[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS63229383A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS63229383A
JPS63229383A JP62062908A JP6290887A JPS63229383A JP S63229383 A JPS63229383 A JP S63229383A JP 62062908 A JP62062908 A JP 62062908A JP 6290887 A JP6290887 A JP 6290887A JP S63229383 A JPS63229383 A JP S63229383A
Authority
JP
Japan
Prior art keywords
light
optical
substrate
polarizer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62062908A
Other languages
Japanese (ja)
Inventor
Toshiya Yokogawa
俊哉 横川
Takashi Minemoto
尚 峯本
Yoshihiro Mori
義弘 森
Hideki Yakida
八木田 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62062908A priority Critical patent/JPS63229383A/en
Publication of JPS63229383A publication Critical patent/JPS63229383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To reduce working time, by arranging a magnetooptical crystal grown epitaxially on a substrate and one or more polarizers provided at one end or both ends thereof to eliminate an optical axis matching process at a sensor section. CONSTITUTION:Light introduced from a fiber passes through a polarizer 101 and turned to linearly polarized light to be incident into a ZnSe epitaxial layer. When light passes through the ZnSe epitaxial layer 106, a polarization surface of the light is turned by an angle theta proportional to the length (5mm) of a stripe and an external magnetic field. The light passing through the ZnSe epitaxial layer 106 is made incident into a analyzer 109 and changes in the quantity of light after the passage through the analyzer 109 takes place in terms of the quantity of light proportional to an angle theta of rotation. This enables the formation of a magnetooptical crystal and a polarizer on the same substrate using the conventional semiconductor process art to eliminate a process for optical axis matching at a sensor section thereby reducing optical axis matching time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光計測に用いられる光応用センサに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical sensor used for optical measurement.

従来の技術 近年、光の発光受光素子、光ファイバ等が急速に発達し
てきている。これらの発達にともない光応用センサを用
いた光計測は、電磁誘導ノイズを受けない、高絶縁であ
る、光ファイバが低ロスであり遠距離計測が可能である
、などの特色のため急速に発達してきている。このなか
でも光応用磁界(電流)センサはこのような特色を生か
し、近年の電力需要の増大に伴い特に高電圧系への適用
がはかられてきている。
2. Description of the Related Art In recent years, light emitting/receiving elements, optical fibers, etc. have rapidly developed. Along with these developments, optical measurement using optical sensors has rapidly developed due to its characteristics such as being immune to electromagnetic induction noise, high insulation, and the low loss of optical fibers, allowing long-distance measurement. I've been doing it. Among these, optical applied magnetic field (current) sensors take advantage of these characteristics and are being applied particularly to high voltage systems as the demand for electric power has increased in recent years.

第3図に光応用磁界(電流)センサ全体の構造を示す。Figure 3 shows the overall structure of the optical magnetic field (current) sensor.

光送信機300に設けられた光源301からの光は、光
ファイバ302を通りセンサ部303で磁界強度が光強
度に変換され再び光ファイバ302を通り、受光素子3
04.光受信機306で電気信号に直されて信号処理部
306で信号処理される。センサ部303は偏光子3o
7゜ファラデー素子3o8.検光子309よ構成る。
Light from a light source 301 provided in an optical transmitter 300 passes through an optical fiber 302, converts the magnetic field strength into light intensity at a sensor unit 303, passes through the optical fiber 302 again, and reaches a light receiving element 3.
04. The optical receiver 306 converts the signal into an electrical signal, and the signal processing unit 306 processes the signal. The sensor unit 303 is a polarizer 3o
7° Faraday element 3o8. The analyzer 309 is configured.

第4図に従来のセンサ部の構成図を示す図である。同図
において、偏光子401を通過した光は直線偏光となり
、ある厚さを持つ磁気光学結晶402を通過するが、そ
のとき偏波面は結晶厚さと外部磁界に比例した角度θだ
け回転を受ける。
FIG. 4 is a diagram showing a configuration diagram of a conventional sensor section. In the figure, light that has passed through a polarizer 401 becomes linearly polarized light and passes through a magneto-optic crystal 402 having a certain thickness, at which time the plane of polarization is rotated by an angle θ proportional to the crystal thickness and the external magnetic field.

