JPS63232273A - Fuel cell cooling device - Google Patents
Fuel cell cooling deviceInfo
- Publication number
- JPS63232273A JPS63232273A JP62063895A JP6389587A JPS63232273A JP S63232273 A JPS63232273 A JP S63232273A JP 62063895 A JP62063895 A JP 62063895A JP 6389587 A JP6389587 A JP 6389587A JP S63232273 A JPS63232273 A JP S63232273A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- mist
- cooling device
- gas
- supply passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 50
- 238000001816 cooling Methods 0.000 title claims abstract description 33
- 239000003595 mist Substances 0.000 claims abstract description 57
- 239000003507 refrigerant Substances 0.000 claims description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 12
- 239000000376 reactant Substances 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 43
- 239000012495 reaction gas Substances 0.000 abstract description 18
- 239000002826 coolant Substances 0.000 abstract description 6
- 238000009413 insulation Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、燃料電池の冷却を反応ガスに混入せしめたミ
ストによって行うようにした燃料電池冷却装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell cooling device in which a fuel cell is cooled by a mist mixed with a reaction gas.
従来のリン酸型燃料電池としては、特公昭58−336
70号に記載の如く水冷方式であり、水を送り込むポン
プ、熱を除去するための熱交換器など外部設置機器のほ
かに、冷却媒体として液体を用いているために、液体の
漏洩を防ぐための管が必要となり、管を収納するために
冷却管保持板が必要となる。また、冷却媒体に水を用い
ているため。As a conventional phosphoric acid fuel cell,
As described in No. 70, it is a water-cooled system, and in addition to externally installed equipment such as a pump to pump water and a heat exchanger to remove heat, it uses liquid as a cooling medium, so to prevent liquid leakage. tubes are required, and a cooling tube holding plate is required to accommodate the tubes. Also, because water is used as a cooling medium.
絶縁を確保するために冷却管と冷却管保持板との間に絶
縁、及び冷却母管の絶縁継手などの種々の部品が必要と
なり、構造を複雑化するという問題点があった。In order to ensure insulation, various parts such as insulation between the cooling pipe and the cooling pipe holding plate and an insulating joint for the cooling main pipe are required, which poses a problem of complicating the structure.
本発明の目的は上述した如き事情に鑑み、燃料電池の冷
却装置の部品点数を減少することによって、装置の簡略
化を図り、かつ液通路による絶縁不良を防止しうる燃料
電池冷却装置を提供することにある。SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, an object of the present invention is to provide a fuel cell cooling device that can simplify the device by reducing the number of parts of the fuel cell cooling device and prevent insulation defects due to liquid passages. There is a particular thing.
上記問題点を解決するため、本発明の燃料電池冷却装置
は、燃料電池への反応ガス供給路である入口ガス配管の
一部にミスト発生部を配置することにより、燃料電池へ
の反応ガス供給路と冷媒ミスト供給路とを共通しにした
ことを特徴とする。In order to solve the above-mentioned problems, the fuel cell cooling device of the present invention provides a mist generating section in a part of the inlet gas piping, which is the reactant gas supply path to the fuel cell. It is characterized in that the refrigerant mist supply passage and the refrigerant mist supply passage are common.
本発明の燃料電池冷却装置は上記のような構成を有する
から1反応ガス供給路である入口ガス配管に配設したミ
スト供給手段により反応ガス中にミストを混入すると、
ミストを含んだ反応ガスの温度は、ミストが全部気化す
るまではミストの沸点以上にはならない。従って、反応
ガスは、燃料電池の発熱部へ導入する前には多量のミス
トを含んでいるが、発熱部で加熱されて、ガス温度がミ
ストの沸点に近づくとミストの蒸発により、ガス温度が
それ以上上昇することを抑制することになる。また、反
応ガス温度は、熱発部の下流側でも高くならないので、
発熱郡全体を均一に冷却することができる。Since the fuel cell cooling device of the present invention has the above-described configuration, when mist is mixed into the reaction gas by the mist supply means disposed in the inlet gas pipe, which is one reaction gas supply path,
The temperature of the reaction gas containing the mist does not rise above the boiling point of the mist until all of the mist is vaporized. Therefore, the reaction gas contains a large amount of mist before being introduced into the heat generating part of the fuel cell, but when it is heated in the heat generating part and the gas temperature approaches the boiling point of the mist, the gas temperature increases due to evaporation of the mist. This will prevent it from rising any further. In addition, the reaction gas temperature does not rise even downstream of the heat generating part, so
The entire fever-generating area can be cooled uniformly.
