JPS6323148B2 - - Google Patents
Info
- Publication number
- JPS6323148B2 JPS6323148B2 JP56145122A JP14512281A JPS6323148B2 JP S6323148 B2 JPS6323148 B2 JP S6323148B2 JP 56145122 A JP56145122 A JP 56145122A JP 14512281 A JP14512281 A JP 14512281A JP S6323148 B2 JPS6323148 B2 JP S6323148B2
- Authority
- JP
- Japan
- Prior art keywords
- calcium silicate
- slurry
- metal powder
- molded
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000378 calcium silicate Substances 0.000 claims description 35
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 35
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 35
- 239000002002 slurry Substances 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 23
- 239000013078 crystal Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 description 19
- 239000007787 solid Substances 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は珪酸カルシウム成形体及びその製法に
関し、更に詳しく輻射伝熱を遮蔽した断熱性の著
しく優れた珪酸カルシウム成形体及びその製法に
関する。
一般に断熱施工にあたつては熱伝導に寄与する
固体の伝導伝熱、空気層の伝導伝熱、空気の対流
伝熱及び輻射伝熱を低く設計することが望まし
い。而して固体の伝導伝熱を低下させる手段とし
て従来より固体の密度を低下させる手段が採用さ
れて来た。低密度化により一般的には固体伝導が
低くなるが高温領域では低密度化により空〓孔が
多くなり、固体の伝導伝熱、空気の伝導伝熱及び
対流伝熱の増加に比べその空〓を通過する輻射伝
熱の寄与分が多くなり総合的には断熱性能の向上
が期待出来ない難点があつた。
また空気層の伝導伝熱及び対流伝熱を低下させ
る方法としては、真空断熱の方法があるが、この
場合真空容器が充分に大気圧に耐えて変形しない
ようにする必要があり、使用する金属材料が相当
な厚さを必要とするため重量的にも重くなる難点
がある。このために真空容器に圧縮強度の強い芯
材を入れ金属材料の肉厚を薄く出来るが、この様
な方法では真空断熱材の全伝熱量のうち輻射伝熱
の占める割合が増化することとなる。このように
断熱材において輻射伝熱を低下させることは断熱
性能を向上せしめるために非常に有効な手段であ
ることが判る。
従来輻射伝熱を低下させる方法として光沢ある
金属箔を断熱成形体に間挿せしめる方法や、また
真空断熱のための壁間の芯材として金属粉末を珪
酸カルシウムやパーライトの粉末状断熱材と混合
したものを使用する方法が知られている。前者の
場合には金属箔と断熱成形体の一体化が困難であ
つたり、接着剤の劣化や施工性の点で問題が有
る。また後者の粉末状断熱材の場合には金属粉末
が固定されておらず運搬時等の振動により金属粉
が移動して偏在することが多く所期の目的が達成
され難い欠点があつた。たとえば実際に珪酸カル
シウム粉末94重量部に銅粉末6重量部を均一に混
合し、該混合物をステンレス板(厚み0.3mm)よ
り作製した金属容器(厚さ25mm、長さ300mm、巾
300mm)に充填し、これに振動を24時間与えた場
合の熱伝導率を測定してみると下記第1表に示す
通り熱伝導率には変化がある。
The present invention relates to a calcium silicate molded body and a method for manufacturing the same, and more particularly to a calcium silicate molded body that blocks radiant heat transfer and has extremely excellent heat insulation properties, and a method for manufacturing the same. In general, when performing insulation construction, it is desirable to design the material to have low conductive heat transfer in solids, conductive heat transfer in air layers, convective heat transfer in air, and radiant heat transfer that contribute to heat conduction. Therefore, as a means of reducing the conductive heat transfer in solids, a method of reducing the density of the solid has been adopted. Solid conduction generally decreases due to lower density, but in high temperature regions, lower density increases the number of pores, and the vacancies increase compared to increases in conductive heat transfer in solids, conductive heat transfer in air, and convective heat transfer. There was a problem that the contribution of radiation heat transfer passing through the heat exchanger was large, making it impossible to expect an overall improvement in insulation performance. In addition, vacuum insulation is a method for reducing conductive heat transfer and convective heat transfer in an air layer, but in this case, it is necessary to ensure that the vacuum container can sufficiently withstand atmospheric pressure and not deform. Since the material needs to be quite thick, it also has the disadvantage of being heavy. For this purpose, it is possible to reduce the thickness of the metal material by placing a core material with strong compressive strength in the vacuum container, but this method increases the proportion of radiation heat transfer in the total heat transfer of the vacuum insulation material. Become. It can be seen that reducing the radiant heat transfer in the heat insulating material is a very effective means for improving the heat insulating performance. Conventional methods for reducing radiant heat transfer include inserting shiny metal foil into heat-insulating molded bodies, and mixing metal powder with powdered heat-insulating materials such as calcium silicate and perlite as a core material between walls for vacuum insulation. It is known how to use In the former case, it is difficult to integrate the metal foil and the heat insulating molded body, and there are problems in terms of adhesive deterioration and workability. In addition, in the case of the latter powder heat insulating material, the metal powder is not fixed, and vibrations during transportation often cause the metal powder to move and become unevenly distributed, making it difficult to achieve the intended purpose. For example, 94 parts by weight of calcium silicate powder and 6 parts by weight of copper powder were evenly mixed, and the mixture was poured into a metal container (thickness: 25 mm, length: 300 mm, width: 0.3 mm) made from a stainless steel plate (thickness: 0.3 mm).
