[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63223001A - Horizontal reactor - Google Patents

Horizontal reactor

Info

Publication number
JPS63223001A
JPS63223001A JP5860987A JP5860987A JPS63223001A JP S63223001 A JPS63223001 A JP S63223001A JP 5860987 A JP5860987 A JP 5860987A JP 5860987 A JP5860987 A JP 5860987A JP S63223001 A JPS63223001 A JP S63223001A
Authority
JP
Japan
Prior art keywords
paddle
gas
paddles
cylindrical container
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5860987A
Other languages
Japanese (ja)
Other versions
JP2504452B2 (en
Inventor
Atsuyoshi Shimizu
清水 厚良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP5860987A priority Critical patent/JP2504452B2/en
Publication of JPS63223001A publication Critical patent/JPS63223001A/en
Application granted granted Critical
Publication of JP2504452B2 publication Critical patent/JP2504452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/36Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed through which there is an essentially horizontal flow of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/382Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it with a rotatable device only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To enable independent control of vapor-phase composition of zone groups and carry out continuous operation for a long period, by dividing the interior of a reactor for carrying out vapor phase-solid phase reaction into three or more zones and mounting plate paddles on a stirrer under specific condition. CONSTITUTION:A horizontal reactor, equipped with a cylindrical vessel 1 having the horizontal central axis, a stirrer 7 having a rotating shaft 5 arranged in agreement with the central axis, a feed port 10 for an object for stirring and a taking outlet 11 for the product placed at both ends of the vessel 1 and two or more partition walls 2, 2', and 2'', placed perpendicular to the rotating shaft 5 and having an opening part 6 at the bottom dividing the interior of the vessel 1 into three or more zones and capable of carrying out vapor phase-solid phase reaction. In the above-mentioned reactor, the stirrer 7 is constituted of plural sets of one or more plate paddles 4 mounted in the direction of the rotating shaft and particularly two sets of the paddles forming a pair with the partition walls placed therebetween satisfy formulas I-VI. The adjacent pair of the paddle sets satisfy formula VII and I1, I2, S1, S2 and W2 are mutually equal at the same time (I1 is the clearance between the inner wall and the paddle tips on the feed side; I2 is the clearance between the inner wall and the paddle tips on the taking out side).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相−固相反応を行う横型反応器に関し、特に
反応容器内を3つ以上のゾーンに分番プ少なくとも2つ
のゾーングループで独立して気相の組成が制御可能であ
り、しかも各ゾーン間における粒子の移送において逆流
を防止した横型反応器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a horizontal reactor for carrying out a gas phase-solid phase reaction, and in particular, the invention relates to a horizontal reactor for carrying out a gas phase-solid phase reaction, and in particular, the inside of the reaction vessel is divided into three or more zones and at least two zone groups. The present invention relates to a horizontal reactor in which the composition of the gas phase can be independently controlled and in which backflow is prevented during the transfer of particles between each zone.

〔従来の技術〕[Conventional technology]

円筒状容器内に水平回転軸を有する泣拌機を備えた横型
反応器はポリオレフィン等の気相重合用反応器として知
られている。これらの横型反応器として、ポリマー粒子
や触媒粒子等の粉粒体の完全な混合、あるいは除熱効率
の向上、更には粉粒体の容器内での滞留時間分布(RT
D)の幅を狭くすることすなわち滞留時間の均一化(以
下、RTDの向上と略称する)等を図るため、矩形状の
平板パドルが水平な回転軸上に多数取り付けられた撹拌
手段に加え、1以上の固定堰が回転軸に対して垂直方向
に容器内壁に固定された連続処理のできる反応器が知ら
れている。(特公昭59−21321、特願昭61−6
8771参照)このような反応器における固定堰の開口
部が上部すなわち気相側にある場合は反応器内の気相の
組成は各ゾーン共同−となる。一方ポリオレフィンの気
相重合反応等で生成されるポリマーの平均分子量は原料
ガス中の分子量調節剤の分圧の影響を受ける。従って同
一組成を有するガスのみで重合が行われる場合は生成ポ
リマーの平均分子Tの制御は可能でも、分子量分布曲線
を任意のものに制御することができない。このため反応
器内を粒子層中に開口部を有する隔壁により複数のゾー
ンに分は各ゾーン毎にガス組成を制御する方法が提案さ
れている。(特公昭59−21321)〔発明が解決し
ようとする問題点〕 しかしながら、上記方法には次のような問題がある。す
なわち、横型の気相重合反応器に好適に利用される平板
パドルは回転軸線上の両方向に推力を発生するため、粒
子層中に開口部を有する隔壁の鹸後にある平板パドルに
より前記開口部を通して粒子が順方向および逆方向に移
動させられる。
A horizontal reactor equipped with a stirrer having a horizontal rotating shaft in a cylindrical container is known as a reactor for gas phase polymerization of polyolefins and the like. These horizontal reactors can be used to completely mix powders such as polymer particles and catalyst particles, improve heat removal efficiency, and improve the residence time distribution (RT) of powders in the container.
In order to narrow the width of D), that is, to make the residence time uniform (hereinafter referred to as RTD improvement), in addition to a stirring means with a large number of rectangular flat paddles attached to a horizontal rotating shaft, A reactor capable of continuous processing is known in which one or more fixed weirs are fixed to the inner wall of the container in a direction perpendicular to the axis of rotation. (Special Publication No. 59-21321, Special Patent Application No. 61-6
(Refer to 8771) When the opening of the fixed weir in such a reactor is located at the upper part, that is, on the gas phase side, the composition of the gas phase in the reactor will be the same for each zone. On the other hand, the average molecular weight of a polymer produced in a gas phase polymerization reaction of polyolefin or the like is influenced by the partial pressure of a molecular weight regulator in the raw material gas. Therefore, when polymerization is carried out using only gases having the same composition, it is possible to control the average molecule T of the resulting polymer, but it is not possible to control the molecular weight distribution curve to an arbitrary value. For this reason, a method has been proposed in which the interior of the reactor is divided into a plurality of zones using partition walls having openings in the particle layer, and the gas composition is controlled for each zone. (Japanese Patent Publication No. 59-21321) [Problems to be Solved by the Invention] However, the above method has the following problems. That is, since the flat paddle suitably used in a horizontal gas phase polymerization reactor generates thrust in both directions on the axis of rotation, the flat paddle located behind the partition wall having an opening in the particle layer allows the thrust to pass through the opening. Particles are moved in forward and reverse directions.