さらに、冷却は、ミストの気化熱によって行なうため、
潜熱を用いる液冷方式に比べ、少ない冷媒量で冷却する
ことができる。Furthermore, since cooling is performed by the heat of vaporization of the mist,
Compared to liquid cooling systems that use latent heat, cooling can be achieved using a smaller amount of refrigerant.
そして、冷媒はミスト状で供給されるため、液体の冷却
を供給するための冷却管は必要とせず、反応ガスの流れ
るガス空間を利用できるため、冷却構造が簡単となる。Furthermore, since the refrigerant is supplied in the form of a mist, there is no need for a cooling pipe for supplying liquid cooling, and the gas space through which the reaction gas flows can be used, which simplifies the cooling structure.
また、冷媒として、気化熱の大きい水などの導電性ミス
トを用いても、液体の連続路が形成されないので、発熱
部が課電状態になっても、絶縁のための複雑な構造を必
要としない。In addition, even if a conductive mist such as water with a large heat of vaporization is used as a refrigerant, a continuous path for the liquid will not be formed, so even if the heat generating part becomes energized, a complicated structure for insulation is not required. do not.
以下、本発明の燃料電池冷却装置の一実施例について、
添付の図面に基づいて説明する。タンク。Hereinafter, an embodiment of the fuel cell cooling device of the present invention will be described.
The explanation will be based on the attached drawings. tank.
9内に収納された燃料電池セル1は、複数段積層され、
マニホルド2から反応ガスが一括して供給される。リン
酸型燃料電池では、反応ガスとしてカソードには空気が
供給され、アノードには、改質ガスが異なるマニホルド
2から供給されることになる。反応ガス供給路である入
口ガス配管3の一部にミスト発生部5が配置され、出口
ガス配管4の一部に熱交換器6が配置されている。The fuel cells 1 housed in the fuel cell 9 are stacked in multiple stages,
Reaction gas is supplied from the manifold 2 all at once. In a phosphoric acid fuel cell, air is supplied to the cathode as a reactive gas, and reformed gas is supplied to the anode from a different manifold 2. A mist generating section 5 is arranged in a part of the inlet gas pipe 3 which is a reaction gas supply path, and a heat exchanger 6 is arranged in a part of the outlet gas pipe 4.
熱交換器6によって液化した冷媒は、ポンプ7によって
ミスト発生部5へもどされ、作動ガス配管8から供給さ
れる作動ガスによってミスト化され、再び燃料電池セル
1へ供給される。The refrigerant liquefied by the heat exchanger 6 is returned to the mist generating section 5 by the pump 7, turned into a mist by the working gas supplied from the working gas pipe 8, and then supplied to the fuel cell 1 again.
本発明の燃料電池冷却装置は上述の如く構成されており
、その実施における各条件は次の如くになる。The fuel cell cooling device of the present invention is constructed as described above, and the conditions for its implementation are as follows.
ミストを発生される方法としては、超音波を用いる方法
、静電力を用いる方法、流体を用いる方法があり、いず
れの方法を用いても良く、本発明の実施例では、作動ガ
スによる2流体ノズルを用いており、2流体ノズルを用
いたのは多量のミストを安定に出すことが容易にできる
ためである。Methods for generating mist include a method using ultrasonic waves, a method using electrostatic force, and a method using fluid. The reason for using a two-fluid nozzle is that it is easy to stably emit a large amount of mist.
また、ノズルの閉塞による故障防止には、ノズルを複数
個設け、故障を検知して修理を行なえば、系全体の信頼
性を高められることになる。Furthermore, to prevent failures due to nozzle blockages, the reliability of the entire system can be increased by providing a plurality of nozzles, detecting failures, and performing repairs.
ミストへの混入ガスは、カソードへ供給する空気或いは
アノードへ供給する改質ガスを用いても良く、またその
両者であっても良い。The gas mixed into the mist may be air supplied to the cathode, reformed gas supplied to the anode, or both.
そ−して、2流体ノズルを作動させるための作動ガスと
しては種々のガスを選ぶことができるが反応ガスと同じ
ガスを加圧して使用すれば、異種ガス混入による有効ガ
ス成分の分圧低下を防ぐことができる。Various gases can be selected as the working gas to operate the two-fluid nozzle, but if the same gas as the reaction gas is used under pressure, the partial pressure of the effective gas component will drop due to the mixing of different gases. can be prevented.
また、作動ガスとして出口ガスの反応ガスを加圧して用
いるようにすれば有効ガス成分の分圧抑制に利用するこ
ともできる。Furthermore, if the reactant gas at the outlet gas is pressurized and used as the working gas, it can also be used to suppress the partial pressure of the effective gas component.