回転角θは、偏光子401と46度傾けて配置された検
光子403で光量変化に変換される。検光子403通過
後の光量は回転角θに比例したものが得られる。光応用
磁界センサの構成としては第3図に示すように、光ファ
イバ302を伝送路として用い、その先端に上記センサ
部を取り付けるものが主として用いられており、そこで
は、偏光子3o7.検光子3o9.プリズム、ファラデ
ー素子(磁気光学結晶)3o8等の部品が一つ一つ組合
せて使用されていた。
The rotation angle θ is converted into a change in light amount by an analyzer 403 arranged at an angle of 46 degrees with the polarizer 401. The amount of light after passing through the analyzer 403 is proportional to the rotation angle θ. As shown in FIG. 3, the optical magnetic field sensor is mainly configured by using an optical fiber 302 as a transmission path and attaching the sensor section to the tip of the optical fiber 302, in which polarizers 3o7, . Analyzer 3o9. Parts such as prisms and Faraday elements (magneto-optical crystals) 3o8 were used in combination one by one.

発明が解決しようとする問題点 上記従来例のセンサ部は、第4図において磁気光学効果
をもつバルク結晶402.ルチル等を用いた平板偏光子
(偏光子401.検光子403)、プリズム404.ロ
ッドレンズ406等で構成されており、構成部品数が多
いため、■高精度の光軸合わせに非常に時間がかかる、
■個別部品を(熱硬貨性)接着剤等により固着するが、
その固着には光軸合わせした各部品をマニピュレータ等
により固定して高温中で長時間放置する必要があるため
、その際光軸ずれを起こす恐れがある■接着剤は信頼性
に劣り長時間使用すると剥がれる恐れがある、■個別部
品を1個1個固着して作成するため量産が困難である等
の欠点があった。
Problems to be Solved by the Invention The sensor section of the above-mentioned conventional example has a bulk crystal 402. Flat plate polarizer using rutile etc. (polarizer 401, analyzer 403), prism 404. It consists of a rod lens 406, etc., and has a large number of components, so it takes a very long time to align the optical axis with high precision.
■Individual parts are fixed using (thermocoin type) adhesive, etc.
To fix it, it is necessary to fix each part with the optical axis aligned using a manipulator and leave it for a long time in high temperature, which may cause the optical axis to shift. Adhesives are unreliable and can be used for a long time. This has disadvantages such as the risk of peeling off, and (1) mass production is difficult because individual parts are adhered one by one.

問題点を解決するための手段 上記問題点を解決するだめの本発明の技術的手段は、基
板上、例えばGaAs’、Si、ガドリニウム・ガリウ
ム・ガーネット(GGG)、またはCa −Mg −Z
 r置換型GGG等の基板上にエピタキシャル成長した
磁気光学結晶、例えば、m−■族半導体、m−v族半導
体、またはガーネット結晶と、金属と誘電体を交互知多
層積層したものからなる偏光子を少なくても1個以上含
む事を特長とする光応用センサである。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is to use a substrate such as GaAs', Si, gadolinium gallium garnet (GGG), or Ca-Mg-Z.
A polarizer made of a magneto-optical crystal epitaxially grown on a substrate such as r-substituted GGG, such as an m-■ group semiconductor, an m-v group semiconductor, or a garnet crystal, and a multi-layer stack of alternating metals and dielectrics. It is an optical application sensor characterized by including at least one or more.

作  用 本発明は、上記構成により磁気光学結晶と偏光子の固着
シて用いていた接着剤等を必要とせず上記問題点であっ
た■、■に有効であり信頼性が飛躍的に向上する。また
上記問題点■、■に対しては、磁気光学結晶と偏光子は
従来の半導体プロセスを利用できるため、1.Q/7m
 以下の精度で光軸あわせが可能となり、光軸合わせの
時間の短縮化につながる。さらに半導体プロセスを利用
できるため量産にも有効である。
Effects The present invention, with the above structure, does not require the adhesive used to fix the magneto-optic crystal and the polarizer, and is effective in solving the above problems ① and ②, and dramatically improves reliability. . In addition, regarding the above problems (1) and (2), since conventional semiconductor processes can be used for the magneto-optic crystal and polarizer, 1. Q/7m
The optical axis can be aligned with the following accuracy, leading to a reduction in the time for optical axis alignment. Furthermore, since semiconductor processes can be used, it is also effective for mass production.

