then cooled slowly or slowly.
本発明の手順を代表例について示すと、次の通りである
。The procedure of the present invention is shown below using a typical example.
(1)炉内へ金属母材を挿入し、抜気する。炉内の真空
度は800〜10−6ミリバールを用いる。(1) Insert the metal base material into the furnace and vent the air. The degree of vacuum in the furnace is 800 to 10-6 mbar.
(2)2〜12NIIl /hr(総ff12〜22N
m3)のN2を注入し、その上で室温から300〜4
50℃へ20〜230分で昇温させる。(2) 2~12NIIl/hr (total ff12~22N
m3) of N2 is injected, and then from room temperature to 300~4
Raise the temperature to 50°C in 20-230 minutes.
(3)1〜8NILl/hrノ窒素及び1〜8Nm3/
hrのアンモニアの混合ガス中で10〜90分で400
〜650℃の連続加熱を滴す。(3) 1 to 8 NILl/hr nitrogen and 1 to 8 Nm3/hr
400 for 10-90 minutes in a mixed gas of hr ammonia.
Drop continuous heating to ~650°C.
(総ffi二N21〜6Nm3.アンモニア1〜6NI
l13)
(4)アンモニア1〜8NIl /hr、N21〜8N
l/hr、 CO20,1〜2N m /hrの混
合気中で10〜240分間400〜650℃で保持する
。(総量:アンモニア2〜16Nffi、N22〜16
NIll。(Total ffi2N21~6Nm3.Ammonia 1~6NI
l13) (4) Ammonia 1-8 NIl/hr, N21-8N
It is maintained at 400-650° C. for 10-240 minutes in a mixture of 1-2 N m /hr and CO2. (Total amount: ammonia 2-16Nffi, N22-16
NIll.
CO20,1NI!1〜3Nm3)
(5)更に10〜120分間、CO2濃度を上昇させN
211度を低下させるため保持する。その場合のガス供
給量は次の如くする。CO20,1NI! 1-3Nm3) (5) Increase the CO2 concentration for another 10-120 minutes and
It is held to reduce the temperature by 211 degrees. In that case, the gas supply amount is as follows.
N21〜6N m3/hr、アンモニア1〜4N m
3 /hr、 Co20. 1〜2N m 3/hr
(6)2〜12NIIl のN2を置換及U 冷uI
m ’R用に循raさせる。N21~6N m3/hr, ammonia 1~4N m
3/hr, Co20. 1~2N m3/hr
(6) Replace N2 of 2-12NIIl and U cold uI
m' Circulate for R.
上記は1段処理の場合であるが、2段・3段なと多段処
理を施すこともできる。これによりガス中休の混合と温
度・時間の選択を容易とし、最適・効率的組合せにより
有効な表面改質を施し、単相や混合相(例γ’−Fe4
N、ε−Fe2〜3N)が得られる。例えば、2段処理
としては0.5〜10時間で500℃まで直線的に昇温
させ、そのまま所定時間保持した後550℃に昇温させ
、そのまま所定時間保持した後n冷、徐冷する。Although the above is a case of one-stage processing, multi-stage processing such as two-stage or three-stage processing can also be performed. This makes it easy to select gas-intermittent mixing and temperature/time, and performs effective surface modification through optimal and efficient combinations, making it possible to perform single-phase or mixed-phase (e.g. γ'-Fe4
N, ε-Fe2-3N) is obtained. For example, as a two-stage treatment, the temperature is linearly raised to 500°C over 0.5 to 10 hours, held for a predetermined time, then raised to 550°C, held for a predetermined time, and then cooled and slowly cooled.
真空系の活用はいくつかの利点がある。まず雰囲気純度
の向上である。従来法は初期抜気が不十分なため、雰囲
気純度が得られず、所!11Jの改質層を求められない
ことが多いが、これは、真空度の調整により解決できた
。Utilizing a vacuum system has several advantages. First is the improvement of atmosphere purity. In the conventional method, initial air evacuation is insufficient, so atmospheric purity cannot be obtained, resulting in poor air quality. Although it is often not possible to obtain a modified layer of 11 J, this problem can be solved by adjusting the degree of vacuum.
