[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6324388Y2 - - Google Patents

Info

Publication number
JPS6324388Y2
JPS6324388Y2 JP1987089014U JP8901487U JPS6324388Y2 JP S6324388 Y2 JPS6324388 Y2 JP S6324388Y2 JP 1987089014 U JP1987089014 U JP 1987089014U JP 8901487 U JP8901487 U JP 8901487U JP S6324388 Y2 JPS6324388 Y2 JP S6324388Y2
Authority
JP
Japan
Prior art keywords
pipe
melting point
box
point alloy
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987089014U
Other languages
Japanese (ja)
Other versions
JPS6323575U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987089014U priority Critical patent/JPS6324388Y2/ja
Publication of JPS6323575U publication Critical patent/JPS6323575U/ja
Application granted granted Critical
Publication of JPS6324388Y2 publication Critical patent/JPS6324388Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、腐蝕性の強い溶融金属の熱エネルギ
を安全、かつ効率的に回収する熱交換器に関す
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a heat exchanger that safely and efficiently recovers the thermal energy of highly corrosive molten metal.

〈従来の技術〉 非鉄金属製錬等の溶鉱炉、蒸留炉、揮発炉等か
ら産出される亜鉛や亜鉛を含む溶融金属等の腐蝕
性溶融金属は多量の熱エネルギを持つており、こ
れらのものを冷却する際、その熱エネルギを有利
に回収することは極めて重要なことである。
<Prior art> Corrosive molten metals such as zinc and molten metals containing zinc produced from blast furnaces, distillation furnaces, volatilization furnaces, etc. in non-ferrous metal smelting contain a large amount of thermal energy. During cooling, it is extremely important to advantageously recover the thermal energy.

通常、このような腐蝕性溶融金属の熱エネルギ
を回収する方法としては、第1図に示すように、
溶鉱炉等から産出される温度の高い腐蝕性溶融金
属を熱交換器01内に導き、ここで、内部に水が
通る伝熱管02と接触させ、熱交換を行なわせて
前記水を温水又は蒸気として熱エネルギを回収す
る方法がとられている。図面中、03は貯水槽、
04は水、05は送水ポンプ、06,07は送水
ポンプ、08はラジエタである。Aは腐蝕性溶融
金属の流れを示す。
Normally, as a method for recovering the thermal energy of such corrosive molten metal, as shown in Fig. 1,
High-temperature corrosive molten metal produced from a blast furnace or the like is guided into a heat exchanger 01, where it is brought into contact with a heat transfer tube 02 through which water passes, and heat exchange is performed to convert the water into hot water or steam. Methods are being used to recover thermal energy. In the drawing, 03 is a water tank,
04 is water, 05 is a water pump, 06 and 07 are water pumps, and 08 is a radiator. A shows the flow of corrosive molten metal.

〈考案が解決しようとする問題点〉 この場合、回収された熱エネルギの利用効率を
できる限り高くするためには、得られる蒸気を高
温高圧のものとすることが必要であるが、このよ
うな条件下では通常の熱交換器用材料例えば鉄鋼
材料や銅、銅合金等は前記溶融金属に腐蝕され、
その結果熱交換器が破壊し、高温高圧の水及び蒸
気が前記溶融金属中に洩れ、場合によつては爆発
等の重大な事故を引き起こす恐れもあつた。
<Problem to be solved by the invention> In this case, in order to maximize the utilization efficiency of the recovered thermal energy, it is necessary to make the obtained steam high temperature and high pressure. Under these conditions, ordinary materials for heat exchangers, such as steel materials, copper, copper alloys, etc., are corroded by the molten metal.
As a result, the heat exchanger was destroyed, and high-temperature, high-pressure water and steam leaked into the molten metal, possibly causing a serious accident such as an explosion.

一方、上記危険性を回避するため、熱交換器用
材料として、前記腐蝕性溶融金属に対して耐蝕性
があり且つ熱伝導率の大きい炭化硅素レンガや黒
鉛レンガ等を使用することが考えられるが、これ
らの材料はいずれも前記一般的熱交換器用材料に
比べて強度が小さく、工場等の暖房に使用されて
いる一般的な蒸気圧力7Kg/cm2G程度の圧力に耐
える設計さえ難しい上、急冷急熱の熱シヨツクや
衝撃にも弱いことから、安全性の高い熱交換器を
作ることは困難であつた。
On the other hand, in order to avoid the above-mentioned dangers, it is conceivable to use silicon carbide bricks, graphite bricks, etc., which are corrosion resistant to the corrosive molten metal and have high thermal conductivity, as materials for the heat exchanger. All of these materials have lower strength than the general heat exchanger materials mentioned above, and it is difficult to design them to withstand the steam pressure of about 7 kg/cm 2 G, which is the typical steam pressure used for heating factories, etc. It has been difficult to create a highly safe heat exchanger because it is vulnerable to sudden heat shocks and shocks.