したがって反応器内に長時間n留する粒子が存在するこ
とになりRTDの向上が望めない。そのために生成ポリ
マーを所望の性状のものに制御することが困難であった
。更に、粉粒体は圧力を水平方向に伝えにくいので隔壁
の前後で粒子層レベルに差が生じても、それに応じて粒
子層中の開口部を通過する粒子量の変化が生じにくく、
隔壁の前後のゾーンで粒子層レベルが安定せず長期間定
常状態で連続運転することができなかった。本発明は上
記問題点を解決するためになされたもので、反応器内の
2つ以上のゾーングループで自由にガス成分分圧を制御
することが可能であり、しかもRTDを向上させ、長時
間連続運転が可能な気相−固相反応用横型反応器を提供
することを目的とする。
Therefore, there are particles that remain in the reactor for a long time, making it impossible to expect an improvement in RTD. Therefore, it has been difficult to control the produced polymer to have desired properties. Furthermore, it is difficult for powder and granular materials to transmit pressure horizontally, so even if there is a difference in the particle layer level before and after the partition wall, the amount of particles passing through the openings in the particle layer is unlikely to change accordingly.
The level of the particle layer in the zones before and after the partition wall was unstable, making it impossible to operate continuously in a steady state for a long period of time. The present invention was made to solve the above-mentioned problems, and it is possible to freely control the gas component partial pressure in two or more zone groups in the reactor, and it also improves RTD and allows long-term use. The purpose of the present invention is to provide a gas phase-solid phase horizontal reactor that can be operated continuously.

〔問題点を解決するための手段〕[Means for solving problems]

水平に中心軸を有する円筒状容器と、前記水平中心軸に
一致して配置される回転軸を有する撹拌機と、前記円筒
状容器の両端に各々配置された撹拌対象物の供給口およ
び生成物の抜出口と、前記回転軸と垂直に配置され下部
に開口部を有し前記円筒状容器内部を3つ以上のゾーン
に分ける2つ以上の隔壁とから成り、上記3つ以上のゾ
ーンはガスを循環及び供給する2つ以上の独立したガス
循環系に接続されており、前記円筒状容器内に存在する
粒子層が前記隔壁の開口部を埋める状態で気相−固相反
応を行う横型反応冴において、前記撹拌機は回転軸の軸
方向の所定位置に1個以上の平板パドルを取付けたパド
ル組の複数組を含むようにし、特に前記隔壁を挟んで対
向し対を構成する2組のパドル組は、各対毎に下記(+
)〜(V+)の条件を満足し、隣り合う上記対の関係で
は条件(vii)〜(viii)を満足するようにする
a cylindrical container having a horizontal central axis; a stirrer having a rotating shaft aligned with the horizontal central axis; and a supply port for a product to be stirred and a product disposed at each end of the cylindrical container. and two or more partition walls arranged perpendicularly to the rotation axis and having an opening at the bottom and dividing the inside of the cylindrical container into three or more zones, and the three or more zones are is connected to two or more independent gas circulation systems that circulate and supply gas, and a horizontal reaction in which a gas phase-solid phase reaction is carried out in a state where a particle layer existing in the cylindrical container fills the opening of the partition wall. In Sae, the stirrer includes a plurality of paddle sets each having one or more flat paddles attached to a predetermined position in the axial direction of the rotating shaft, and in particular, two sets of paddles facing each other across the partition wall constitute a pair. The paddle groups are as follows for each pair (+
) to (V+), and conditions (vii) to (viii) are satisfied for the relationship between the adjacent pairs.

(i)10” ≦β≦45゜ (ii)D/100≦l 1≦D/20(iii)12
/11≧1 (+V)1≦$2/S1≦3 (v)α≧90゜ (vi) 1 <W1n/W  ≦4  (1≦n≦N
)n+1 (vii) 1≦W   /W1°〈1.2(1≦n≦
N−1〉 (viii)、すべての隣り合うパドル組の対の間で、
11同士、1□同士、s1同士、s2同士、W2同士は
それぞれ互いに等しい。
(i) 10” ≦β≦45゜ (ii) D/100≦l 1≦D/20 (iii) 12
/11≧1 (+V)1≦$2/S1≦3 (v)α≧90゜(vi) 1 <W1n/W≦4 (1≦n≦N
) n+1 (vii) 1≦W /W1°〈1.2 (1≦n≦
N-1〉 (viii) between all adjacent pairs of paddle sets,
11, 1□, s1, s2, and W2 are equal to each other.

上記式中の符号の意味は下記の通りである。The meanings of the symbols in the above formula are as follows.

β :生成物抜出側のパドルの撹拌対象物供給側パドル
に対する回転方向進み角 D :円筒状容器の内径 11 :容器内壁と撹拌対象物供給側パドルの先端との
クリアランス 12 :容器内壁と生成物抜出側パドルの先端とのクリ
アランス Sl:lR拌対象物供給側のパドルと隔壁とのクリアラ
ンス ≦2 :生成物抜出側のパドルと隔壁とのクリアランス n。
β: Advance angle of the rotational direction of the product extraction side paddle with respect to the stirring object supply side paddle D: Inner diameter of the cylindrical container 11: Clearance between the inner wall of the container and the tip of the stirring object supply side paddle 12: The inner wall of the container and the product Clearance between the paddle on the product extraction side and the tip of the paddle SL: 1R Clearance between the paddle on the supply side of the object to be stirred and the partition wall≦2: Clearance n between the paddle on the product extraction side and the partition wall.

Wl  、ta拌対象物供給口から数えて第n番目の隔
壁を挟むパドル組対の撹拌対象物 供給側の平板パドルの幅 W2:隔壁を挟むパドル組対の生成物抜出口側の平板パ
ドルの幅 N :隔壁の数 α :撹拌対象物供給側パドルの生成物抜出側パドルに
対する回転方向進み角 上記符号は以後同様の意味で用いられる。
Wl, ta Width W2 of the flat paddles on the stirring target material supply side of the paddle group pair that sandwich the n-th partition counting from the stirring target material supply port: Width W2 of the flat paddles on the product extraction port side of the paddle group pair that sandwich the partition wall Width N: Number of partition walls α: Advance angle in the rotational direction of the stirring object supply side paddle with respect to the product extraction side paddle The above symbols will be used hereinafter with the same meaning.

〔作 用〕[For production]

図面を参照しながら本発明の詳細な説明する。 The present invention will be described in detail with reference to the drawings.

第2図乃至第4図は本発明が実施された場合の隔壁の前
侵の平板パドルの位置関係および粉粒体表面の位置を示
す図であって、実施例の断面を示す第1図のΔ−八へ面
に相当する。円筒状容器1は隔壁2.2’、2”により
粉粒体3の上流側から第1.第2J第3.第4の4つの
ゾーンに分けられている。図に示す場合は1つのパドル
組の平板パドル4は2枚でありこれが180°の間隔で
回転軸5に固着されている。回転軸5が矢印方向に回転
すると粉粒体表面の位置は平板パドル4.4の位置に応
じて、第2図に実線および一点鎖線で示す範囲を変動す
る。しかしながら常に左下りの傾斜面となるので隔壁の
開口部6を右下方に配置すると開口部を常に粉粒体に埋
没した状態に保つことができる。この状態では開口部を
通過する気体の吊は少いので上流側ゾーンと下流側ゾー
ンとを異なる気体分圧成分に保つことが可能となる。
FIGS. 2 to 4 are diagrams showing the positional relationship of the flat plate paddles of the partition wall and the position of the powder surface when the present invention is carried out, and are similar to FIG. 1 showing the cross section of the embodiment. Corresponds to the Δ-8 plane. The cylindrical container 1 is divided into four zones, 1st, 2nd, 3rd, and 4th, from the upstream side of the powder 3 by partition walls 2, 2', 2''. In the case shown in the figure, one paddle There are two flat paddles 4 in the set, which are fixed to the rotating shaft 5 at an interval of 180°.When the rotating shaft 5 rotates in the direction of the arrow, the position of the powder surface corresponds to the position of the flat paddles 4.4. However, since the slope always slopes downward to the left, if the opening 6 of the partition wall is placed at the lower right, the opening will always be buried in the powder. In this state, the amount of gas passing through the opening is small, so it is possible to maintain different gas partial pressure components in the upstream zone and the downstream zone.