実施例 以下本発明の第1の実施例を図面に基づいて説明する。Example A first embodiment of the present invention will be described below based on the drawings.

第1図において、106は磁気光学結晶であるZn5e
工ピタキシヤル成長層であり、膜厚は701tmとする
。108及び109は偏光子及び検光子である金属−誘
電体多層薄膜である。金属にはAI、誘電体にはS i
O2を用い、各層厚はそれぞれ6o人と7800八とし
交互に100周期積層されている。107は予めエツチ
ングされ、段差が形成されて仏るG a A s基板で
ある。ファイバより導かれた光が図に示す偏光子108
を通過し、光は直線偏光となりZn5e工ピタキシヤル
層に入射する。このZn5e工ピタキシヤル層106を
光が通過すると偏波面はストライプの長さく5朋)と外
部磁界に比例した角度θだけ回転を受ける。Zn5e工
ピタキシヤル層106を通過した光は検光子109に入
射し、検光子109通過後の光量変化は、回転角θに比
例した光量が得られる。
In FIG. 1, 106 is a Zn5e magneto-optic crystal.
The layer is a taxially grown layer, and the film thickness is 701 tm. 108 and 109 are metal-dielectric multilayer thin films that are polarizers and analyzers. AI for metals, Si for dielectrics
Using O2, each layer has a thickness of 6000 and 78008, and is laminated alternately 100 times. Reference numeral 107 is a GaAs substrate that has been etched in advance to form a step. The light guided from the fiber passes through the polarizer 108 shown in the figure.
The light becomes linearly polarized light and enters the Zn5e pitaxial layer. When light passes through this Zn5e pitaxial layer 106, the plane of polarization is rotated by an angle θ proportional to the length of the stripe (5) and the external magnetic field. The light that has passed through the Zn5e pitaxial layer 106 is incident on the analyzer 109, and the amount of light that changes after passing through the analyzer 109 is proportional to the rotation angle θ.

次に本装置の製造方法について説明する。本発明ではエ
ピタキシャル成長方法として有機金属気相成長方法を用
いる。まず適当な前処理をGaAg基板に施した後、S
iO2膜を1000人堆積し、フォトリソグラフィーの
手法により、く011〉方向を長辺とする5問×110
1tのストライプ状にこのSiO2膜を選択的に除去す
る。これをマスクとしてシュウ酸系エッチャントを用い
て、基板にストライプ状の溝を形成する。ストライプの
4つの側面は(111)A面を持ち、底面は(100)
面である。ストライプの深さは6011mである。
Next, a method of manufacturing this device will be explained. In the present invention, a metal organic vapor phase epitaxy method is used as an epitaxial growth method. First, after applying appropriate pretreatment to the GaAg substrate, S
1000 iO2 films were deposited, and 5 questions x 110 with long sides in the 011> direction were created using photolithography.
This SiO2 film is selectively removed in a stripe shape of 1t. Using this as a mask, striped grooves are formed on the substrate using an oxalic acid etchant. The four sides of the stripe have (111) A sides, and the bottom side has (100)
It is a surface. The depth of the stripes is 6011 m.

その基板上にZn5e工ピタキシヤル層を形成する。A Zn5e epitaxial layer is formed on the substrate.

成長条件は装置にもかなり依存するが、たとえばZn5
eの場合、基板温度650℃、ジメチルジンク(DMZ
)のH2の流量(0℃) =2.5cc/min。
Although the growth conditions depend considerably on the equipment, for example, Zn5
In the case of e, the substrate temperature is 650℃, dimethyl zinc (DMZ
) H2 flow rate (0°C) = 2.5 cc/min.