When measuring the thermal conductivity when a 300 mm thick tube was filled and subjected to vibration for 24 hours, there was a change in the thermal conductivity as shown in Table 1 below.
【表】
本発明者は上記の様な現状に鑑み、特に輻射伝
熱を低下させる目的で研究を続ける過程に於いて
珪酸カルシウム断熱成形体を着目しこの成形体に
金属粉末を均一に含有せしめれば所期の目的を達
成出来るかもしれないとの全く新しい着想にいた
り、更に研究を続けた結果、本発明を完成するに
いたつたものである。即ち本発明は、珪酸カルシ
ウム断熱成形体に1〜30重量%の150メツシユを
全通する金属粉末がほぼ均一に分散されているこ
とを特徴とする珪酸カルシウム断熱成形体、及び
珪酸カルシウムの水性スラリーに150メツシユを
全通する金属粉末を混合し、成形後水蒸気養生し
またはせずして乾燥することを特徴とする珪酸カ
ルシウム断熱成形体の製法に係る。
本発明に於いて用いる金属粉末としては、具体
的にはアルミニウム、銅、鉄、クロム、ニツケ
ル、真鍮等の各種金属の粉末を例示でき、特に金
属光沢を有し反射率の高いものが望ましい。金属
粉末には、公知の前処理例えばPH調整等の化学処
理を施こすことを妨げない。
また、金属粉末としては、150メツシユを全通
するものを使用することが必須である。これによ
り輻射熱を有効に遮断でき、充分な断熱性能の向
上が達成できる。好ましいものは250メツシユを
全通するものである。金属粉末が150メツシユを
全通するものよりも大きい場合には断熱性能の向
上が不充分となる。この金属粉末の使用量は珪酸
カルシウム断熱成形体中に全体の1〜30重量%程
度好ましくは3〜10重量%程度含有されているの
が通常である。この際1重量%に達しない場合に
は輻射熱の遮断が充分では無く、また逆に30重量
%より多くなると輻射伝熱は抑制されるが、金属
粉末の固体伝熱が大きくなり、総合的には断熱性
能が向上しなくなる傾向がある。
本発明に於いて使用される珪酸カルシウム断熱
成形体としては各種の製造方法で製造された各種
の結晶形のものが広い範囲で適用出来、就中好ま
しくは珪酸カルシウム結晶の二次粒子が水に分散
したスラリーから製造される成形体が好ましい。
本発明成形体を調製するに際しては先ず珪酸カ
ルシウムのスラリーを調製する必要がある。この
珪酸カルシウムのスラリーには珪酸カルシウムゲ
ルのスラリーと珪酸カルシウム結晶のスラリーが
包含される。前者の珪酸カルシウムゲルのスラリ
ーを製造するには、珪酸原料、石灰原料及び水よ
り調製した原料スラリーを加熱反応せしめれば良
い。また後者の珪酸カルシウム結晶スラリーを調
製するに際しては上記原料スラリーを撹拌下に加
圧加熱して一挙に珪酸カルシウム結晶のスラリー
を得ることが出来る。これ等珪酸カルシウムのス
ラリーはいずれも公知のものであり、各種の製法
で製造されたものがいずれも含まれる。
珪酸カルシウムゲルのスラリーの場合には所定
の金属粉末を必要に応じその他の各種の添加材の
1種または2種以上所定量添加し均一に混合した
後成形し飽和水蒸気圧下で珪酸カルシウムゲルを
結晶化して硬化し成形体となす。一方珪酸カルシ
ウム結晶のスラリーの場合には所定の金属粉末を
必要に応じその他の各種の添加材の1種又は2種
以上と共に添加し均一に混合後成形し乾燥すれば
良い。この際使用されるその他の添加材としては
この種珪酸カルシウム成形体製造に使用されて来
たものがいずれも広い範囲で使用出来たとえば石
綿、岩綿、ガラスフアイバー、更には珪酸カルシ
ウムスラリーとしては珪酸カルシウム結晶スラリ
ーを使用する場合にはパルプ、各種天然又は合成
繊維が例示出来、その他粘土、セメント等も使用
出来る。
かくして得られる本発明成形体は成形体全体に
わたりほぼ均一に金属粉末が分散して保持されて
いるのでたとえ振動等が加えられても金属粉末が
移動することも無く、確実に且つ安定して輻射熱
を遮断することが出来る。
以下に実施例を示して本発明を具体的に説明す
る。但し下記例に於いて部とあるは重量部を示す
ものとする。
実施例 1
生石灰47部を90℃の温湯500部中で消和して得
た石灰乳に対し、平均粒子径約5μmの珪石粉末
53部を加え、さらに水を加えて全体の水量を固形
分の24重量倍となるよう混合して原料スラリーを
調製した。この原料スラリーを飽和水蒸気圧下12
Kg/cm2、191℃で撹拌しながら8時間水熱合成せ
しめてゾーノトライト結晶からなる水性スラリー
を得た。この珪酸カルシウム結晶スラリーの固形
分85部に対してガラス繊維6部、パルプ3部及び
250メツシユ全通の銅粉末6部を均一に混合して
得たスラリーを下記の密度になるように密度を変
えて25×300×300mmの成形体を2種成形し乾燥し
た。成形体の密度は夫々0.10g/cm3及び0.14g/
cm3であり、JISA−1413保温材の熱伝導率測定方
法(平板直接法)で測定した。又比較のために銅
粉末を添加せず、その他は上記と同様に処理して
密度が0.1g/cm3及び0.14g/cm3の成形体を2種
調製した。このものについても同様にして熱伝導
率を測定した。
これらの測定結果は第2表に示す通りであつ
た。[Table] In view of the above-mentioned current situation, the present inventor focused on a calcium silicate heat-insulating molded body in the process of continuing research for the purpose of reducing radiation heat transfer, and uniformly contained metal powder in this molded body. I came up with a completely new idea that I might be able to achieve my desired purpose if I did so, and as a result of further research, I was able to complete the present invention. That is, the present invention provides a calcium silicate heat-insulating molded body in which 1 to 30% by weight of metal powder passing through a 150 mesh is almost uniformly dispersed in the calcium silicate heat-insulating molded body, and an aqueous calcium silicate slurry. The present invention relates to a method for producing a