平板パドルが粉粒体中を動くときは平板パドルの回転方
向に対し後方は粉粒体が除かれて粗充填部分ができる。
When the flat paddle moves through the granular material, the granular material is removed from the rear in the direction of rotation of the flat paddle, creating a coarsely packed portion.

逆に平板パドルの前方および側方には粉粒体が押されて
密充填部分が生じる。従って相隣合う平板パドルの一方
が他方より回転方向に進んでいる場合は粉粒体は遅れて
いる平板パドルによる圧力により進んでいる平板パドル
の後方に流れ込み軸方向に移動する。この作用は進み角
αもしくはβが90”を超えると生じない。また10”
 ≦α≦45°もしくは10′″≦β≦45゜の範囲で
上記作用が強く発生する。従って図示のように隔壁の前
後のパドル組のパドルの数が2枚であり、下流側のパド
ルの進み角βが10°≦β≦45°の範囲にあると、上
流側のパドルの進み角αは135°≦α≦170°とな
り、パドルの回転により粒子は上流側より下流側に推力
を受けるが逆方向の推力は殆んど発生しない。従って開
口部の面積を適当に定めることにより、必要な下流方向
への粒子の流れが確保されると共に逆方向の粒子の流れ
を実質上なくすことができる。パドル組のパドルの数が
4枚以上となると上流側パドルの進、み角αが90°以
下となるので粒子の上流方向の流れも発生するので好ま
しくない。また、回転数が低い場合、粉粒体の流動性が
悪い場合などには粗充填部分の変動中が大きい。例えば
回転数が低い場合粗充填部分は小さくなり上流側から下
流側への粒子移動mの変動割合が大きくなるため、上流
側ゾーンにおける粉粒体保有1の制御が困難となる。こ
の様な場合、種々実験の結果隔壁前後のパドル組のパド
ルの幅が同じで、1□/1 ≧1かつS /S1≧1と
すると上流側から下流側への粉粒体の移動がスムーズに
行われることが認められた。
Conversely, the powder is pushed to the front and sides of the flat paddle, creating a densely packed area. Therefore, when one of the adjacent flat paddles is advancing in the rotational direction than the other, the powder flows behind the advancing flat paddle due to the pressure of the lagging flat paddle and moves in the axial direction. This effect does not occur when the lead angle α or β exceeds 90”.
The above effect occurs strongly in the range of ≦α≦45° or 10′″≦β≦45°.Therefore, as shown in the figure, the number of paddles in the paddle set before and after the partition wall is two, and the number of paddles on the downstream side is When the advance angle β is in the range of 10°≦β≦45°, the advance angle α of the upstream paddle becomes 135°≦α≦170°, and the particles receive thrust from the upstream side to the downstream side due to the rotation of the paddle. However, thrust in the opposite direction is hardly generated. Therefore, by appropriately determining the area of the opening, the required flow of particles in the downstream direction can be ensured, and the flow of particles in the opposite direction can be virtually eliminated. Yes. If the number of paddles in the paddle set is 4 or more, the advancement angle α of the upstream paddle will be less than 90°, which will cause particles to flow in the upstream direction, which is not preferable. Also, if the rotation speed is low , when the fluidity of the granular material is poor, the fluctuation of the coarsely packed part is large. For example, when the rotation speed is low, the roughly packed part becomes small and the rate of change in particle movement m from the upstream side to the downstream side becomes large. Therefore, it becomes difficult to control the particle retention 1 in the upstream zone.In such a case, as a result of various experiments, if the width of the paddles of the paddle set before and after the partition wall is the same, 1□/1 ≧1 and S /S1 It was found that when ≧1, the movement of the powder and granular material from the upstream side to the downstream side was performed smoothly.

11は容器の内径りに対して実際的にどの範囲に定める
のが良いかを数多くの実験により求めたところ、11の
適切な範囲はD/100≦11≦D/20であることが
判った。またS2/S1が大きすぎると下流側パドルに
よって生じる粗充填部分域が開口部に達せず本発明の効
果が得にくくなるばかりか、そのクリアランス82部分
における粉粒体の撹拌状態が悪化し、はなはだしい場合
はデッドスペースとなる。この点についても実験により
1≦S /S1≦3が適切な範囲として得られた。
After conducting numerous experiments to find out what range 11 should be practically set for the inner diameter of the container, it was found that the appropriate range for 11 is D/100≦11≦D/20. . In addition, if S2/S1 is too large, the roughly filled area generated by the downstream paddle will not reach the opening, making it difficult to obtain the effects of the present invention, and the state of agitation of the powder and granular material in the clearance 82 area will deteriorate, which is extremely In this case, it becomes a dead space. Regarding this point as well, an appropriate range of 1≦S/S1≦3 was obtained through experiments.

以上のように従来の反応器に比べすぐれた反応器を得る
ことができたのであるが、その後多くの実験を重ねるう
ちに、次のような現象が見出された。すなわち、粉粒体
が反応器内を上流側から下流側に移動するに従って、例
えば液化ガス冷却剤、触媒供給量の変動の影響を受けて
その性状が変化し流動特性が低下するとか、あるいは一
時的にある撹拌ゾーンにおける反応速度が増大する等が
原因となり、上流側の撹拌ゾーンよりもそれに続く下流
側の撹拌ゾーンの粉粒体堆積の平均的なレベルが高い状
態になることがあった。このような場合、前記条件(+
)〜(V)を最良に設定しても粉粒体のRTDの向上に
なお不十分な場合がある。このような問題点を解決する
ための条件を改めて検討した。その結果、下流側ゾーン
中の粉粒体堆積の平均的なレベルを上流側ゾーン中のそ
れより低くすることが非常に効果的であり、そのために
は隔壁を挟んで対向し対を構成する2組のパドル組にお
いて上流側のパドル組の平板パドルの幅W1゜を下流側
のパドル組の平板パドルの幅W2よりも大きくする(す
なわちWl。/W2〉1)ことが好結果をもたらすこと
が分った。そこで条件(11)〜(iv)に代えて平板
パドルの幅W1゜。
As described above, we were able to obtain a reactor that was superior to conventional reactors, but after many experiments, the following phenomenon was discovered. In other words, as the powder moves from the upstream side to the downstream side in the reactor, its properties change due to the influence of fluctuations in the amount of liquefied gas coolant and catalyst supplied, and the flow characteristics may deteriorate, or temporarily. Due to factors such as an increase in the reaction rate in a certain stirring zone, the average level of powder accumulation in the downstream stirring zone that follows the upstream stirring zone may be higher than that of the upstream stirring zone. In such a case, the above condition (+
) to (V) may still be insufficient to improve the RTD of the powder or granular material. We reconsidered the conditions for solving these problems. As a result, it is very effective to reduce the average level of granular material accumulation in the downstream zone to be lower than that in the upstream zone; In the two paddle sets, making the width W1 of the flat paddle of the upstream paddle set larger than the width W2 of the flat paddle of the downstream paddle set (that is, Wl./W2>1) can bring about good results. I understand. Therefore, in place of conditions (11) to (iv), the width of the flat paddle is W1°.

