[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63230555A - Superconductive material - Google Patents

Superconductive material

Info

Publication number
JPS63230555A
JPS63230555A JP62061449A JP6144987A JPS63230555A JP S63230555 A JPS63230555 A JP S63230555A JP 62061449 A JP62061449 A JP 62061449A JP 6144987 A JP6144987 A JP 6144987A JP S63230555 A JPS63230555 A JP S63230555A
Authority
JP
Japan
Prior art keywords
phase
periodic table
centered cubic
superconductive material
group iia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62061449A
Other languages
Japanese (ja)
Inventor
Yoshikage Oda
祺景 小田
Ichiro Nakada
一郎 中田
Takao Obara
小原 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62061449A priority Critical patent/JPS63230555A/en
Publication of JPS63230555A publication Critical patent/JPS63230555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material containing the periodic table groups IIa and IIIa elements, copper and oxygen, containing three phase consisting of phases having two body-centered cubic structures and phase having lamellar perovskite-type structure and having higher critical temperature than a conventional perovskite-type superconductive material. CONSTITUTION:A superconductive material containing the periodic table group IIa element (e.g. B or Sr), group IIIa element (e.g. Y or Sc) and O and having the following mixed state consisting of three phase is provided: The mixed state contains the first phase having body-centered cubic structure relatively rich in the periodic table group IIa element, the second phase having body- centered cubic structure relatively poor in the periodic table group IIa element compared with the first phase and the third phase having lamellar perovskite- type structure. In the aimed and above-mentioned superconductive material, temperature capable of attaining a complete superconductor having 0 electric resistance is always liquid N2 temperature (77k) or above.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、新規な超電導材料に関するもので、特に、
セラミック系の超電導材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a novel superconducting material, and in particular,
It relates to ceramic-based superconducting materials.

[従来の技術] 従来、超電導材料として、金属系、セラミック系、有機
物系のものがあるが、このうちセラミック系のものが近
年脚光を浴びつつある。このようなセラミック系超電導
材料としては、層状ペロブスカイト型(K2 N i 
F、型)の構造を有するものが知られている。たとえば
、CL a S rl 2 CaO2または[LaBa
] 2 Cub、のような酸化物セラミックス系超電導
材料では、30に以上の臨界温度を示している。
[Prior Art] Conventionally, superconducting materials include metal-based, ceramic-based, and organic-based materials, and among these, ceramic-based materials have been attracting attention in recent years. As such ceramic superconducting materials, layered perovskite type (K2N i
F, type) is known. For example, CL a S rl 2 CaO2 or [LaBa
] 2 Cub, an oxide ceramic-based superconducting material exhibits a critical temperature of 30° C. or more.

[発明が解決しようとする問題点] この発明の目的は、従来の層状ペロブスカイト型超電導
材料よりも臨界温度の高い超電導材料を提供することに
ある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a superconducting material having a higher critical temperature than conventional layered perovskite superconducting materials.

[問題点を解決するための手段] この発明の超電導材料は、周期律表IIa族元素、Ha
族元素、銅および酸素を含み、周期律表IIa族元素が
相対的に多い体心立方構造を有する第1相と、該第1相
に比べて周期律表IIa族元素が相対的に少ない体心立
方構造を有する第2相と、層状ペロブスカイト構造をa
する第3相とを含む。
[Means for solving the problems] The superconducting material of the present invention contains an element of group IIa of the periodic table, Ha
A first phase having a body-centered cubic structure containing group elements, copper, and oxygen and having a relatively large amount of group IIa elements of the periodic table, and a body containing relatively few group IIa elements of the periodic table compared to the first phase. A second phase with a centered cubic structure and a layered perovskite structure
and a third phase.

周期律表IIa族元素としては、B e s M g 
s Ca、Sr、BaおよびRaが挙げられる。また、
周期律表Ha族元素としては、Sc、Y、La、Ac。
As Group IIa elements of the periodic table, B e s M g
s Ca, Sr, Ba and Ra. Also,
Ha group elements of the periodic table include Sc, Y, La, and Ac.

Ces Pr、Nd、Pm、Sm、Eu、Gd、Tbs
 DySHoSErSTm、YbおよびLuが挙げられ
る。好ましくは、IIa族元素がバリウムまたはストロ
ンチウムであり、ma族元素がイツトリウムまたはスカ
ンジウムである。
Ces Pr, Nd, Pm, Sm, Eu, Gd, Tbs
DySHoSErSTm, Yb and Lu are mentioned. Preferably, the IIa group element is barium or strontium, and the Ma group element is yttrium or scandium.