ミストとしては、各種の液体を用いることができるが、
本発明の実施例では潜熱の大きい水を用いている。実施
例のリン酸型燃料電池は7ataの圧力条件で運転され
ており、ミストを含んだ反応ガスは約140°Cに保持
され、かつセル温度は約180°Cに保持されている。Various liquids can be used as the mist, but
In the embodiment of the present invention, water having a large latent heat is used. The phosphoric acid fuel cell of the example is operated at a pressure of 7 ata, the reaction gas containing mist is maintained at about 140°C, and the cell temperature is maintained at about 180°C.
反応ガス温度を上げる方法としては、リン酸水溶液を冷
媒として用いることもでき、この方法によれば、リン酸
消失による燃料電池の性能低下防止に有効である。As a method of raising the temperature of the reaction gas, an aqueous phosphoric acid solution can be used as a refrigerant, and this method is effective in preventing deterioration in fuel cell performance due to disappearance of phosphoric acid.
ミストの粒径は、装置の構造によって適正値が異なるが
、本発明の実施例では2〜50μのミストを用いており
、ミスト粒径が大きい場合には、燃料電池セル1へ供給
される前に壁へ付着し、壁面をぬらすことがある。そこ
で、絶縁個所が液でぬれるのを防止する方法としては、
ミスト発生部5の近傍に曲がりなどからなる粗いデミス
タ部を設け、粒径の大きいミストが燃料電池部へ入るの
を防ぐ方法が有効となる。また、壁面のぬれで絶縁低下
が懸念される場合には、壁面を加熱することにより絶縁
性を保つ絶縁継手もしくは、ミストが壁面につきにくい
流れを作った絶縁継手を用いれば、絶縁性の保持はより
確かになる。The appropriate value for the particle size of the mist varies depending on the structure of the device, but in the embodiment of the present invention, a mist of 2 to 50 μm is used. may adhere to the wall and wet the wall surface. Therefore, as a method to prevent the insulation parts from getting wet with liquid,
An effective method is to provide a roughly curved demister section near the mist generating section 5 to prevent mist with large particle size from entering the fuel cell section. In addition, if there is a concern that the insulation will deteriorate due to wetting the wall surface, insulation can be maintained by using an insulating joint that maintains insulation by heating the wall surface, or an insulating joint that creates a flow that prevents mist from adhering to the wall surface. Become more certain.
ミスト冷却の場合、ミストを含むガス温度は均一となる
が、発熱体の一部分を特に良く冷却したい場合には、ガ
ス通路に曲がりを入れるなどしてミストが壁面につきや
すい構造にすることが有効となる。また、図ではミスト
を含む反応ガスは燃料電池内を1回通過するだけの流れ
を示しているが、燃料電池セル1の面内あるいは同セル
1の股間で折り返しガスを流し、最初の通過で発生した
気化ガスを液化除去し、折り返し後のガスに新たにミス
トを追加するようにすれば、反応ガス成分の比率を気化
ガスが下げることにより、セル性能を下げる効果を軽減
させることが可能である。In the case of mist cooling, the temperature of the gas containing the mist is uniform, but if you want to cool a part of the heating element particularly well, it is effective to create a structure that makes it easier for the mist to adhere to the wall, such as by creating a bend in the gas passage. Become. In addition, although the figure shows the flow of the reactant gas containing mist passing through the fuel cell only once, the gas is turned around in the plane of the fuel cell 1 or between the crotches of the cell 1, and the gas flows during the first passage. If the generated vaporized gas is liquefied and removed and a new mist is added to the gas after turning, the effect of lowering cell performance can be reduced by reducing the ratio of the reactant gas components. be.
ミスト冷却システムとしては、冷却すべき燃料電池の温
度が低い場合には、ミス1へを供給せず、燃料電池の温
度があるレベル以上になればミストを供給する方式が用
いられている。これによって燃料電池の一部または全部
が冷媒でぬれるため、絶縁不良などの不具合が発生する
のを防止することができる。また、燃料電池が加圧状態
で用いられる場合には、燃料電池の温度と圧力を検出し
てミスト供給を制御することになる。As a mist cooling system, a system is used in which mist is not supplied to Mis 1 when the temperature of the fuel cell to be cooled is low, and mist is supplied when the temperature of the fuel cell reaches a certain level or higher. As a result, part or all of the fuel cell is wetted with the refrigerant, so that problems such as poor insulation can be prevented from occurring. Furthermore, when the fuel cell is used in a pressurized state, the mist supply is controlled by detecting the temperature and pressure of the fuel cell.