W2を上記の大小関係とした反応器を製作して試験した
が良い結果の得られない場合が少なくなかった。
Although reactors with W2 in the above-mentioned size relationship were manufactured and tested, good results were often not obtained.

更に検討を続けた結果、このWl。/W2〉1n” 1
7w 1n≧1の条件、すな という条件はWl わち各隔壁と上流側で対向する各平板パドルの幅W1゜
を上流側から下流側に向い同じかまたは順次大きくする
という条件と共に条件(+)〜(V)に付加することに
より、撹拌対象物の供給口から生成物の抜出口に向って
各撹拌ゾーンの中の粉粒体堆積の平均的なレベルを順次
低くする効果が、先に得られたI  /I  、S  
/S2に圓する条件1、  21 の効果に加えられることになり、単に固定堰を加えただ
けの従来の反応器に比べて粉粒体のRTDを一層格段に
向上させる効果が得られることが判n+1 /W、n 
〉1の場合、この 明した。特にWl 効果は著しかった。そして更に数多くの実験により、隔
壁を挟んで対向し対を構成する211のパドル組におけ
る平板パドルの幅の条件にはW1n/W  >1の他に
Wl。/W2≦4の条件を加える0+1/W1゜<1.
2の条件を と共に、1≦W1 設定すると好結果が得られることが判明した。
After further consideration, this Wl. /W2〉1n” 1
7w The condition that 1n≧1, the condition that Wl is satisfied.That is, the condition that the width W1° of each flat paddle facing each partition wall on the upstream side is the same or increases sequentially from the upstream side to the downstream side, and the condition (+ ) to (V), the effect of sequentially lowering the average level of powder and granular material accumulation in each stirring zone from the supply port of the material to be stirred to the discharge port of the product is achieved first. Obtained I/I, S
This is added to the effects of Conditions 1 and 21 that apply to /S2, and it is possible to obtain the effect of further improving the RTD of powder and granular material compared to a conventional reactor that simply has a fixed weir added. Size n+1 /W, n
〉1, this is clear. In particular, the Wl effect was remarkable. Further, through numerous experiments, it was found that in addition to W1n/W > 1, the width conditions of the flat paddles in 211 paddle pairs that face each other with a partition wall in between are Wl. Adding the condition /W2≦4 0+1/W1゜<1.
It has been found that good results can be obtained by setting the condition 2 and 1≦W1.

Wl。/W2の条件を4に制限する理由は、撹拌装置の
トルク幅へT(ビークトルクと平均トルクとの差の2倍
)について検討すると、W(一般平板パドルの幅)、W
l。及びW2がすべて等しいときにΔ王は最も小さいが
、各パドルの幅に大小があるとΔ王は大きくなり、W1
°/W2について4を超えるとΔTが急激に大きくなる
傾向が見られるからである。
Wl. The reason for limiting the /W2 condition to 4 is that when considering T (twice the difference between peak torque and average torque) to the torque width of the stirring device, W (width of a general flat paddle), W
l. When W2 and W2 are all equal, ΔKing is the smallest, but if the width of each paddle is large or small, ΔKing becomes large, and W1
This is because when °/W2 exceeds 4, there is a tendency for ΔT to increase rapidly.

更に条件m〜(vii)が満足されていても隔壁を挟む
パドル組の8対の間で1 同士、12同士、S 同士、
S 同士、W2同士が互いに異なるときは撹拌ゾーン間
で粉粒体の移動が乱れて上記の効果が不十分となること
があるので、上述の効果を確実にするために、条件(v
iii)を設定した。
Furthermore, even if conditions m to (vii) are satisfied, between the 8 pairs of paddle sets that sandwich the partition wall, 1 to each other, 12 to each other, S to each other,
When S and W2 are different from each other, the movement of the powder and granules between stirring zones may be disturbed and the above effect may be insufficient. Therefore, in order to ensure the above effect, the condition (v
iii) was set.

従って、条件(vi)、(vii)及び(viii)に
よりWlnは上流側から下流側にゆくに従って等しいか
または大きくなるが、Wl。/W2=4のパドル組の対
があると、それ以時の下流側のすべてのパドル組の対に
おいてWloは等しくかつWl。
Therefore, according to conditions (vi), (vii), and (viii), Wln becomes equal or larger from the upstream side to the downstream side, but Wl. When there are pairs of paddle sets with /W2=4, Wlo is equal and Wl in all subsequent downstream pairs of paddle sets.

/W2−4である。すべてのパドル組の対の中にWl。/W2-4. Wl in every pair of paddle groups.

/W2を異にするパドル組の対が2以上すなわちすべて
のW1°中に上流側に小さなWl。
/There are two or more pairs of paddle sets with different W2, that is, there is a small Wl on the upstream side during every W1°.

が下流側に大きなW1′の大小2種以上のWl。There are two or more types of Wl, large and small, with a large W1' on the downstream side.

が存在することが好ましい。is preferably present.

〔実施例〕〔Example〕

以下図面を参照しながら本発明の詳細な説明する。第1
図乃至第4図に示すように、円筒状容器1の中心軸に一
致させて回転軸5が配置され、回転軸5には軸心方向の
複数ケ所に平板パドル4.4が固着され複数のパドル組
が作られている。このようにして撹拌機7が構成される
。なお第1図において平板パドルの回転方向の位置は理
解し易いように適宜変更して示している。円筒状容器1
は隔壁2.2’、2″により仕切られて上流側より第1
ゾーンF3a、第2ゾーン8b、第3ゾーン3C,第4
ゾーン8dが形成される。隔壁2゜2′、2“は下部に
開口部6を有する。第1ゾーン8aには撹拌対象物供給
口10が、また第4ゾーン8dには生成物抜出口11が
設けられている。
The present invention will be described in detail below with reference to the drawings. 1st
As shown in the figures to FIG. 4, a rotating shaft 5 is arranged to coincide with the central axis of the cylindrical container 1, and a plurality of flat paddles 4.4 are fixed to the rotating shaft 5 at a plurality of locations in the axial direction. A paddle group is being made. In this way, the stirrer 7 is constructed. In FIG. 1, the position of the flat paddle in the rotational direction is shown changed as appropriate for easy understanding. Cylindrical container 1
is partitioned by partition walls 2.2' and 2'', and the first
Zone F3a, second zone 8b, third zone 3C, fourth
A zone 8d is formed. The partition walls 2.degree. 2', 2'' have openings 6 at their lower parts.The first zone 8a is provided with an inlet 10 for the object to be stirred, and the fourth zone 8d is provided with a product outlet 11.