従つて、従来の熱交換器では、その出口におけ
る水の温度はせいぜい60〜70℃ぐらいにしかなら
ず、排熱は限られた温度範囲で、その一部を温水
暖房程度に利用するか或いは全く利用されていな
かつた。
Therefore, in conventional heat exchangers, the temperature of the water at the outlet is only about 60 to 70 degrees Celsius, and the exhaust heat is limited to a limited temperature range, and some of it is used for hot water heating, or it is not used at all. It had not been done.

本考案は、腐蝕性溶融金属の熱エネルギを回収
するにあたり、従来の熱交換器における上記のよ
うな欠点を解消し、熱エネルギを安全且つ効率的
に回収することのできる熱交換器を提供すること
を目的とする。
The present invention eliminates the above-mentioned drawbacks of conventional heat exchangers when recovering thermal energy from corrosive molten metal, and provides a heat exchanger that can safely and efficiently recover thermal energy. The purpose is to

〈問題点を解決するための手段〉 上記目的を達成する本考案の構成は、熱源であ
る腐蝕性の強い溶融金属の流れの中に浸漬される
箱の外面を耐蝕性材料でライニングし、当該箱の
内側に、熱伝導率が大きく、沸点が高く、高温に
おける蒸気圧が低く、しかも伝熱媒体を通すパイ
プを腐蝕させることの少ない低融点合金を充填す
ると共に、前記伝熱媒体を通すパイプを前記低融
点合金中に中吊り支持したことを特徴とする熱交
換器に存する。
<Means for Solving the Problems> The structure of the present invention to achieve the above object is to line the outer surface of the box with a corrosion-resistant material to be immersed in the flow of highly corrosive molten metal that is the heat source. The inside of the box is filled with a low melting point alloy that has high thermal conductivity, high boiling point, low vapor pressure at high temperatures, and does not easily corrode the pipe through which the heat transfer medium passes, and a pipe through which the heat transfer medium passes. The heat exchanger is characterized in that the heat exchanger is suspended in the low melting point alloy.

〈作用〉 腐蝕性の強い溶融金属が有する熱は、耐蝕性材
料、箱、低融点合金を介してパイプ内の伝熱媒体
に伝えられ、効率良く熱回収される。一方、水等
の伝熱媒体が通されるパイプは低融点合金中に支
持され、高温の腐蝕性の強い溶融金属と接触する
ことがないので安全であり、しかも、その支持も
中吊り状態で支持してあるので、温度変化による
パイプの膨張、収縮も吸収し得る。
<Operation> The heat possessed by the highly corrosive molten metal is transmitted to the heat transfer medium in the pipe via the corrosion-resistant material, the box, and the low melting point alloy, and is efficiently recovered. On the other hand, pipes through which heat transfer media such as water are passed are supported in a low-melting point alloy and do not come into contact with high-temperature, highly corrosive molten metal, making them safe. Since it is supported, expansion and contraction of the pipe due to temperature changes can be absorbed.

〈実施例〉 第2図、第3図には本考案の一実施例に係る熱
交換器の正面に沿う断面及びその−矢視断面
を示してある。
<Embodiment> FIGS. 2 and 3 show a cross section along the front of a heat exchanger according to an embodiment of the present invention and a cross section thereof taken in the direction of the - arrow.

腐蝕性の強い溶融金属中に浸漬される箱1は直
方体をなし、その上部二個所には開口部2a,2
bが設けてある。高温の腐蝕性流体と接触される
箱1の外面には、炭化硅素レンガ、黒鉛レンガ等
熱伝導率の大きい耐蝕材3がライニングされてい
る。また、開口部2a,2b間をつなぐ箱1の上
面にも同様に耐蝕材3がライニングされている。
The box 1, which is immersed in highly corrosive molten metal, has a rectangular parallelepiped shape, and has two openings 2a and 2 at the top.
b is provided. The outer surface of the box 1, which comes into contact with the high temperature corrosive fluid, is lined with a corrosion-resistant material 3 having high thermal conductivity, such as silicon carbide bricks or graphite bricks. Further, the upper surface of the box 1 connecting the openings 2a and 2b is also lined with a corrosion-resistant material 3.