[発明の作用および効果] この発明による超電導材料の詳細な構造解析と超電導状
態の挙動を検討した結果、2つの体心立方構造の相と層
状ペロブスカイト構造の相の3相の混合状態であること
が、高い超電導臨界温度に決定的な役割を示すことが判
明した。
[Operations and Effects of the Invention] As a result of detailed structural analysis of the superconducting material according to the present invention and examination of the behavior of the superconducting state, it was found that it is a mixed state of three phases: two phases with a body-centered cubic structure and a phase with a layered perovskite structure. was found to play a decisive role in the high superconducting critical temperature.

さらに、2つの体心立方構造の相の一方は、■a族元索
が相対的に多い相であり、他方はIIa族元素が相対的
に少ない相であることを見い出した。
Furthermore, it has been found that one of the two phases with a body-centered cubic structure is a phase with a relatively large amount of group ■a element elements, and the other is a phase with a relatively small amount of group IIa elements.

2つの体心立方構造の相と層状ペロブスカイト構造の相
の3相混合状態からなる、この発明の超電導材料は、電
気抵抗が零の完全超電導体になる温度が定常的に液体窒
素温度(77K)以上であった。
The superconducting material of the present invention, which consists of a three-phase mixed state of two phases with a body-centered cubic structure and a phase with a layered perovskite structure, has a temperature at which it becomes a perfect superconductor with zero electrical resistance at a constant temperature of liquid nitrogen (77 K). That was it.

この発明の超電導材料は、その製造方法によって限定さ
れるものではないが、周期律表IIa族元素、IIIa
族元素および銅のそれぞれの単体、酸化物もしくは炭酸
化物などの粉末を混合し焼結することにより製造するこ
とができる。また、この焼結を酸素を含む雰囲気下で各
材料の溶融温度または分解温度直下で行なえば、この発
明の超電導材料が得られやすいことが確認されている。
The superconducting material of the present invention is not limited by its manufacturing method, but includes elements of group IIa of the periodic table, group IIIa of the periodic table,
It can be manufactured by mixing and sintering powders of individual elements, oxides, or carbonates of group elements and copper. Furthermore, it has been confirmed that the superconducting material of the present invention can be easily obtained if this sintering is performed in an oxygen-containing atmosphere just below the melting temperature or decomposition temperature of each material.

なお、溶融温度とは、わずかでも液相の生じる温度をい
い、分解温度とは、少なくとも一部において元素または
成分単位に別れてしまい、結晶構造をとり得ない温度を
いうものとする。溶融温度とするか分解温度とするかは
、いずれが低い温度であるかにより異なる。この溶融温
度と分解温度との上下関係は、材料成分、組成割合等に
よって異なることをここで指摘しておく。
Note that the melting temperature refers to the temperature at which even a slight liquid phase occurs, and the decomposition temperature refers to the temperature at which at least a portion of the substance is separated into elemental or component units and cannot form a crystal structure. Whether it is the melting temperature or the decomposition temperature depends on which temperature is lower. It should be pointed out here that the vertical relationship between the melting temperature and the decomposition temperature varies depending on the material components, composition ratios, etc.

[実施例〕 この発明の実施例として、Ba5Cu、、Yの酸化物な
どの微粉末を100気圧で固めた後、大気中において9
40℃で24時間焼成し、最終的にB a Cu6.7
yo、、 o、になるように調整した試料の電気抵抗の
温度による変化を調べたところ、第1図に示すごとき結
果となった。
[Example] As an example of the present invention, fine powder of Ba5Cu, Y oxide, etc. was solidified at 100 atmospheres and then
Calcinate at 40°C for 24 hours, and finally B a Cu6.7
When the change in electrical resistance of a sample adjusted to yo, o, due to temperature was investigated, the results shown in FIG. 1 were obtained.

第1図に示されるように、300にで超電導状態になり
始め、82にで電気抵抗が零である完全超電導状態とな
った。
As shown in FIG. 1, it began to become superconducting at 300, and reached a complete superconducting state with zero electrical resistance at 82.

この試料をX線回折で構造解析したところ3相よりなり
、第1相はBaが相対的に多い体心立方構造であり、第
2相はBaが相対的に少ない体心立方構造であり、第3
相はに2NLF4型またそれに類似する型の層状ペロブ
スカイト構造であった。
Structural analysis of this sample by X-ray diffraction revealed that it consisted of three phases: the first phase had a body-centered cubic structure with a relatively large amount of Ba, and the second phase had a body-centered cubic structure with a relatively small amount of Ba. Third
The phase was a layered perovskite structure of the 2NLF4 type or similar types.