原料ガスおよび冷却剤の供給口と未反応ガスの排出口は
第1図においては図示していない。上記構成のパドル組
の平板パドルの数は特に限定されないが隔壁の前後のパ
ドル組では先に説明したように3枚以下であることが望
ましい。円筒状容器1の直径りに対する長さしの比L/
Dは1.0以上であることが好ましい。なお、隔壁2.
2’ 。
The raw material gas and coolant supply ports and the unreacted gas discharge port are not shown in FIG. The number of flat paddles in the paddle set having the above configuration is not particularly limited, but it is desirable that the number of flat paddles in the paddle sets before and after the partition wall be three or less, as described above. Ratio of length to diameter of cylindrical container 1 L/
D is preferably 1.0 or more. Note that partition wall 2.
2'.

2″の開口部6は回転軸に垂直な面において鉛直線の上
方向を基準とし、回転軸の回転方向に135゛〜270
°の範囲内にあることが望ましく、開口部が粒子層中に
常時埋もれる状態となる形状とされる。第2図〜第4図
に示した開口部6は回転方向に180°〜225°の範
囲内にあり、開口部の幅Xは容器径の約1/6である。
The 2" opening 6 is 135° to 270° in the direction of rotation of the rotational axis, with the upper direction of the vertical line as a reference in the plane perpendicular to the rotational axis.
It is desirable that the opening is within the range of 100°C, and the shape is such that the opening is always buried in the particle layer. The opening 6 shown in FIGS. 2 to 4 is within a range of 180 DEG to 225 DEG in the direction of rotation, and the width X of the opening is about 1/6 of the diameter of the container.

このような開口部形状であれば粉粒体の保有量が反応器
容積の20%であっても開口部が粒子層中に常時埋もれ
る状態が維持される。
With such an opening shape, even if the amount of powder and granular material held is 20% of the reactor volume, the opening can be kept buried in the particle layer at all times.

このように構成された横型反応器を使用して例えばオレ
フィンの気相重合等を実施する場合、独立した原料ガス
および冷却剤循環系がそれぞれのゾーンまたはゾーング
ループに接続されて原料ガスおよび冷却剤が上記ゾーン
に循環されると共に遷移金属化合物を含む触媒が撹拌対
染供給口10より供給され、重合成生物である粉粒体3
が撹拌機7により撹拌され下流側に移動して生成物抜出
口11より抜出される。このとき撹拌機7の回転数はフ
ルード数Frが0.05〜3.0の範囲、特に0.2〜
2.0の範囲となるように回転させることが好ましい。
If a horizontal reactor configured in this way is used to carry out, for example, the gas-phase polymerization of olefins, separate feed gas and coolant circulation systems are connected to the respective zones or zone groups to control the feed gas and coolant. is circulated to the zone, and a catalyst containing a transition metal compound is supplied from the stirring counter-dyeing supply port 10, and the granular material 3, which is a polymerizing organism, is
is stirred by the stirrer 7, moves downstream, and is extracted from the product extraction port 11. At this time, the rotational speed of the stirrer 7 is set such that the Froude number Fr is in the range of 0.05 to 3.0, particularly 0.2 to 3.0.
It is preferable to rotate it so that it becomes a range of 2.0.

フルード数は式Fr=Rw2/qで定酋される。The Froude number is determined by the formula Fr=Rw2/q.

ここにR:回転軸センターからパドル先端までの長さ、 W:角速度52727秒 Ω:重力加速度      である。Here R: length from the center of the rotation axis to the tip of the paddle, W: Angular velocity 52727 seconds Ω: Gravitational acceleration.

また容鼎内の粉粒体の保有量は20〜80容G%で連続
処理するのが好ましい。
Further, it is preferable that the amount of powder and granular material held in the container is 20 to 80 volume G% and continuous processing is performed.

生成物がポリマーであるとき、その種類を例示すると、
エチレンポリマー、プロピレンポリマー、ブテンポリマ
ー、エチレンプロピレンポリマー、エチレン−ブテン1
コポリマー、プロピレン−ブテン1コポリマー、プロピ
レン−ブテン1−エチレンコポリマー、等があげられる
When the product is a polymer, examples of its types include:
Ethylene polymer, propylene polymer, butene polymer, ethylene propylene polymer, ethylene-butene 1
copolymers, propylene-butene 1 copolymers, propylene-butene 1-ethylene copolymers, and the like.

上記のような横型反応器を用いてポリプロピレンの気相
重合を実施するプロセスを第5図に示す。
FIG. 5 shows a process for carrying out gas phase polymerization of polypropylene using a horizontal reactor as described above.

横型反応器の第1.第2ゾーン8a、3bから排出され
る未反応ガスであるプロピレンガスが排出ガスライン2
0を通ってサイクロン分離器30に導かれる。サイクロ
ン分離器30で同伴粒子を除去されたプロピレンガスは
コンデンサ21で冷却され一部液化される。コンデンサ
21から気液U合状態のプロピレンがセパレータ22に
導かれここで気液分離される。セパレータ22から抜出
されるプロピレンガスはプロワ−23により原料ガス供
給口24より第1.第2ゾーン8a、8b内に吹込まれ
る。一方セパレータ22から抜出される液化プロピレン
はポンプ25により送られて冷却剤注入口27より第1
.第2ゾーン8a、8b内に注入される。上記ガス循環
系に水素ガスおよびプロピレンガスが各々水素ガス供給
ライン28およびプロピレンガス供給ライン29を通し
て供給されるが、水素ガスの供給伍は排出ガスライン2
0の水素濃度により制御される。第3.第4ゾーンのガ
ス循環系はサイクロン分離器30を除く他は上記側ゾー
ンのものと同様に構成される。図には対応する構成要素
に同一の番号を付しダッシュを付して示している。
The first part of the horizontal reactor. Propylene gas, which is an unreacted gas discharged from the second zones 8a and 3b, is transferred to the exhaust gas line 2.
0 to the cyclone separator 30. The propylene gas from which entrained particles have been removed in the cyclone separator 30 is cooled in the condenser 21 and partially liquefied. Propylene in a gas-liquid state is introduced from the condenser 21 to the separator 22, where it is separated into gas and liquid. The propylene gas extracted from the separator 22 is supplied to the first gas supply port 24 by a blower 23. It is blown into the second zones 8a, 8b. On the other hand, the liquefied propylene extracted from the separator 22 is sent by the pump 25 to the first coolant inlet 27.
.. It is injected into the second zones 8a, 8b. Hydrogen gas and propylene gas are supplied to the gas circulation system through a hydrogen gas supply line 28 and a propylene gas supply line 29, respectively.
Controlled by a hydrogen concentration of 0. Third. The gas circulation system of the fourth zone is constructed similarly to that of the above-mentioned side zone except for the cyclone separator 30. In the figures, corresponding components are designated by the same numbers and indicated by a dash.