次に従来法のガスへ人気置換ではガス流の性状により数
時間を要することがあるが、本発明により操業時間を大
幅に短縮することができた。また、消費ガスの節減が図
れた。Next, the conventional method of popular replacement with gas can take several hours depending on the properties of the gas flow, but the present invention has made it possible to significantly shorten the operating time. Additionally, gas consumption was reduced.
また、この浸透改質炉は他の加熱炉と比較すると炉体の
蓄熱mや放射熱ωが少ないので炉温の胃淘速度が速くな
る。第1表は、真空内でのFj?−渇過程にお【ノる炉
の指示温度とザンプル直径×長さ15mmφX100m
mの中心部が一定温度に到達する迄の5’?W時間の関
係の一例を示すものである。Furthermore, compared to other heating furnaces, this osmotic reforming furnace has less heat storage m and radiant heat ω in the furnace body, so that the gastric elimination rate of the furnace temperature is faster. Table 1 shows Fj? in vacuum. -During the drying process, the indicated temperature of the furnace and sample diameter x length 15mmφ x 100m
5' until the center of m reaches a constant temperature? This shows an example of the relationship between W times.
この数値の如く、効率化が図られる。As shown in this figure, efficiency can be improved.
第 1 表
なお、従来法は処理後−担別設備へ母材を移動させて加
熱・冷却を施さねばならないが、本発明の方法は処理後
半でそのまま冷却等調質を施すことができるので、品質
が向上し、かつ処理時間の短縮が図れる。特に、材料の
疲労強度に及ぼす処理後の冷却条件の彩費は大きく、低
合金鋼では徐冷によりγ’(Fo4N)相1粒状のα“
(Fe16N2)等の析出を生み、疲労強度を低下さ
せる。Table 1 Note that in the conventional method, after treatment, the base material must be moved to a separation facility and heated and cooled, but in the method of the present invention, cooling and other refining can be performed as is in the latter half of the treatment. Quality can be improved and processing time can be shortened. In particular, the effect of post-processing cooling conditions on the fatigue strength of the material is large; in low-alloy steel, slow cooling produces a single grain of γ' (Fo4N) phase.
(Fe16N2) etc., resulting in a decrease in fatigue strength.
さらに、本発明によれば冷却特性を向上させることがで
きる。ガスを用いる冷却は、冷却ガスの圧力と流速に左
右される。このため大気圧から3バール域の噴流を活用
し、冷却を向上させ、時間短縮と母材及び表面層の:l
質に資する。このため、元素拡散層の固溶化を促進・完
全化させる。Furthermore, according to the present invention, cooling characteristics can be improved. Cooling with gas depends on the pressure and flow rate of the cooling gas. For this purpose, jet flow in the range of 3 bar from atmospheric pressure is used to improve cooling, reduce time, and reduce the thickness of the base material and surface layer.
Contributes to quality. Therefore, solid solution formation of the element diffusion layer is promoted and completed.
次に、光輝性の優秀さがある。母材中のTi。Next, there is the excellent brightness. Ti in the base material.
W、Mo、Vなどの活性金属を含む材料では、ガス吸収
による脆化、02との親和による酸化が進むので、これ
らの防止に有効である。In materials containing active metals such as W, Mo, and V, embrittlement due to gas absorption and oxidation due to affinity with 02 progress, so this is effective in preventing these.
なお、本発明によれば表面あらさを改良することができ
る。この種表面改質の主目的は表面あらさと深く相関し
ている。これの度合は評価の垂要な因子である。Note that according to the present invention, surface roughness can be improved. The main purpose of this type of surface modification is closely related to surface roughness. The degree of this is an essential factor in evaluation.
この処理の中で主流となっているダイス鋼・ハイスピー
ド鋼等では、□この効果が顕著に表われ、実験値による
と2〜4倍程あうさくR■aX )の改善が図られた。In die steels, high-speed steels, etc., which are the mainstream in this treatment, this effect is remarkable, and according to experimental values, R■aX) has been improved by a factor of 2 to 4.
上述の浸透改質炉には各種センサー・マイクロプロセッ
サ−を使用した自動化システムが施されており、品質安
定化をさらに徹底できる。The above-mentioned osmotic reforming furnace is equipped with an automation system that uses various sensors and microprocessors, making it possible to further ensure quality stabilization.