第1相の体心立方構造の格子定数は、a−b−5,8±
0.IA、c−5,75±0.IAであり、第2相の体
心立方構造の格子定数は、a−b−5,5±0.IA、
c−5,47±0.IAであり、第3相の層状ペロブス
カイト構造の格子定数は、a−b−4,0±0.1人、
c−13,0±0.IAであった。
The lattice constant of the body-centered cubic structure of the first phase is a-b-5,8±
0. IA, c-5, 75±0. IA, and the lattice constant of the body-centered cubic structure of the second phase is a-b-5,5±0. IA,
c-5,47±0. IA, and the lattice constant of the layered perovskite structure of the third phase is a-b-4,0±0.1,
c-13,0±0. It was IA.

なお、体心立方構造の格子定数は、厳密にはa−b−c
であるが、上記数値かられかるように、a=b−cの条
件かられずかにずれていても、体心立方構造と言うこと
が許容され、この明細書においては、少し歪んでいる場
合も、体心立方構造と呼ぶことにする。
Note that the lattice constant of the body-centered cubic structure is strictly a-b-c
However, as can be seen from the above numerical values, even if there is a slight deviation from the condition of a = b - c, it is acceptable to say that it is a body-centered cubic structure, and in this specification, if it is slightly distorted, is also called a body-centered cubic structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例の電気抵抗の温度変化を示
す図である。 1f−
FIG. 1 is a diagram showing a temperature change in electrical resistance in an embodiment of the present invention. 1f-

Claims (2)

【特許請求の範囲】[Claims] (1)周期律表IIa族元素、IIIa族元素、銅および酸
素を含む超電導材料において、 周期律表IIa族元素が相対的に多い体心立方構造を有す
る第1相と、該第1相に比べて周期律表IIa族元素が相
対的に少ない体心立方構造を有する第2相と、層状ペロ
ブスカイト構造を有する第3相とを含むことを特徴とす
る、超電導材料。
(1) In a superconducting material containing group IIa elements of the periodic table, group IIIa elements, copper, and oxygen, a first phase having a body-centered cubic structure with a relatively large amount of group IIa elements of the periodic table; 1. A superconducting material comprising a second phase having a body-centered cubic structure containing relatively less Group IIa elements of the periodic table and a third phase having a layered perovskite structure.
(2)前記周期律表IIa族元素がバリウムまたはストロ
ンチウム、IIIa族元素がイットリウムまたはスカンジ
ウムであることを特徴とする、特許請求の範囲第1項記
載の超電導材料。
(2) The superconducting material according to claim 1, wherein the group IIa element of the periodic table is barium or strontium, and the group IIIa element is yttrium or scandium.
JP62061449A 1987-03-16 1987-03-16 Superconductive material Pending JPS63230555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061449A JPS63230555A (en) 1987-03-16 1987-03-16 Superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061449A JPS63230555A (en) 1987-03-16 1987-03-16 Superconductive material

Publications (1)

Publication Number Publication Date
JPS63230555A true JPS63230555A (en) 1988-09-27

Family

ID=13171376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061449A Pending JPS63230555A (en) 1987-03-16 1987-03-16 Superconductive material

Country Status (1)

Country Link
JP (1) JPS63230555A (en)

Similar Documents

Publication Publication Date Title
JPH02289424A (en) Oxide superconductor, production thereof and applied products
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JPS63230555A (en) Superconductive material
JPH0764560B2 (en) Layered copper oxide
JP2593475B2 (en) Oxide superconductor
JPS63285159A (en) Production of superconductor of oxide
EP0463506B1 (en) Oxide superconductor and its manufacturing method
JPS63270317A (en) Oxide superconductor
JPH01192758A (en) Superconducting ceramic
JP2817170B2 (en) Manufacturing method of superconducting material
JP3034267B2 (en) Oxide superconductor
KR930002579B1 (en) Manufacturing method of thick film super conductor
KR0119192B1 (en) New high-tc superconductors and process for preparing them
JPH06345425A (en) Oxide superconductor and production thereof
JP3338461B2 (en) Oxide superconductor and manufacturing method thereof
JPH01126258A (en) Production of oxide high-temperature superconductive material
Raveau et al. Crystal chemistry of superconducting rare-earth cuprates
JPH0230618A (en) Oxide high-temperature superconductor
JPH03137050A (en) Manufacture of oxide superconductor
JPH03122017A (en) Superconducting material
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPS63270345A (en) Production of oxide superconductor
JPH0292827A (en) Production of bi oxide superconductor
JPS63270309A (en) Oxide superconductor
JPH02124715A (en) Production of thallium base oxide superconductor