尚、本発明は燃料電池冷却装置に関するものであるが、
本発明のミスト冷却の原理は、回転機。Although the present invention relates to a fuel cell cooling device,
The principle of mist cooling of the present invention is a rotating machine.
変圧器、サイリスタ装置、2次電池など課電された発熱
体の冷却にも適用可能なものである。It can also be applied to cooling electrically charged heating elements such as transformers, thyristor devices, and secondary batteries.
本発明の燃料電池冷却装置によれば、燃料電池への反応
ガス供給路である入口ガス配管の一部にミスト発生部を
配置することにより、燃料電池への反応ガス供給路と冷
媒ミスト供給路とを共通しにしたしたため、反応ガスの
供給路内に冷媒用の通路をもうける必要がないので、冷
却構造が簡単になる。また、冷媒はミストの状態で燃料
電池セルへ供給されるので、冷媒として水などの導電性
材料を用いても燃料電池セルが短絡されることがなく、
燃料電池セルの絶縁が簡単になる。さらに、ミストが気
化することによって冷却を行なうため、燃料電池セルの
上流でも下流でもミストを含んだ反応ガス温度はほぼ等
しく、全体が均一に冷却されるという利点がある。According to the fuel cell cooling device of the present invention, by arranging the mist generating section in a part of the inlet gas piping which is the reactive gas supply route to the fuel cell, the reaction gas supply route and the refrigerant mist supply route to the fuel cell are connected. Since these are made common, there is no need to provide a refrigerant passage within the reactant gas supply passage, which simplifies the cooling structure. In addition, since the refrigerant is supplied to the fuel cells in the form of a mist, the fuel cells will not be short-circuited even if a conductive material such as water is used as the refrigerant.
Insulating fuel cells becomes easier. Furthermore, since cooling is performed by vaporizing the mist, the temperature of the reactant gas containing the mist is approximately the same both upstream and downstream of the fuel cell, which has the advantage that the entire system is cooled uniformly.
筈1図は本発明の燃料電池冷却装置の一実施例を示す模
式図である。
1・・・燃料電池セル、2・・・マニホルド、3・・・
入口ガス配管、4・・・出ロガス配匝、5・・・ミス1
ル発生部、6・・・熱交換器、7・・・ポンプ、8・・
・作動ガス配管、9・・・タンク。
jBp゛、Figure 1 is a schematic diagram showing an embodiment of the fuel cell cooling device of the present invention. 1... Fuel cell, 2... Manifold, 3...
Inlet gas piping, 4... Outlet gas arrangement, 5... Mistake 1
6... Heat exchanger, 7... Pump, 8...
・Working gas piping, 9...tank.
jBp゛,
Claims (1)
一部にミスト発生部を配置することにより、燃料電池へ
の反応ガス供給路と冷媒ミスト供給路とを共通しにした
ことを特徴とする燃料電池冷却装置。 2、燃料電池からの反応後のガスを排出する出口ガス配
管の一部に熱交換器を配置するとともに、前記熱交換器
によつて液化した冷媒を前記ミスト発生部へもどすポン
プを設けたことを特徴とする特許請求の範囲第1項記載
の燃料電池冷却装置。 3、ミスト発生部により発生させるミストが水または水
溶液のミストであることを特徴とする特許請求の範囲第
1項記載の燃料電池冷却装置。 4、ミスト発生部により発生させるミストの粒径が2〜
50μであることを特徴とする特許請求の範囲第1項記
載の燃料電池冷却装置。 5、燃料電池がリン酸燃料電池であることを特徴とする
特許請求の範囲第1項記載の燃料電池冷却装置。[Claims] 1. By arranging a mist generator in a part of the inlet gas piping, which is the reactant gas supply route to the fuel cell, the reactant gas supply route to the fuel cell and the refrigerant mist supply route can be shared. A fuel cell cooling device characterized by: 2. A heat exchanger is disposed in a part of the outlet gas piping that discharges the gas after the reaction from the fuel cell, and a pump is provided to return the refrigerant liquefied by the heat exchanger to the mist generating section. A fuel cell cooling device according to claim 1, characterized in that: 3. The fuel cell cooling device according to claim 1, wherein the mist generated by the mist generating section is a mist of water or an aqueous solution. 4. The particle size of the mist generated by the mist generating section is 2~2.