次に本発明の実施により(qられたデータを具体的に示
す。円筒状容器1の直径りは430m長さLは1320
履、回転軸の直径は110間、平板パドルのクリアラン
スは、I 1= 5 ax、  + 2 =55m、8
1 =5履、82−10mとした。各パドル組の平板パ
ドルの枚数は2枚とし、隔壁前後のパドル組を除く各パ
ドル粗間での進み角は90゜とした。円筒状容器1を4
等分する位置に隔壁2゜2+、2nを配置し、開口部は
第2図〜第4図に示したものと同形状で幅Xを25mと
した。隔壁2.2’、2”の前後のパドル粗間における
下流側ゾーンの平板パドルの進み角βを45°上流側ゾ
ーンの平板パドルの進み角αを1359とした。
Next, the data obtained by implementing the present invention will be specifically shown. The diameter of the cylindrical container 1 is 430 m, and the length L is 1320 m.
The diameter of the rotating shaft is 110 mm, the clearance of the flat paddle is I 1 = 5 ax, + 2 = 55 m, 8
1 = 5 shoes, 82-10m. The number of flat paddles in each paddle set was two, and the advance angle between each paddle spacing was 90° except for the paddle sets before and after the partition wall. Cylindrical container 1 to 4
Partition walls 2°2+ and 2n were arranged at equally dividing positions, and the openings had the same shape as shown in FIGS. 2 to 4 and had a width X of 25 m. The lead angle β of the flat paddle in the downstream zone between the paddles before and after the partition walls 2.2' and 2'' was set to 45°.The lead angle α of the flat paddle in the upstream zone was set to 1359.

隔壁を挟むパドル組の平板パドルの幅については、W1
3=72厘とした。円筒状容器1内にはあらかじめ不活
性ポリプロピレンを容器容積に対して60容金%仕込み
、回転@5を回転数6Orpm(Fr=0.826)で
回転させ温度70℃圧力22N9/ciGの重合条件下
に円筒状容器1内を安定させた。円筒状容器内が安定し
た侵、撹拌対象物供給口10より触媒を約1.59/h
rの割合で供給し、連続して重合反応を行った。反応の
定常時における円筒状容器内の粉粒体の保有量は容器容
積に対し約65容量%であり生成物抜出口11より平均
ペース15Kg/hrでポリプロピレンを生産した。な
お第2ゾーン8bの底部には排出口31を設けここから
粉粒体がサンプリングされた。
Regarding the width of the flat paddle of the paddle set that sandwiches the bulkhead, W1
3=72 rin. In the cylindrical container 1, inert polypropylene was charged in advance at 60% by volume based on the container volume, and the polymerization conditions were set by rotating at a rotation speed of 6 Orpm (Fr=0.826) at a temperature of 70°C and a pressure of 22N9/ciG. The inside of the cylindrical container 1 was stabilized at the bottom. The inside of the cylindrical container is stably infiltrated, and the catalyst is fed from the stirring object supply port 10 at approximately 1.59/h.
The polymerization reaction was carried out continuously by supplying at a ratio of r. The amount of powder and granules held in the cylindrical container during the steady state of the reaction was approximately 65% by volume relative to the container volume, and polypropylene was produced from the product outlet 11 at an average rate of 15 kg/hr. Note that a discharge port 31 was provided at the bottom of the second zone 8b, and the powder and granular material was sampled from there.

ポリプロピレンの生産は2種類のグレードについて行わ
れ、その中グレード1の生産時における未反応プロピレ
ンガスに対する水素ガス平均モル比は排出ガスライン2
0で0.045、排出ガスライン20′で0.001で
あった。またグレード2の生産時においては排出ガスラ
イン20で0゜015、排出ガスライン20’で0.0
05であった。
Production of polypropylene is carried out in two grades, among which the average molar ratio of hydrogen gas to unreacted propylene gas during the production of grade 1 is in the exhaust gas line 2.
It was 0.045 at 0 and 0.001 at exhaust gas line 20'. In addition, when producing Grade 2, the exhaust gas line 20 has a temperature of 0°015, and the exhaust gas line 20' has a temperature of 0.0.
It was 05.

得られたポリプロピレンのポリマー試験結果を表1に示
す。表1のVFR(メルトフローレイト、測定法J−I
SK6758)のA値は第2ゾーンの底部排出口31か
らの採取ポリプロピレンにおけるMFRIであり、B値
は生成物抜出口11からの採取ポリプロピレンのMFR
値である。またQ値はGPC(日本ウォーターズ制液体
クロマトグラフGPC150c)により得られた重量平
均分子mを数平均分子借で割った値で、ポリマーの溶融
時における流動特性を表わし、Q値が大きいほど流動特
性が良好である。さらにFhfIは上記MFR測定特定
時ける測定時の荷重(通常は2.16Kg荷重)に対し
て、5倍(10,8N!F)の荷重にした場合のMFR
値を通常の荷重時のMFR値(上記B値)で割った値で
あり、Q値と同様にF値が大きいほど上記流動特性が良
好となる。
Table 1 shows the polymer test results of the obtained polypropylene. VFR (melt flow rate, measurement method J-I) in Table 1
The A value of SK6758) is the MFRI of the polypropylene collected from the bottom outlet 31 of the second zone, and the B value is the MFR of the polypropylene collected from the product withdrawal port 11.
It is a value. The Q value is the value obtained by dividing the weight average molecule m by the number average molecule obtained by GPC (Japan Waters liquid chromatograph GPC150c), and represents the flow characteristics when the polymer is melted. is good. Furthermore, FhfI is the MFR when the load is 5 times (10.8N!F) the load at the time of the specific MFR measurement (normally 2.16Kg load).
It is a value obtained by dividing the value by the MFR value (above-mentioned B value) under normal load, and similarly to the Q value, the larger the F value, the better the above-mentioned flow characteristics become.

なお実施例での重合反応修了時に各ゾーンの各保有迅を
秤呈したところ、第1ゾーンは12.2に3、第2ゾー
ンは12.11(ff、第3ゾーンは12.6Kg、第
4ゾーンは13.ONgであった。
In addition, when the respective holding speeds of each zone were weighed at the completion of the polymerization reaction in the example, the first zone had 12.2 to 3 kg, the second zone had 12.11 kg (ff), the third zone had 12.6 kg, and the third zone had 12.2 to 3 kg. Zone 4 was 13.ONg.

各ゾーンの保有mはほぼ同量であり、保有mの制御がス
ムーズに行われていることが分かった。
It was found that each zone had almost the same amount of m, indicating that the m possessed by each zone was controlled smoothly.