なお、金属母材はバスケットに入れられ、バスケットが
浸透改質炉に挿入されるが、バスケットの寸法は例えば
長さX縦×横1100mmx650msx 650mm
である。The metal base material is placed in a basket, and the basket is inserted into the permeation reforming furnace. The dimensions of the basket are, for example, length x length x width 1100 mm x 650 ms x 650 mm.
It is.
本発明のガス複合浸透改質法によれば、元素が金属の表
面で化学反応を起し、生成された元素が金属に拡散し、
固くてかつ靭性のある表層部を形成する。According to the gas composite permeation reforming method of the present invention, the elements cause a chemical reaction on the surface of the metal, and the generated elements diffuse into the metal.
Forms a hard and tough surface layer.
表層部には強靭な化合物、拡散層には微細な粒状及び針
状の析出物が生じ、有効な性状を示す。A tough compound is formed in the surface layer, and fine granular and acicular precipitates are formed in the diffusion layer, showing effective properties.
本改質方法で得られる特性は次の通りである。The properties obtained by this modification method are as follows.
(1)熱間強度の向上
本改質方法で得られる表面は高い熱間強度の保持を示す
。第2図はその一例を示したものであり、横軸に温度、
縦軸に硬さくビッカース)がとっである。図中実線と二
点鎖線はそれぞれ本発明の1段処理と多段処理を施した
もの、また点線は他の浸透改質方法を施したものを示す
。特にSNCMでは温度の上昇と共に図のように著しい
硬さの低下を示す。(1) Improved hot strength The surface obtained by the present modification method exhibits high hot strength. Figure 2 shows an example, where the horizontal axis shows temperature and
Hardness (Vickers) is taken on the vertical axis. In the figure, the solid line and the two-dot chain line represent the results obtained by the one-stage treatment and the multi-stage treatment of the present invention, respectively, and the dotted line represents the results obtained by another osmotic modification method. In particular, SNCM shows a significant decrease in hardness as the temperature increases, as shown in the figure.
(2)耐摩耗性の向上
第3図は5KD61について他の浸透改質法との比較を
示した一例で、横軸に摩擦時間、縦軸に摩耗量がとっで
ある。図中実線と二点鎖線はそれぞれ本発明の1段処理
と2段処理を施したもの、また点線は他の浸透改質法を
施したものを示す。本発明によれば、耐摩耗りは図のよ
うに大きく改善されている。また、浸透深さも大きいの
で、全体摩耗量としては更に大きい値を表している。(2) Improved wear resistance Figure 3 is an example showing a comparison of 5KD61 with other osmotic modification methods, where the horizontal axis shows the friction time and the vertical axis shows the amount of wear. In the figure, the solid line and the two-dot chain line indicate the one-stage treatment and the two-stage treatment of the present invention, respectively, and the dotted line indicates the one subjected to another osmotic modification method. According to the present invention, the wear resistance is greatly improved as shown in the figure. Furthermore, since the penetration depth is large, the total wear amount is even larger.
(3)摩耗抵抗の軽減 本発明によれば、耐粉体摩耗性能が著しく改善される。(3) Reducing wear resistance According to the present invention, powder wear resistance performance is significantly improved.
これは摩耗係数が無浸透では0.3〜0.4位のものが
本発明により0.1〜0.2に向上することでも説明で
きる。これにより使用中の温度上昇をくいとめ、製品精
度、寿命等に著しい改善がはかられた。This can also be explained by the fact that the present invention improves the wear coefficient from 0.3 to 0.4 in the case of non-penetration to 0.1 to 0.2. This prevents temperature rises during use and significantly improves product accuracy and lifespan.
第4図は、5KD61についての一例を示したものであ
り、横軸に試験荷重、縦軸に上昇温度がとっである。図
中実線と二点鎖線はそれぞれ本発明の1段処理と2段処
理を施したもの、また点線は他の浸透改質法を施したも
のを示す。FIG. 4 shows an example of 5KD61, with the horizontal axis representing the test load and the vertical axis representing the temperature rise. In the figure, the solid line and the two-dot chain line indicate the one-stage treatment and the two-stage treatment of the present invention, respectively, and the dotted line indicates the one subjected to another osmotic modification method.