箱1内には、各開口部2a,2bの開口付近ま
で満たして低融点合金9が充填されている。低融
点合金9中には、開口部2a,2bから延びるパ
イプ8がいく重にも蛇行させて中吊り支持されて
いる。パイプ8は箱1の開口部2a,2bで、あ
るいはその上方で適宜支持される。このパイプ8
内に伝熱媒体である水等が通される。
The box 1 is filled with a low melting point alloy 9 up to the vicinity of each opening 2a, 2b. In the low melting point alloy 9, pipes 8 extending from the openings 2a and 2b are suspended and meandered in a number of ways. The pipe 8 is appropriately supported at or above the openings 2a, 2b of the box 1. This pipe 8
A heat transfer medium such as water is passed inside.

前記低融点合金9は、鉄鋼等でできている前記
パイプ8を腐蝕させることのない、もしくは腐蝕
させることの少ないビスマス、鉛を主成分とした
ものであるが、必要に応じて錫、カドミウム等の
金属を添加すれば、その融点を60℃程度とするこ
とが可能である。
The low melting point alloy 9 is mainly composed of bismuth and lead, which do not corrode or hardly corrode the pipe 8 made of steel or the like, but may contain tin, cadmium, etc. as necessary. It is possible to raise the melting point to about 60°C by adding a metal of .

一方、ビスマス、鉛の沸点は1500℃以上と高
い。よつて、この低融点合金9は60℃程度の低温
から1500℃以上の高温度に及ぶ広い範囲で溶融状
態を保つことができる。即ち100℃以下の低温か
ら1500℃以上の高温まで極めて広い範囲で低融点
合金9を溶融状態として熱交換を行なうことがで
きる。
On the other hand, the boiling points of bismuth and lead are high, over 1500℃. Therefore, this low melting point alloy 9 can maintain a molten state over a wide range of temperatures ranging from a low temperature of about 60°C to a high temperature of 1500°C or more. That is, heat exchange can be performed with the low melting point alloy 9 in a molten state over a very wide range from a low temperature of 100° C. or lower to a high temperature of 1500° C. or higher.

ここで、当該熱交換器における熱の伝達を考え
てみると、直接熱源と接触する耐蝕材3に伝えら
れた熱は、箱1、低融点合金9のみを経てパイプ
8内の伝熱媒体である水へと伝えられる。即ち、
熱の伝達はすべて熱伝導率の良好な物質を通して
行なわれることから、極めて効率のよい熱交換が
可能である。
Now, considering the heat transfer in the heat exchanger, the heat transferred to the corrosion-resistant material 3 that is in direct contact with the heat source is transferred to the heat transfer medium in the pipe 8 through only the box 1 and the low melting point alloy 9. It is transmitted to a certain water. That is,
Because all heat transfer occurs through materials with good thermal conductivity, extremely efficient heat exchange is possible.

箱1内の低融点合金9としては、前述した通
り、鉛、ビスマス等の主成分としたものを用いる
が、この低融点合金9は1000℃近辺の温度でもそ
の蒸気圧は極めて低く、蒸発による損失もほとん
どない。
As mentioned above, the low melting point alloy 9 in the box 1 is made of lead, bismuth, etc. as the main ingredients, but the vapor pressure of this low melting point alloy 9 is extremely low even at temperatures around 1000°C, and the vapor pressure is low due to evaporation. There are almost no losses.

又、低融点合金の高温度における蒸気圧が低い
こととこれを大気開放できることから箱1の強度
はほとんど考慮する必要がないので、耐蝕材3と
して用いられる炭化硅素レンガ、黒鉛レンガ等の
ような強度はそれほど大きくはないが熱伝導率の
良い耐蝕性のある材料が有利に利用できる。
In addition, since the vapor pressure of the low melting point alloy is low at high temperatures and it can be exposed to the atmosphere, there is almost no need to consider the strength of the box 1, so silicon carbide bricks, graphite bricks, etc. Corrosion-resistant materials with good thermal conductivity but not very high strength can be advantageously used.

尚、箱1の万一の破損等による低融点合金9の
流出に備えて、低融点合金9のレベルを検出する
ためのレベル検知器10が箱1の開口部2a内に
設けてある、万一箱1が破損して低融点合金9が
流出すると、低融点合金9のレベルが低下し、前
記レベル検知器10が働いて、箱1に異常があつ
たことが直ちに検知され、パイプ8が損傷する前
に箱1の修理、取替えが行える。
In addition, in case the low melting point alloy 9 leaks out due to the box 1 being damaged, a level detector 10 for detecting the level of the low melting point alloy 9 is provided in the opening 2a of the box 1. When one box 1 is damaged and the low melting point alloy 9 flows out, the level of the low melting point alloy 9 decreases, the level detector 10 is activated, it is immediately detected that there is an abnormality in the box 1, and the pipe 8 is Box 1 can be repaired or replaced before it is damaged.