ジメチルセレン(DMSe)のH2の流量(15℃) 
= g cc/m i n 、 H2の総流量1.51
/min。
Flow rate of H2 in dimethyl selenium (DMSe) (15°C)
= g cc/min, total flow rate of H2 1.51
/min.

減圧100 Torr下で良好なエピタキシャル膜が得
られ、さらに選択的に(100)面上のみに成長するた
め、メサストライプ状のZn5e工ピタキシヤル層が形
成される。その後S i O2膜上のZn5e膜を選択
的に除去し、エツチングマスクの形成とドライエッチを
2度行ない偏光子を形成するための傾斜部を形成する。
A good epitaxial film is obtained under a reduced pressure of 100 Torr, and furthermore, since it selectively grows only on the (100) plane, a mesa stripe-shaped Zn5e epitaxial layer is formed. Thereafter, the Zn5e film on the SiO2 film is selectively removed, and an etching mask is formed and dry etching is performed twice to form a sloped portion for forming a polarizer.

Zn5e工ピタキシヤル層の両端に位置する傾斜部は、
基板の(10o)の面に対して約22度の傾きを有して
おり、お互いに46度交差するように配置する。このよ
うに′形成された傾斜部上に偏光子及び検光子となる金
属−誘電体多層薄膜を形成する。これらの積層膜は、高
周波スパッタ装置と真空蒸着装置をつなぎ合わせ中間を
ゲートバルブで分離した装置を用いて、交互に装置の間
を試料を往復させる事で積層膜を作成する事ができる。
The inclined parts located at both ends of the Zn5e pitaxial layer are
They have an inclination of about 22 degrees with respect to the (10o) plane of the substrate, and are arranged so as to intersect with each other at 46 degrees. A metal-dielectric multilayer thin film, which will serve as a polarizer and an analyzer, is formed on the slope thus formed. These laminated films can be created by using a device in which a high-frequency sputtering device and a vacuum evaporation device are connected and separated by a gate valve, and the sample is alternately moved back and forth between the devices.

また、S z 02のスパッタ及びAIの蒸着時の温度
は300’Cであり結晶の劣化、欠陥の発生などは無い
Further, the temperature during sputtering of S z 02 and evaporation of AI was 300'C, so there was no crystal deterioration or generation of defects.

なお、本実施例では選択エピタキシャル成長の方法を用
いて磁気光学結晶を形成したが、フォトリソグラフィー
を用いた選択エツチングによりメサストライプ状結晶を
形成してもよい。またこの場合磁気光学結晶としてZn
5eを用いたが、ZnS、ZnS、Se1 、(0<X
<1 )を用いてもよく、これらの材料のサンドイッチ
構造、例えば、ZnS/Zn5e/ZnS、ZnS/Z
nSSe/ZnS等にし、光導波路を形成しても良い。
In this example, the magneto-optic crystal was formed using a selective epitaxial growth method, but a mesa stripe-shaped crystal may also be formed by selective etching using photolithography. In this case, Zn is used as the magneto-optic crystal.
5e was used, but ZnS, ZnS, Se1, (0<X
<1) may be used, and sandwich structures of these materials, e.g. ZnS/Zn5e/ZnS, ZnS/Z
An optical waveguide may be formed using nSSe/ZnS or the like.

さらに、本実施例では磁気光学結晶として■−■族半導
体を用いた場合について示したが■−V族半導体を用い
てもよい。以下に、GaAs1たはA I G a A
 s の選択エピタキシャル成長条件を一例として示す
。G a A sの場合、トリメチルガリウム(TMG
)(−1s℃)のH2流量= 9 cc/m i n。
Further, in this embodiment, a case where a ■-■ group semiconductor is used as the magneto-optic crystal is shown, but a ■-V group semiconductor may also be used. Below, GaAs1 or A I Ga A
The selective epitaxial growth conditions for s are shown as an example. In the case of Ga As, trimethyl gallium (TMG
) (-1s°C) H2 flow rate = 9 cc/min.

アルシン(AH3)(10%)の流量500 cc/m
in。
Arsine (AH3) (10%) flow rate 500 cc/m
in.