(4) R労強度の向上
本発明は溝部等複雑形状品にも均質に行える。マトリッ
クスに固溶した元素は、繰返し応力・曲げ応力・回転曲
げ応力下での疲労強αを向上させる。第5図は、5KD
61についての一例を示したものであり、横軸に処理時
間、縦軸に疲労強度がとっである。図中実線と二点鎖線
はそれぞれ本発明の1段処理と2段処理を施したものを
示す。本発明は、疲労強度の著しい向上効果を表わして
いる。(4) Improvement in R-force strength The present invention can be applied uniformly to products with complex shapes such as grooves. Elements dissolved in the matrix improve fatigue strength α under repeated stress, bending stress, and rotational bending stress. Figure 5 shows 5KD
61, in which the horizontal axis represents processing time and the vertical axis represents fatigue strength. In the figure, the solid line and the two-dot chain line indicate the one-stage processing and the two-stage processing of the present invention, respectively. The present invention exhibits a significant improvement in fatigue strength.
(5)クリープ強度の向上
第6図は815C,SN0M3.5KD61について無
浸透品(点線で示す)と本発明の1段処理(実線で示す
)、2段処理(二点鎖線で示す)によるクリープ強度の
比較を示したものであり、本発明によれば、何れの鋼種
でも署しいクリープ強度の向上がみられる。(5) Improvement in creep strength Figure 6 shows the creep of 815C, SN0M3.5KD61 by non-permeable product (shown by dotted line), one-stage treatment (shown by solid line), and two-stage treatment (shown by two-dot chain line) of the present invention. This figure shows a comparison of strength, and according to the present invention, a significant improvement in creep strength can be seen in any steel type.
(6)耐食性の向上
他処理量に比して著しい改善がある。塩水テスト、酸テ
スト・、アンモニア等の各種腐食テストにおいて、その
改善が立証された。(6) Improvement in corrosion resistance and other significant improvements compared to throughput. The improvement has been proven in various corrosion tests such as salt water tests, acid tests, and ammonia tests.
(7)表面あらざの改善
既述のように表面あらさくRmax)の改善が図られた
。(7) Improvement of surface roughness As mentioned above, the surface roughness (Rmax) was improved.
[発明の効果]
以上)!lSべたように、本発明によれば母材の表層部
が改質され、熱間強度、耐摩耗性が向上し、摩耗抵抗が
軽減され、また、疲労強度、クリープ強度、耐食性が向
上し、かつ表面あらぎが改善されるという優れた効果を
有し、工業的にその価値は大きい。[Effects of the invention] Above)! As mentioned above, according to the present invention, the surface layer of the base material is modified, hot strength and wear resistance are improved, wear resistance is reduced, and fatigue strength, creep strength, and corrosion resistance are improved. It also has the excellent effect of improving surface roughness, and is of great industrial value.
第1図は本発明のガス複合浸透改質方法を用いる装置の
ブロック図、第2図は本発明と従来法について温度に対
づる硬さの変化を示した図、第3図は本発明と従来法に
ついて摩耗時間に対する摩耗n1の変化を示した図、第
4図は本発明と従来法について試験荷重に対する上が温
度の変化を示した図、第5図は本発明と従来法について
処理時間に対する疲労強度の変化を示した図、第6図は
本発明と従来法についてクリープ強度の比較を示した図
である。
1・・・浸透改質炉、2・・・真空ポンプ。Figure 1 is a block diagram of an apparatus using the gas composite permeation reforming method of the present invention, Figure 2 is a diagram showing changes in hardness with respect to temperature for the present invention and the conventional method, and Figure 3 is for the present invention and the conventional method. Figure 4 shows the change in wear n1 with respect to wear time for the conventional method. Figure 4 is a diagram showing the change in temperature with respect to the test load for the present invention and the conventional method. Figure 5 shows the processing time for the present invention and the conventional method. FIG. 6 is a diagram showing a comparison of creep strength between the present invention and the conventional method. 1... Osmotic reforming furnace, 2... Vacuum pump.