又、箱1内の低融点合金9は熱交換を行うとき
と行わないときとで溶融、凝固を繰り返し、それ
によりパイプ8も膨張、収縮するが、パイプ8は
いく重に蛇行させ、かつ低融点合金9中に中吊り
状態で支持してあるので、温度変化による膨張、
収縮の変位を容易に吸収することができる。
Furthermore, the low melting point alloy 9 in the box 1 repeatedly melts and solidifies depending on whether heat exchange is performed or not, and the pipe 8 also expands and contracts. Since it is suspended in the melting point alloy 9, it will not expand due to temperature changes.
The displacement of contraction can be easily absorbed.

第1図に示した従来の熱交換器の代わりに本考
案に係る熱交換器を使用すると、腐蝕性溶融金属
の温度が比較的低温の350℃程度でも効率的熱交
換が可能で安全なため、気水分離器等を付加すれ
ば7Kg/cm2G程度の飽和蒸気は容易に発生させる
ことができる。
When the heat exchanger according to the present invention is used instead of the conventional heat exchanger shown in Fig. 1, efficient heat exchange is possible and safe even when the temperature of the corrosive molten metal is relatively low, around 350°C. If a steam separator or the like is added, saturated steam of about 7 kg/cm 2 G can be easily generated.

熱量が多く暖房等通常の使用方法では消費でき
ない大量の蒸気が得られるときは、第4図に示す
ように、本考案による熱交換器を更に過熱器とし
て付加し、高温高圧の過熱蒸気を発生させ、発電
を行なうなど有効に利用することができる。第4
図において、溶鉱炉等から出湯される亜鉛や亜鉛
等を含む腐蝕性溶融金属が矢印Aで示す如く流さ
れる樋(例えば、亜鉛と鉛を分離しやすくするた
めに冷却する樋)12内に、第2,3図に示した
構造の熱交換器13及び過熱器14が溶融金属に
浸漬状態で設置される。熱交換器13の伝熱パイ
プ8の入口側には水パイプ15が接続し、出口側
は気水分離器16に接続している。気水分離器1
6からの蒸気パイプ17は前記過熱器14の伝熱
パイプ8の入口側に、前記過熱器14に伝熱パイ
プ8の出口側は過熱蒸気パイプ18につながつて
いる。図面中、19は貯水槽、20は水、21は
給水ポンプ、22はドレンパイプである。
When a large amount of steam that has a large amount of heat and cannot be consumed by normal methods such as heating is available, a heat exchanger according to the present invention can be added as a superheater to generate high-temperature, high-pressure superheated steam, as shown in Figure 4. It can be used effectively to generate electricity. Fourth
In the figure, a corrosive molten metal containing zinc or the like discharged from a blast furnace or the like is poured into a gutter 12 (for example, a gutter that is cooled to facilitate separation of zinc and lead) as shown by arrow A. A heat exchanger 13 and a superheater 14 having the structure shown in FIGS. 2 and 3 are installed immersed in molten metal. A water pipe 15 is connected to the inlet side of the heat transfer pipe 8 of the heat exchanger 13, and the outlet side is connected to a steam/water separator 16. Steam water separator 1
6 is connected to the inlet side of the heat transfer pipe 8 of the superheater 14, and the outlet side of the heat transfer pipe 8 to the superheater 14 is connected to the superheated steam pipe 18. In the drawing, 19 is a water tank, 20 is water, 21 is a water supply pump, and 22 is a drain pipe.