Gao、8A10.2Asの場合、TMG(−1ts℃
)のH2流量= 8 cc/mi n、 )リメチルア
ルミニウム(TMA)(2o℃)のH2流量= 4 c
c/mi n。
In the case of Gao, 8A10.2As, TMG (-1ts℃
) H2 flow rate = 8 cc/min, ) H2 flow rate of remethylaluminum (TMA) (2o℃) = 4 c
c/min.

AH3(10%)の流量500 cc/m i nであ
る。総H2流量は51/min、減圧10Torr下で
成長を行ない成長温度は700℃とした。この選択エピ
タキシャル成長にはSiNxまたはS 102マスクを
用いた。上記成長条件ではマスク上には多結晶の析出は
起こらずG a A s基板が露出した部分のみに良好
な結晶が得られた。この条件で得られたG a A s
結晶も高品質の磁気光学結晶として用いることができる
The flow rate of AH3 (10%) was 500 cc/min. Growth was performed at a total H2 flow rate of 51/min and a reduced pressure of 10 Torr, and the growth temperature was 700°C. A SiNx or S102 mask was used for this selective epitaxial growth. Under the above growth conditions, no polycrystals were deposited on the mask, and good crystals were obtained only in the exposed portions of the GaAs substrate. G a A s obtained under these conditions
The crystals can also be used as high quality magneto-optic crystals.

さらにこのセンサの応用として、予め発光素子や受光素
子が形成された基板上に本発明の素子を形成する事も可
能である。
Furthermore, as an application of this sensor, it is also possible to form the element of the present invention on a substrate on which a light emitting element and a light receiving element have been formed in advance.

本発明の第二の実施例として磁気光学結晶としてガーネ
ットを用いた光応用磁界(電流)センサ場合について第
2図を用いて説明する。基板としてガドリニウム・ガリ
ウム・ガーネット(GGG)を用い、PbO−B2O3
系融液を用い液相エピタキシャル成長法を用いて(Tb
0.19Yo81)3Fe6o12((TbY)IG)
206を成長した。この組成の結晶はセンサとしての温
度安定性に優れているという特長がある。成長した結晶
の厚みは100/jmである。この結晶にドライエッチ
の手法を用い結晶面の検光子209を作成する部分を1
0 Q 1tm深さ方向にエツチングする。その後、ド
ライエッチにより凹凸ができた底面を3102のバイア
ススパッタにより平坦化した後て実施例1で示した手順
と同様にして検光子209である金属−誘電体多層薄膜
を形成する。この時偏波面保存ファイバを用いれば直線
偏向の光をセンサ部まで導くことができるので、偏光子
を省略して、偏波面保存ファイバの固有軸と検光子20
9を46度傾ける事により、偏光子を1つとする事がで
きる。次にこの結晶を長さ2〜10団、幅30071m
程度にダイシングソー等を用いて切りだしセンサ部を作
成する。
As a second embodiment of the present invention, an optical magnetic field (current) sensor using garnet as the magneto-optic crystal will be described with reference to FIG. Using gadolinium gallium garnet (GGG) as the substrate, PbO-B2O3
(Tb
0.19Yo81)3Fe6o12((TbY)IG)
I grew 206. A crystal with this composition has the advantage of being excellent in temperature stability as a sensor. The thickness of the grown crystal is 100/jm. The part where the analyzer 209 of the crystal plane is created using the dry etching method is 1
0 Q Etch in 1tm depth direction. Thereafter, the uneven bottom surface formed by dry etching is flattened by bias sputtering 3102, and then a metal-dielectric multilayer thin film, which is the analyzer 209, is formed in the same manner as in Example 1. At this time, if a polarization-maintaining fiber is used, linearly polarized light can be guided to the sensor section, so the polarizer can be omitted and the eigenaxis of the polarization-maintaining fiber and the analyzer 20 can be used.
By tilting 9 by 46 degrees, the number of polarizers can be reduced to one. Next, this crystal is 2 to 10 groups long and 30,071 m wide.
Cut out the sensor part using a dicing saw or the like.