Claims (2)
を真空に保持した後、アンモニア、 N_2、CO_2、H_2、Ar、ENDO、EXO等
のガスを単独に又は複数個混合させて炉内に注入し、室
温から昇温し、次に前記ガスから選ばれた混合ガス中で
、連続加熱し、さらに前記ガスから選ばれた混合ガス中
で保持し、さらにその状態で前記ガスから選ばれた混合
ガスを供給しながら保持し、かつ主としてN_2ガスを
炉中循環させることを特徴とするガス混合浸透改質方法
。(1) Insert the metal base material into the osmotic reforming furnace, evacuate the furnace and maintain the inside of the furnace in vacuum, and then add gases such as ammonia, N_2, CO_2, H_2, Ar, ENDO, EXO, etc. singly or in combination. The mixture is injected into a furnace, heated from room temperature, then continuously heated in a mixed gas selected from the above gases, further held in a mixed gas selected from the above gases, and further maintained in that state. A gas mixture permeation reforming method characterized in that a mixed gas selected from the above gases is supplied and held, and mainly N_2 gas is circulated in the furnace.
・保持を多段階行なう特許請求の範囲第1項記載のガス
複合浸透改質方法。(2) The gas composite permeation reforming method according to claim 1, wherein the continuous heating, holding in a mixed gas, and further heating and holding are performed in multiple stages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8893587A JPS63255355A (en) | 1987-04-13 | 1987-04-13 | Modifying method by mixed gas penetration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8893587A JPS63255355A (en) | 1987-04-13 | 1987-04-13 | Modifying method by mixed gas penetration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63255355A true JPS63255355A (en) | 1988-10-21 |
JPH0312140B2 JPH0312140B2 (en) | 1991-02-19 |
Family
ID=13956746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8893587A Granted JPS63255355A (en) | 1987-04-13 | 1987-04-13 | Modifying method by mixed gas penetration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63255355A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04364A (en) * | 1990-04-17 | 1992-01-06 | Toyota Motor Corp | Gas soft nitriding method |
JPH04116150A (en) * | 1990-09-04 | 1992-04-16 | Nichiei Kozai Kk | Gas compound cementation modification method |
JP2013159831A (en) * | 2012-02-06 | 2013-08-19 | Honda Motor Co Ltd | Surface treatment method of die cooling hole part, and die |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007046088A (en) * | 2005-08-09 | 2007-02-22 | Yuki Koshuha:Kk | Nitrided quenched part, and method for producing the same |
-
1987
- 1987-04-13 JP JP8893587A patent/JPS63255355A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04364A (en) * | 1990-04-17 | 1992-01-06 | Toyota Motor Corp | Gas soft nitriding method |
JPH04116150A (en) * | 1990-09-04 | 1992-04-16 | Nichiei Kozai Kk | Gas compound cementation modification method |
JP2013159831A (en) * | 2012-02-06 | 2013-08-19 | Honda Motor Co Ltd | Surface treatment method of die cooling hole part, and die |
Also Published As
Publication number | Publication date |
---|---|
JPH0312140B2 (en) | 1991-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6378189B2 (en) | Method of nitriding steel member | |
KR100503838B1 (en) | Gas Carburizing Furnace Parts and Jigs | |
US4160680A (en) | Vacuum carburizing | |
JP7094540B2 (en) | Nitride steel member and manufacturing method and manufacturing equipment for nitrided steel member | |
CN113862610A (en) | Pretreatment method for improving corrosion resistance of carburized layer | |
JPH0790541A (en) | Mixed gas penetration modifying method and device therefor | |
WO2019131602A1 (en) | Nitrided steel member, and method and apparatus for producing nitrided steel member | |
JPS63255355A (en) | Modifying method by mixed gas penetration | |
US20070068606A1 (en) | Single-chamber vacuum furnace with hydrogen quenching | |
US6328819B1 (en) | Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces | |
CN111593296A (en) | Martensitic stainless steel surface hardening agent and preparation method and application method thereof | |
JP5653879B2 (en) | Processing method of sintered products | |
JP2015025161A (en) | Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy | |
WO2015125767A1 (en) | Method for producing machine component | |
JP2009299122A (en) | Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus | |
JP5817173B2 (en) | Gas quenching method | |
JP4858071B2 (en) | Steel surface treatment method and surface-treated steel material | |
JPS6033188B2 (en) | Metal heat treatment equipment | |
GB2049740A (en) | Improvements in or relating to case hardening | |
JPS63759Y2 (en) | ||
PIT | A NEW LOW-PRESSURE CARBURIZING SOLUTION | |
JPH1112715A (en) | Method for nitriding metallic material | |
Korecki et al. | Devices for modern vacuum heat treatment | |
TW202246545A (en) | Nitriding treatment method for steel member | |
Bell | Sub-atmospheric pressure or vacuum heat-treatment processing |