heat-insulating calcium silicate molded body, which is characterized by mixing metal powder that passes through 150 meshes and drying with or without steam curing after molding. Specific examples of the metal powder used in the present invention include powders of various metals such as aluminum, copper, iron, chromium, nickel, and brass, and those with metallic luster and high reflectance are particularly desirable. The metal powder may be subjected to known pretreatment such as chemical treatment such as pH adjustment. Furthermore, it is essential to use metal powder that can pass through 150 meshes. As a result, radiant heat can be effectively blocked and sufficient insulation performance can be achieved. The preferred one is one that passes through the entire 250 meshes. If the metal powder is larger than the one that completely passes through 150 meshes, the improvement in insulation performance will be insufficient. The amount of this metal powder used is usually about 1 to 30% by weight, preferably about 3 to 10% by weight of the total weight of the calcium silicate heat insulating molded article. In this case, if the amount is less than 1% by weight, the radiant heat will not be blocked sufficiently, and if it exceeds 30% by weight, the radiant heat transfer will be suppressed, but the solid heat transfer of the metal powder will increase, and the overall effect will be There is a tendency that the insulation performance does not improve. The calcium silicate heat insulating molded body used in the present invention can be used in a wide variety of crystal forms manufactured by various manufacturing methods, and it is particularly preferable that secondary particles of calcium silicate crystals are immersed in water. Moldings made from dispersed slurries are preferred. In preparing the molded article of the present invention, it is first necessary to prepare a slurry of calcium silicate. This calcium silicate slurry includes a calcium silicate gel slurry and a calcium silicate crystal slurry. In order to produce the former slurry of calcium silicate gel, a raw material slurry prepared from a silicate raw material, a lime raw material, and water may be heated and reacted. In preparing the latter calcium silicate crystal slurry, the above raw material slurry is heated under pressure while stirring to obtain a slurry of calcium silicate crystals all at once. All of these calcium silicate slurries are known, and include those produced by various manufacturing methods. In the case of a slurry of calcium silicate gel, the specified metal powder is added in a specified amount of one or more of various other additives as required, mixed uniformly, and then molded to crystallize the calcium silicate gel under saturated water vapor pressure. It is then hardened to form a molded product. On the other hand, in the case of a slurry of calcium silicate crystals, a predetermined metal powder may be added together with one or more of various other additives as required, mixed uniformly, then shaped and dried. Other additives that can be used at this time include a wide range of additives that have been used to produce this type