また、ガーネット結晶としてBi置換型ガーネット、例
えばB’ 1.2Y1.8”5012、を用いれば、単
位長さ当たりのファラデー回転角が大きいので高感度な
センサ部を得ることができる。この時はBiのイオン半
径が大きいため基板として格子定数の大きなCa−Mg
−Zr置換型GGGが必要である。入力光の直線偏光偏
波面は検光子109に対して45度傾いている。
Furthermore, if Bi-substituted garnet, such as B'1.2Y1.8"5012, is used as the garnet crystal, a highly sensitive sensor section can be obtained because the Faraday rotation angle per unit length is large. In this case, Because the ionic radius of Bi is large, Ca-Mg with a large lattice constant is used as a substrate.
-Zr substituted GGG is required. The linear polarization plane of the input light is inclined at 45 degrees with respect to the analyzer 109.

発明の効果 以上述べてきたように、本発明によれば従来の半導体プ
ロセス技術を用いて同一基板上に磁気光学結晶と偏光子
を形成できるため、センサ部の光軸合わせ等の工程が無
くなり、また接着剤などの樹脂を使う事がなくなるので
信頼性も向上する。
Effects of the Invention As described above, according to the present invention, a magneto-optic crystal and a polarizer can be formed on the same substrate using conventional semiconductor process technology, thereby eliminating steps such as aligning the optical axis of the sensor section. Reliability is also improved since there is no need to use resins such as adhesives.

さらに同一精度で多数の素子を一度に作成できるため、
工業的に極めて有用である。
Furthermore, many elements can be created at the same time with the same precision.
It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例における光応用磁界(電
流)センサ部の斜視図、第2図は本発明の第二の実施例
における光応用磁界(電流)センサ部の斜視図、第3図
は光応用磁界(電流)センサの構成図、第4図は光応用
磁界(電流)センサ部の構成図である。 1o1・・・・・・偏光子、106・・・・・磁気光学
結晶(エピタキシャル膜)、107・・・・・基板、1
08゜109・・・・・・偏光子、検光子(金属と誘電
体の多層膜)、206−・−・−・(TbY)IG磁気
光学結晶、207・・・・・GGG基板、209・・・
・・・検光子。 代理人の氏名 弁理士 中 尾 敏男ほか1名へ   
       〈
FIG. 1 is a perspective view of an optical magnetic field (current) sensor section in a first embodiment of the present invention, and FIG. 2 is a perspective view of an optical magnetic field (current) sensor section in a second embodiment of the present invention. FIG. 3 is a block diagram of the optical magnetic field (current) sensor, and FIG. 4 is a block diagram of the optical magnetic field (current) sensor section. 1o1...Polarizer, 106...Magneto-optical crystal (epitaxial film), 107...Substrate, 1
08゜109...Polarizer, analyzer (multilayer film of metal and dielectric), 206-... (TbY) IG magneto-optic crystal, 207...GGG substrate, 209-・・・
...Analyzer. Name of agent: Patent attorney Toshio Nakao and one other person
<

Claims (8)