〈考案の効果〉 上述のように本考案による熱交換器によれば、
腐蝕性の強い溶融金属から効率的且つ安全に利用
価値の高い蒸気を発生させ、経済的に熱回収を行
なうことができる。又、たとえ、箱、パイプのい
ずれかが何かの理由により破損したとしても、パ
イプ内の水等の伝熱媒体と高温の腐蝕性溶融金属
が直接触れるといつた事態は生ぜず、蒸気爆発の
おそれもない。更に、伝熱媒体を通すパイプを溶
融、凝固を繰り返す低融点合金中に中吊り支持し
てあるので、温度変化による変位を吸収すること
ができ、パイプが破損したりすることがない。
<Effects of the invention> As mentioned above, according to the heat exchanger according to the invention,
Steam with high utility value can be efficiently and safely generated from highly corrosive molten metal, and heat can be recovered economically. Furthermore, even if either the box or the pipe were damaged for some reason, there would be no direct contact between the heat transfer medium such as water inside the pipe and the high-temperature corrosive molten metal, and a steam explosion would occur. There is no fear of Furthermore, since the pipe through which the heat transfer medium passes is suspended in a low melting point alloy that is repeatedly melted and solidified, displacement due to temperature changes can be absorbed and the pipe will not be damaged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な熱エネルギ回収装置の
概略図、第2図は本考案に係る熱交換器の一実施
例の断面図、第3図は第2図中の−矢視方向
断面図、第4図は本考案に係る熱交換器を熱交換
器及び過熱器として使用した熱エネルギ回収装置
の一例の概略図である。 図面中、1は箱、3は耐蝕材、8はパイプ、9
は低融点合金である。
Fig. 1 is a schematic diagram of a conventional general heat energy recovery device, Fig. 2 is a cross-sectional view of an embodiment of the heat exchanger according to the present invention, and Fig. 3 is a cross-section in the direction of the − arrow in Fig. 2. 4 are schematic diagrams of an example of a thermal energy recovery device using the heat exchanger according to the present invention as a heat exchanger and a superheater. In the drawing, 1 is a box, 3 is a corrosion-resistant material, 8 is a pipe, 9
is a low melting point alloy.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱源である腐蝕性の強い溶融金属の流れの中に
浸漬される箱の外面を耐蝕性材料でライニング
し、当該箱の内側に、熱伝導率が大きく、沸点が
高く、高温における蒸気圧が低く、しかも伝熱媒
体を通すパイプを腐蝕させることの少ない低融点
合金を充填すると共に、前記伝熱媒体を通すパイ
プを前記低融点合金中に中吊り支持したことを特
徴とする熱交換器。
The outer surface of the box that is immersed in the flow of highly corrosive molten metal that is the heat source is lined with a corrosion-resistant material, and the inside of the box is lined with a material that has high thermal conductivity, a high boiling point, and a low vapor pressure at high temperatures. A heat exchanger characterized in that the pipe through which the heat transfer medium passes is filled with a low melting point alloy that hardly corrodes the pipe, and the pipe through which the heat transfer medium passes is suspended in the low melting point alloy.
JP1987089014U 1987-06-11 1987-06-11 Expired JPS6324388Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987089014U JPS6324388Y2 (en) 1987-06-11 1987-06-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987089014U JPS6324388Y2 (en) 1987-06-11 1987-06-11

Publications (2)

Publication Number Publication Date
JPS6323575U JPS6323575U (en) 1988-02-16
JPS6324388Y2 true JPS6324388Y2 (en) 1988-07-04

Family

ID=30947611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987089014U Expired JPS6324388Y2 (en) 1987-06-11 1987-06-11

Country Status (1)

Country Link
JP (1) JPS6324388Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG182455A1 (en) * 2010-01-12 2012-08-30 Sylvan Source Inc Heat transfer interface

Also Published As

Publication number Publication date
JPS6323575U (en) 1988-02-16

Similar Documents

Publication Publication Date Title
CN101768652B (en) Revolving furnace flue gas waste heat power generation system and method based on high-temperature heat carrier overheating
JP2014513260A (en) Particularly suitable for heat storage equipment
Ladam et al. Heat recovery from aluminium reduction cells
JP2002364801A (en) Waste heat utilization system
CN201177471Y (en) Safe explosion-proof -type separating heat-pipe evaporator
JPS6324388Y2 (en)
CN201574161U (en) Superheated converter flue gas waste heat generating system based on high-temperature heat carrier
CN202485507U (en) Boiler flue gas waste heat recovery device
JPS6324387Y2 (en)
CN208667816U (en) A kind of novel energy-conserving and not the titanium sponge reduction distillation system of consumption of reactor
CN214949182U (en) Flue gas air preheater and sealing device thereof
RU2067273C1 (en) Method of cooling melting furnace and melting furnace, being cooled
CN114893994A (en) Furnace lining structure capable of quickly cooling furnace and recovering heat storage capacity of furnace lining
JPS6139280Y2 (en)
CN103063041B (en) ISP (imperial smelting process) cooling chute waste heat boiler system
CN216005919U (en) Vaporization cooling flue with spoiler
CN214199725U (en) Solid-solid heat exchange device start protection device and solid-solid heat exchange device
CN213983496U (en) Cooling and waste heat recovery boiler for sinter and pellet
CN217057482U (en) External exhaust-heat boiler of coiled pipe fillet weld
CN221666666U (en) Electric furnace waste heat recovery system based on fused salt heat storage
CN212320502U (en) Flue gas reheater
CN221684600U (en) Novel boiler water-cooling wall-steam cooling wall integrated structure
JPS6360116B2 (en)
JPH0115796B2 (en)
CN210070689U (en) Composite phase change heat exchanger