〔比較例〕[Comparative example]

実施例における3か所の隔壁を取り除いた以外は実施例
と同じプロセス、同じ組合条件で重合反応を行った。た
だし各水素ガス供給ライン28.28′の水素供給mは
実施例の実績を参考にして、実施例のグレード1および
グレード2の水素供給v1合を維持し生産した。
A polymerization reaction was carried out using the same process and combination conditions as in the example except that the three partition walls in the example were removed. However, the hydrogen supply m of each hydrogen gas supply line 28, 28' was produced by maintaining the grade 1 and grade 2 hydrogen supply v1 of the example with reference to the results of the example.

得られたポリプロピレンのポリマー試験結果を表2に示
す。なお表2中のグレード3はグレード1に相当する水
素供給隋で生成したポリプロピレンでグレード4はグレ
ード2に相当する水素供給爪で生成したポリプロピレン
である。
Table 2 shows the polymer test results of the obtained polypropylene. Note that grade 3 in Table 2 corresponds to grade 1, and grade 4 is polypropylene produced in a hydrogen supply system, which corresponds to grade 2.

表1および表2よりグレード1およびグレード2はグレ
ード3およびグレード4に比べMFR格差の大きいポリ
プロピレンであり、またQ値およびFlが大きく、前記
流動特性が良いことが分かる。
From Tables 1 and 2, it can be seen that Grade 1 and Grade 2 are polypropylenes with a larger difference in MFR than Grade 3 and Grade 4, and also have a large Q value and Fl, and have good flow characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明による横型反応器は隔壁により3つ以上のゾーン
に分け、2つ以上のゾーングループ間で異なる雰囲気に
制御できるようにし、各ゾーン間での粒子の移動を逆流
がなくスムーズに行える構成としたので、任意の分子量
分布曲線を有する生成物が19られ、例えばポリプロピ
レンの場合は流動特性を向上させることが可能となる。
The horizontal reactor according to the present invention is divided into three or more zones by partition walls, so that different atmospheres can be controlled between two or more zone groups, and particles can be smoothly moved between each zone without backflow. Therefore, a product having an arbitrary molecular weight distribution curve can be produced, and for example, in the case of polypropylene, it is possible to improve the flow properties.

またRT()が向上するので触媒消費量が少く、隔壁間
の粒子の移動がスムーズであるので長期囚の連続運転が
可能である。
Further, since the RT() is improved, the amount of catalyst consumed is small, and the movement of particles between the partition walls is smooth, so continuous operation for a long period of time is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す横型反応器の縦断面であ
り、第2図乃至第4図は第1図における△−八へ面図で
あり、第4図は第3図における回転@5を90′回転さ
せた状態を示す。第5図は本発明の実施例の横型反応器
を使用したプロセスの系統図である。 1・・・円筒状容器、2・・・隔壁、3・・・粉粒体、
4・・・平板パドル、5・・・回転軸、6・・・開口部
、7・・・撹拌機、8a、8b、8c、8d・・・第1
.第2.第3゜第4ゾーン、10・・・撹拌対象物供給
口、11・・・生成物抜出口。
FIG. 1 is a vertical cross section of a horizontal reactor showing an embodiment of the present invention, FIGS. 2 to 4 are views taken along the line Δ-8 in FIG. 1, and FIG. It shows the state where @5 is rotated 90'. FIG. 5 is a system diagram of a process using a horizontal reactor according to an embodiment of the present invention. 1... Cylindrical container, 2... Partition wall, 3... Powder,
4... Flat paddle, 5... Rotating shaft, 6... Opening, 7... Stirrer, 8a, 8b, 8c, 8d... First
.. Second. 3rd゜4th zone, 10... Stirring object supply port, 11... Product extraction port.

Claims (1)

【特許請求の範囲】 1、水平に中心軸を有する円筒状容器と、 前記水平中心軸に一致して配置される回転軸を有する撹
拌機と、 前記円筒状容器の両端に各々配置された撹拌対象物の供
給口および生成物の抜出口と、 前記回転軸と垂直に配置され下部に開口部を有し前記円
筒状容器内部を3つ以上のゾーンに分ける2つ以上の隔
壁とから成り、 上記3つ以上のゾーンはガスを循環及び供給する2つ以
上の独立したガス循環系に接続されており、 前記円筒状容器内に存在する粒子層が前記隔壁の開口部
を埋める状態で気相−固相反応を行う横型反応器におい
て、 前記撹拌機は回転軸の軸方向の所定位置に1個以上の平
板パドルを取付けたパドル組の複数組を含み、特に前記
隔壁を挟んで対向し対を構成する2組のパドル組は、各
対毎に下記(i)〜(vi)の条件を満足し、隣り合う
上記対の関係では条件(vii)〜(viii)を満足
することを特徴とする横型反応器。 (i)10°≦β≦45° (ii)D/100≦l_1≦D/20 (iii)l_2/l_1≧1 (iv)1≦S_2/S_1≦3 (v)α≧90° (vi)1<W_1^n/W_2≦4(1≦n≦N)(
vii)1≦W_1^n^+^1/W_1^n<1.2
(1≦n≦N−1) (viii)すべての隣り合うパドル組の対の間で、l
_1同士、l_2同士、S_1同士、S_2同士、W_
2同士はそれぞれ互いに等しい。 上記式中の符号の意味は下記の通りである。 β:生成物抜出側のパドルの撹拌対象物供給側パドルに
対する回転方向進み角 D:円筒状容器の内径 l_1:容器内壁と撹拌対象物供給側パドルの先端との
クリアランス l_2:容器内壁と生成物抜出側パドルの先端とのクリ
アランス S_1:撹拌対象物供給側のパドルと隔壁とのクリアラ
ンス S_2:生成物抜出側のパドルと隔壁とのクリアランス W_1^n:撹拌対象物供給口から数えて第n番目の隔
壁を挟むパドル組対の撹拌対象物 供給側の平板パドルの幅 W_2:隔壁を挟むパドル組対の生成物抜出口側の平板
パドルの幅 N:隔壁の数 α:撹拌対象物供給側パドルの生成物抜出側パドルに対
する回転方向進み角 2、円筒状容器の一端に設けられた撹拌対象物の供給口
が重合反応を生じさせる触媒の供給口である特許請求の
範囲第1項記載の横型反応器。 3、気相−固相反応がオレフィンの重合反応でありガス
循環系に循環および供給されるガスが原料ガス、水素ガ
スおよび冷却剤としての液化ガスを含む特許請求の範囲
第1項または第2項記載の横型反応器。
[Scope of Claims] 1. A cylindrical container having a horizontal central axis; an agitator having a rotating shaft aligned with the horizontal central axis; and a stirring device disposed at each end of the cylindrical container. consisting of an object supply port and a product withdrawal port, and two or more partition walls arranged perpendicularly to the rotating shaft and having an opening at the bottom and dividing the inside of the cylindrical container into three or more zones, The three or more zones are connected to two or more independent gas circulation systems for circulating and supplying gas, and the particle layer present in the cylindrical container fills the openings of the partition wall to form a gas phase. - In a horizontal reactor for performing a solid-phase reaction, the stirrer includes a plurality of paddle sets each having one or more flat paddles attached to a predetermined position in the axial direction of a rotating shaft, and in particular, paddle sets that face each other across the partition wall. The two paddle sets constituting the paddle set satisfy the following conditions (i) to (vi) for each pair, and the conditions (vii) to (viii) are satisfied for the relationship between the adjacent pairs. horizontal reactor. (i) 10°≦β≦45° (ii) D/100≦l_1≦D/20 (iii) l_2/l_1≧1 (iv) 1≦S_2/S_1≦3 (v) α≧90° (vi) 1<W_1^n/W_2≦4(1≦n≦N)(
vii) 1≦W_1^n^+^1/W_1^n<1.2
(1≦n≦N-1) (viii) Between all adjacent pairs of paddle groups, l
_1 to each other, l_2 to each other, S_1 to each other, S_2 to each other, W_
The two are each equal to each other. The meanings of the symbols in the above formula are as follows. β: Advance angle of the rotational direction of the paddle on the product extraction side relative to the paddle on the stirring object supply side D: Inner diameter of the cylindrical container l_1: Clearance between the inner wall of the container and the tip of the paddle on the stirring object supply side l_2: The inner wall of the container and the product Clearance between the tip of the paddle on the product extraction side S_1: Clearance between the paddle on the supply side of the object to be stirred and the partition wall S_2: Clearance between the paddle on the product extraction side and the partition wall W_1^n: Counting from the supply port of the object to be stirred Width W_2 of flat paddles on the supply side of the object to be stirred in the pair of paddles that sandwich the n-th partition: Width N of the flat paddles on the product outlet side of the pair of paddles that sandwich the partition: Number of partitions α: Object to be stirred Claim 1, wherein the rotational advance angle of the supply side paddle relative to the product extraction side paddle is 2, and the supply port for the object to be stirred provided at one end of the cylindrical container is a supply port for a catalyst that causes a polymerization reaction. Horizontal reactor as described in section. 3. The gas phase-solid phase reaction is an olefin polymerization reaction, and the gases circulated and supplied to the gas circulation system include raw material gas, hydrogen gas, and liquefied gas as a coolant, as claimed in claim 1 or 2. Horizontal reactor as described in section.
JP5860987A 1987-03-13 1987-03-13 Horizontal reactor Expired - Lifetime JP2504452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5860987A JP2504452B2 (en) 1987-03-13 1987-03-13 Horizontal reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5860987A JP2504452B2 (en) 1987-03-13 1987-03-13 Horizontal reactor