of calcium silicate molded product, such as asbestos, rock wool, glass fiber, and even silicic acid as a calcium silicate slurry. When calcium crystal slurry is used, pulp and various natural or synthetic fibers can be used, and clay, cement, etc. can also be used. In the thus obtained molded article of the present invention, the metal powder is dispersed and held almost uniformly over the entire molded article, so the metal powder does not move even if vibrations are applied, and the radiant heat is reliably and stably radiated. can be blocked. EXAMPLES The present invention will be specifically described below with reference to Examples. However, in the following examples, parts refer to parts by weight. Example 1 Silica powder with an average particle size of about 5 μm was added to lime milk obtained by slaking 47 parts of quicklime in 500 parts of hot water at 90°C.
A raw material slurry was prepared by adding 53 parts and further adding water so that the total amount of water was 24 times the weight of the solid content. This raw material slurry was heated under saturated steam pressure for 12 hours.
Kg/cm 2 and hydrothermal synthesis at 191° C. for 8 hours with stirring to obtain an aqueous slurry consisting of zonotrite crystals. For 85 parts of solid content of this calcium silicate crystal slurry, 6 parts of glass fiber, 3 parts of pulp and
A slurry obtained by uniformly mixing 6 parts of copper powder for a total of 250 meshes was molded into two types of molded bodies of 25 x 300 x 300 mm with varying densities as shown below and dried. The density of the molded body is 0.10g/ cm3 and 0.14g/cm3, respectively.
cm 3 and was measured using the JISA-1413 thermal conductivity measurement method for heat insulating materials (flat plate direct method). For comparison, two types of molded bodies with densities of 0.1 g/cm 3 and 0.14 g/cm 3 were prepared in the same manner as above except that copper powder was not added. The thermal conductivity of this material was also measured in the same manner. The results of these measurements were as shown in Table 2.
【表】【table】
【表】
実施例 2
実施例1と同様にして得た珪酸カルシウム結晶
スラリーをPH9.5に調整した後、該結晶スラリー
の固形分79.2部に対してガラス繊維6.3部、パル
プ4.5部及び250メツシユ全通のアルミニウム粉末
10部を均一に混合してスラリーを得た。該スラリ
ーを25×300×300mmに成形し乾燥した成形体の密
度は0.12g/cm3であり、実施例1と同様の方法で
熱伝導率を測定した。
又比較のためにアルミニウム粉末を添加せずそ
の他は全て上記と同様に処理して得た成形体で密
度0.12g/cm3のものについても同様にして熱伝導
率を測定した。
これらの測定結果は第3表に示す通りであつ
た。[Table] Example 2 After adjusting the calcium silicate crystal slurry obtained in the same manner as in Example 1 to pH 9.5, 6.3 parts of glass fiber, 4.5 parts of pulp, and 250 mesh were added to the solid content of 79.2 parts of the crystal slurry. whole aluminum powder
10 parts were uniformly mixed to obtain a slurry. The slurry was molded into a size of 25 x 300 x 300 mm and the dried molded product had a density of 0.12 g/cm 3 and its thermal conductivity was measured in the same manner as in Example 1. For comparison, the thermal conductivity of a molded article having a density of 0.12 g/cm 3 was also measured in the same manner as above, except that no aluminum powder was added. The results of these measurements were as shown in Table 3.