The fuel cell cooling device according to claim 1, characterized in that the diameter is 50μ. 5. The fuel cell cooling device according to claim 1, wherein the fuel cell is a phosphoric acid fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62063895A JPS63232273A (en) | 1987-03-20 | 1987-03-20 | Fuel cell cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62063895A JPS63232273A (en) | 1987-03-20 | 1987-03-20 | Fuel cell cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63232273A true JPS63232273A (en) | 1988-09-28 |
Family
ID=13242491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62063895A Pending JPS63232273A (en) | 1987-03-20 | 1987-03-20 | Fuel cell cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63232273A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0415330A2 (en) * | 1989-08-28 | 1991-03-06 | International Fuel Cells Corporation | Fuel cell evaporative cooling using fuel as a carrier gas |
EP0629014A2 (en) * | 1993-06-07 | 1994-12-14 | Daimler-Benz Aktiengesellschaft | Method and device for humidyfying reaction gas for operating fuel cell systems |
EP0743693A1 (en) * | 1995-05-18 | 1996-11-20 | SANYO ELECTRIC Co., Ltd. | A polymer electrolyte fuel cell and a polymer electrolyte fuel cell system which supply anode-side channels with a gas-liquid mixture |
WO2000033407A1 (en) * | 1998-12-01 | 2000-06-08 | Ballard Power Systems Inc. | Method and apparatus for controlling the temperature within an electrochemical fuel cell |
-
1987
- 1987-03-20 JP JP62063895A patent/JPS63232273A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0415330A2 (en) * | 1989-08-28 | 1991-03-06 | International Fuel Cells Corporation | Fuel cell evaporative cooling using fuel as a carrier gas |
EP0629014A2 (en) * | 1993-06-07 | 1994-12-14 | Daimler-Benz Aktiengesellschaft | Method and device for humidyfying reaction gas for operating fuel cell systems |
EP0629014A3 (en) * | 1993-06-07 | 1995-05-24 | Daimler Benz Ag | Method and device for humidyfying reaction gas for operating fuel cell systems. |
EP0743693A1 (en) * | 1995-05-18 | 1996-11-20 | SANYO ELECTRIC Co., Ltd. | A polymer electrolyte fuel cell and a polymer electrolyte fuel cell system which supply anode-side channels with a gas-liquid mixture |
WO2000033407A1 (en) * | 1998-12-01 | 2000-06-08 | Ballard Power Systems Inc. | Method and apparatus for controlling the temperature within an electrochemical fuel cell |
GB2370407A (en) * | 1998-12-01 | 2002-06-26 | Ballard Power Systems | Method and apparatus for controlling the temperature within an electrochemical fuel cell |
GB2370407B (en) * | 1998-12-01 | 2003-05-14 | Ballard Power Systems | Method and apparatus for controlling the temperature within an electrochemical fuel cell |
US6682839B2 (en) | 1998-12-01 | 2004-01-27 | Ballard Power Systems Inc. | Method and apparatus for controlling the temperature within an electrochemical fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6699608B2 (en) | Method and apparatus for humidifying a gas flow and to a method for using such a device | |
US20200136163A1 (en) | Electrical power generation on a vehicle | |
US8435689B2 (en) | Dual function heat exchanger for start-up humidification and facility heating in SOFC system | |
US6692852B2 (en) | Generating system for a fuel cell, and heat waste recirculating and cooling system of said generating system | |
CN107004888B (en) | Thermal management of fuel cell units and systems | |
CN107112059B (en) | Shutdown cooling system and nuclear facility with same | |
EP1536185A1 (en) | Gas humidifier | |
JPS63232273A (en) | Fuel cell cooling device | |
KR20200005309A (en) | Hybrid ammonia solution vaporizer using waste heat and apparatus for removing nitrogen oxides from flue gas | |
JP2007289852A (en) | Evaporator | |
US20200130859A1 (en) | Electrical power generation on a vehicle | |
KR101421355B1 (en) | Fuel humidifier | |
JP3790503B2 (en) | Steam generation system | |
CN112762750A (en) | Vaporization cooling circuit and calculation board waste heat recovery utilize system | |
CN115606021A (en) | System for cooling fuel cell and fuel cell equipped with the same | |
JPS60177566A (en) | Fuel cell power generating system | |
JPS61147467A (en) | Cooling device for fuel cell | |
KR102678271B1 (en) | Mixed heat exchanger | |
JP7549954B2 (en) | Fuel Cell Systems | |
CN111256497A (en) | Liquid vaporizer capable of preventing liquid from being sprayed | |
JP2012186048A (en) | Fuel evaporating apparatus | |
JPH05114411A (en) | Fuel cell power generation system | |
KR101589178B1 (en) | Heating Apparatus using Fuel Cell | |
CN111403771B (en) | Fuel cell stack polar plate, fuel cell stack, cooling assembly and method | |
JPH1154140A (en) | Fuel cell power generating device |