Publications (2)

Publication Number Publication Date
JPS63223001A true JPS63223001A (en) 1988-09-16
JP2504452B2 JP2504452B2 (en) 1996-06-05

Family

ID=13089271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5860987A Expired - Lifetime JP2504452B2 (en) 1987-03-13 1987-03-13 Horizontal reactor

Country Status (1)

Country Link
JP (1) JP2504452B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511326A (en) * 2002-12-23 2006-04-06 オウトクンプ テクノロジー オサケ ユキチュア Method and equipment for transporting fine solids
WO2007011027A1 (en) * 2005-07-22 2007-01-25 Daikin Industries, Ltd. Agitator for horizontal polymerization apparatus and process for producing fluoropolymer
JP2013531711A (en) * 2010-06-10 2013-08-08 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Control of H2 distribution in a horizontal stirred bed reactor
JP2015509444A (en) * 2012-02-10 2015-03-30 リスト ホールディング アーゲー Method for performing physical, chemical and / or thermal processes
WO2024201950A1 (en) * 2023-03-30 2024-10-03 日本ポリプロ株式会社 Horizontal polymerization reactor for producing propylene-based polymer and method for producing propylene-based polymer
WO2024201949A1 (en) * 2023-03-30 2024-10-03 日本ポリプロ株式会社 Horizontal polymerization reactor for producing propylene polymer and method for producing propylene polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211856B1 (en) 2008-11-21 2012-12-12 주식회사 엘지화학 Apparatus for manufacturing polymer particle and method for manufacturing polymer particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511326A (en) * 2002-12-23 2006-04-06 オウトクンプ テクノロジー オサケ ユキチュア Method and equipment for transporting fine solids
US7878156B2 (en) 2002-12-23 2011-02-01 Outotec Oyj Method and plant for the conveyance of fine-grained solids
WO2007011027A1 (en) * 2005-07-22 2007-01-25 Daikin Industries, Ltd. Agitator for horizontal polymerization apparatus and process for producing fluoropolymer
JP2013531711A (en) * 2010-06-10 2013-08-08 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Control of H2 distribution in a horizontal stirred bed reactor
JP2015509444A (en) * 2012-02-10 2015-03-30 リスト ホールディング アーゲー Method for performing physical, chemical and / or thermal processes
WO2024201950A1 (en) * 2023-03-30 2024-10-03 日本ポリプロ株式会社 Horizontal polymerization reactor for producing propylene-based polymer and method for producing propylene-based polymer
WO2024201949A1 (en) * 2023-03-30 2024-10-03 日本ポリプロ株式会社 Horizontal polymerization reactor for producing propylene polymer and method for producing propylene polymer

Also Published As

Publication number Publication date
JP2504452B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US4383093A (en) Tubular polymerization reactor, and process for polymerization
FI96745C (en) Process for olefin polymerization in fluidized bed polymerization reactor
US3945976A (en) Process for producing impact resistant polymer
US7459506B2 (en) Segmented agitator reactor
JPH029045B2 (en)
JPH0940704A (en) Method and apparatus for performing polymerization reaction in tubular reactor
JP2000506919A (en) Olefin monomer polymerization process and equipment
US3469948A (en) Paddle-type polymerization reactor
JPS63223001A (en) Horizontal reactor
KR100582125B1 (en) Gas phase polymerization method and apparatus of α-olefin
US3007903A (en) Continuous polymerization process
CN105164165B (en) Apparatus for mass polymerization of vinyl chloride resin and method for mass polymerization of vinyl chloride resin
US3330818A (en) Elimination of fouling in ziegler polymerizations
JPS63205135A (en) Horizontal reactor
EP1133350A1 (en) Prepolymerisation reactor
JPS63218245A (en) Horizontal reactor
JP2001514274A (en) Syndiotactic vinyl aromatic polymerization using a continuous multiple reactor
US2963470A (en) Process for polymerization of 1-olefins in presence of solid heat carrier
WO2012005519A2 (en) Method for polymerizing alpha-olefins with utilizing three-phase system, using three-phase fluidized-bed reactor
JPH0270704A (en) Apparatus and method for continuous polymerization
JPS5825309A (en) Production of alpha-olefin polymer and apparatus therefor
CN109796547A (en) A kind of propylene continuous polymerization method
US4504636A (en) Process for preparation of formaldehyde copolymers
CA2250264C (en) A process and an apparatus for polymerization of olefin monomers
JPH06801B2 (en) Polymerization method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term