【表】
上記実施例2で得られたアルミニウム粉末含有
珪酸カルシウム成形体について、そのアルミニウ
ム粉末の含有量だけを種々変えた各種の成形体に
ついて熱伝導率を測定した。この結果を第1図に
示す。尚測定は成形体を真空状態(1×
10-2Torn)に保持した壁材として使用し、平均
温度20℃で行なつた。第1図から明らかな通りア
ルミニウム粉末の割合は1〜30重量%好ましくは
3〜10重量%であり、6〜8重量%で最高となつ
ている。
また上記実施例1及び2で得られた本発明成形
体について振動実験を行なつたところ、24時間に
わたる振動付与による熱伝導率への影響がないこ
とは勿論長時間(1週間)にわたつて振動を付与
しても熱伝導率の変化は認められなかつた。
実施例 3
実施例1と同様にして得た珪酸カルシウム結晶
スラリーの固形分80部に対して、ガラス繊維4
部、セメント3部、パルプ3部及び150メツシユ
全通の鉄粉末10部を均一に混合してスラリーを得
た。該スラリーを25×300×300mmに成形し、乾燥
した成形体の密度は0.15g/cm3であり、実施例1
と同様の方法で熱伝導率を測定した。
また、比較の為に鉄粉末を添加せず、その他は
全て上記と同様に処理して得た成形体で密度0.15
g/cm3のものについても同様にして熱伝導率を測
定した。
これらの測定結果は第4表に示す通りであつ
た。[Table] Regarding the aluminum powder-containing calcium silicate molded bodies obtained in Example 2, the thermal conductivity was measured for various molded bodies in which only the aluminum powder content was varied. The results are shown in FIG. The measurement was performed with the molded body in a vacuum state (1×
The test was carried out at an average temperature of 20 °C. As is clear from FIG. 1, the proportion of aluminum powder is 1 to 30% by weight, preferably 3 to 10% by weight, and is maximum at 6 to 8% by weight. Furthermore, when vibration experiments were conducted on the molded bodies of the present invention obtained in Examples 1 and 2 above, it was found that there was no effect on thermal conductivity due to the application of vibration for 24 hours, and the results showed that the thermal conductivity was not affected over a long period of time (one week). No change in thermal conductivity was observed even when vibration was applied. Example 3 For 80 parts of solid content of calcium silicate crystal slurry obtained in the same manner as in Example 1, 4 parts of glass fiber was added.
1 part, 3 parts of cement, 3 parts of pulp, and 10 parts of iron powder for 150 meshes were uniformly mixed to obtain a slurry. The slurry was molded into a size of 25 x 300 x 300 mm, and the density of the dried molded product was 0.15 g/cm 3 .
Thermal conductivity was measured using the same method. For comparison, we also used a compact with a density of 0.15 obtained by processing in the same manner as above without adding iron powder.
The thermal conductivity of g/cm 3 was also measured in the same manner. The results of these measurements were as shown in Table 4.
第1図はアルミニウム粉末含有の珪酸カルシウ
ム成形体のアルミニウム粉末の含有量と熱伝導率
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the content of aluminum powder and the thermal conductivity of a calcium silicate molded body containing aluminum powder.
Claims (1)
150メツシユを全通する金属粉末がほぼ均一に分
散されていることを特徴とする珪酸カルシウム断
熱成形体。 2 珪酸カルシウムの水性スラリーに150メツシ
ユを全通する金属粉末を混合し、成形後水蒸気養
生しまたはせずして乾燥することを特徴とする珪
酸カルシウム断熱成形体の製法。 3 珪酸カルシウム結晶スラリーに150メツシユ
を全通する金属粉末を混合し、成形した後乾燥す
ることを特徴とする特許請求の範囲第2項記載の
製法。[Claims] 1. 1 to 30% by weight of calcium silicate heat insulating molded body.