【特許請求の範囲】[Claims] (1)基板上にエピタキシャル成長させた磁気光学結晶
と、前記磁気光学結晶の一端または両端に設けた一個以
上の偏光子とを持つ光応用センサ。
(1) An optical sensor having a magneto-optic crystal epitaxially grown on a substrate and one or more polarizers provided at one or both ends of the magneto-optic crystal.
(2)偏光子が金属と誘電体とを交互に多層積層したも
のである特許請求の範囲第1項記載の光応用センサ。
(2) The optical sensor according to claim 1, wherein the polarizer is a multi-layered structure of alternating layers of metal and dielectric.
(3)磁気光学結晶がII−VI族半導体、III−V族半導
体、またはガーネット結晶である特許請求の範囲第1項
記載の光応用センサ。
(3) The optical sensor according to claim 1, wherein the magneto-optic crystal is a II-VI group semiconductor, a III-V group semiconductor, or a garnet crystal.
(4)II−VI族半導体がZnSe、ZnS、ZnS_X
Se_1_−_X(0<X<1)である特許請求の範囲
第3項記載の光応用センサ。
(4) II-VI group semiconductors are ZnSe, ZnS, ZnS_X
The optical application sensor according to claim 3, wherein Se_1_−_X (0<X<1).
(5)III−V族半導体がGaAs、Al_XGa_1
_−_XAs(0<X<1)である特許請求の範囲第3
項記載の光応用センサ。
(5) Group III-V semiconductor is GaAs, Al_XGa_1
Claim 3 which is ____XAs (0<X<1)
Optical application sensor described in section.
(6)ガーネット結晶が(Tb_XY_1_−_X)_
3Fe_5O_1_2(0.1≦X≦0.3)、又は、
Bi置換型ガーネットである特許請求の範囲第3項記載
の光応用センサ。
(6) Garnet crystal is (Tb_XY_1_-_X)_
3Fe_5O_1_2 (0.1≦X≦0.3), or
The optical application sensor according to claim 3, which is Bi-substituted garnet.
(7)基板が半導体またはガーネット結晶である特許請
求の範囲第1項記載の光応用センサ。
(7) The optical sensor according to claim 1, wherein the substrate is a semiconductor or a garnet crystal.
(8)基板がGaAs、Si、ガドリニウム・ガリウム
・ガーネット(GGG)、またはGa−Mg−Zr置換
型GGGである特許請求の範囲第7項記載の光応用セン
サ。
(8) The optical sensor according to claim 7, wherein the substrate is GaAs, Si, gadolinium gallium garnet (GGG), or Ga-Mg-Zr substituted GGG.
JP62062908A 1987-03-18 1987-03-18 Optical sensor Pending JPS63229383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062908A JPS63229383A (en) 1987-03-18 1987-03-18 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062908A JPS63229383A (en) 1987-03-18 1987-03-18 Optical sensor

Publications (1)

Publication Number Publication Date
JPS63229383A true JPS63229383A (en) 1988-09-26

Family

ID=13213822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062908A Pending JPS63229383A (en) 1987-03-18 1987-03-18 Optical sensor

Country Status (1)

Country Link
JP (1) JPS63229383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231177A (en) * 1990-02-06 1991-10-15 Matsushita Electric Ind Co Ltd Optical-type magnetic field sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578452A (en) * 1980-06-20 1982-01-16 Matsushita Electric Ind Co Ltd Current and voltage sensor
JPS6097304A (en) * 1983-11-01 1985-05-31 Shojiro Kawakami Polarizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578452A (en) * 1980-06-20 1982-01-16 Matsushita Electric Ind Co Ltd Current and voltage sensor
JPS6097304A (en) * 1983-11-01 1985-05-31 Shojiro Kawakami Polarizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231177A (en) * 1990-02-06 1991-10-15 Matsushita Electric Ind Co Ltd Optical-type magnetic field sensor

Similar Documents

Publication Publication Date Title
US6545795B2 (en) Magneto-optical member and optical isolator using the same
US5408565A (en) Thin-film magneto-optic polarization rotator
US4981341A (en) Apparatus comprising a magneto-optic isolator utilizing a garnet layer
Sugimoto et al. A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit
JPH0782164B2 (en) Magneto-optical element and magnetic field measuring device
Wolfe et al. Thin‐film garnet materials with zero linear birefringence for magneto‐optic waveguide devices
US6535656B1 (en) Planar-type polarization independent optical isolator
EP0140431B1 (en) Component for an integrated optical system
WO2009016972A1 (en) Optical device, optical integrated device and its manufacturing method
JPS63229383A (en) Optical sensor
US5463316A (en) Magnetooptic sensor head
US6990261B2 (en) Optical circuit device and method for fabricating the same
US5099357A (en) Optical sensor
JPS61123814A (en) Magnetic semiconductor material and optical isolator
JPH0727823B2 (en) Magnetic material for magneto-optical element
EP0166924A2 (en) Faceted magneto-optical garnet layer
JPH0651241A (en) Optical non-reciprocal circuit
Wolfe Thin films for non-reciprocal magneto-optic devices
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH0561002A (en) Waveguide type optical isolator and optical circulator
JPS61205698A (en) Magnetooptical material
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JPS63273828A (en) Optical isolator
JPS604962B2 (en) optical waveguide device
JPS6343725B2 (en)