150 A calcium silicate heat insulating molded body characterized by metal powder being almost uniformly dispersed throughout the mesh. 2. A method for producing a heat-insulating calcium silicate molded article, which comprises mixing an aqueous slurry of calcium silicate with metal powder that passes through 150 meshes, and drying with or without steam curing after molding. 3. The manufacturing method according to claim 2, characterized in that the calcium silicate crystal slurry is mixed with metal powder that passes through 150 meshes, molded, and then dried.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14512281A JPS5845145A (en) | 1981-09-14 | 1981-09-14 | Calcium silicate formed body and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14512281A JPS5845145A (en) | 1981-09-14 | 1981-09-14 | Calcium silicate formed body and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5845145A JPS5845145A (en) | 1983-03-16 |
JPS6323148B2 true JPS6323148B2 (en) | 1988-05-14 |
Family
ID=15377900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14512281A Granted JPS5845145A (en) | 1981-09-14 | 1981-09-14 | Calcium silicate formed body and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5845145A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60112663A (en) * | 1983-11-21 | 1985-06-19 | 日本インシュレーション株式会社 | Manufacture of calcium silicate formed body |
WO1985002839A1 (en) * | 1983-12-28 | 1985-07-04 | Kabushiki Kaisha Osaka Packing Seizosho | Formed article of calcium silicate and method of the preparation thereof |
JPS60155562A (en) * | 1983-12-28 | 1985-08-15 | 日本インシュレーション株式会社 | Manufacture of inorganic composite synthetic body |
JPS6117463A (en) * | 1984-07-03 | 1986-01-25 | 日本インシュレーション株式会社 | Manufacture of inorganic composite formed body |
JPH09228171A (en) * | 1996-02-19 | 1997-09-02 | Toyobo Co Ltd | Highly heat-resistant blended spun yarn |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49116119A (en) * | 1973-03-13 | 1974-11-06 | ||
JPS5298021A (en) * | 1976-02-13 | 1977-08-17 | Osaka Patsukingu Seizoushiyo K | Method of manufacturing plastics of calcium silicate having high specific strength |
JPS52126418A (en) * | 1976-04-16 | 1977-10-24 | Kiyoshi Hayashi | Flat concrete boards |
JPS53118425A (en) * | 1977-03-25 | 1978-10-16 | Nippon Kokan Kk | Method of manufacturing construction material principally made of water slag |
-
1981
- 1981-09-14 JP JP14512281A patent/JPS5845145A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49116119A (en) * | 1973-03-13 | 1974-11-06 | ||
JPS5298021A (en) * | 1976-02-13 | 1977-08-17 | Osaka Patsukingu Seizoushiyo K | Method of manufacturing plastics of calcium silicate having high specific strength |
JPS52126418A (en) * | 1976-04-16 | 1977-10-24 | Kiyoshi Hayashi | Flat concrete boards |
JPS53118425A (en) * | 1977-03-25 | 1978-10-16 | Nippon Kokan Kk | Method of manufacturing construction material principally made of water slag |
Also Published As
Publication number | Publication date |
---|---|
JPS5845145A (en) | 1983-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3015626A (en) | Insulating composition | |
JPS6257590B2 (en) | ||
CA2069220A1 (en) | Process for the production of mouldings | |
JPS6357377B2 (en) | ||
Umponpanarat et al. | Thermal conductivity and strength of foamed gypsum formulated using aluminum sulfate and sodium bicarbonate as gas-producing additives | |
EP0166789B1 (en) | Formed article of calcium silicate and method of the preparation thereof | |
JPS6323148B2 (en) | ||
JPH0139981B2 (en) | ||
US1590132A (en) | Heat-insulating composition and process of making the same | |
JPS5992962A (en) | Water-repellent calcium silicate formed body | |
JP2755449B2 (en) | Wollastonite lightweight calcium silicate molded article and method for producing the same | |
JPH044998B2 (en) | ||
JP3421370B2 (en) | Method for producing molded product of calcium silicate hydrate | |
JPH0543655B2 (en) | ||
SU1648929A1 (en) | Raw mix for producing heat-insulation material | |
JPS5992963A (en) | Calcium silicate formed body and manufacture | |
AXINTE et al. | RE-USING THE CELLULAR GLASS WASTE FOR MANUFACTURING NEW ULTRA-LIGHT PRODUCTS. | |
JPS60112663A (en) | Manufacture of calcium silicate formed body | |
JPS61141656A (en) | Manufacture of calcium silicate formed body | |
JPH0234900B2 (en) | ||
JPS6065777A (en) | Manufacture of lightweight incombustible molded body | |
JPH0567585B2 (en) | ||
JPS6351995B2 (en) | ||
JPS62113745A (en) | Manufacture of calcium silicate formed body | |
JPS641427B2 (en) |