JPS63224427A - Method and device for polarization diversity optical reception - Google Patents
Method and device for polarization diversity optical receptionInfo
- Publication number
- JPS63224427A JPS63224427A JP62056503A JP5650387A JPS63224427A JP S63224427 A JPS63224427 A JP S63224427A JP 62056503 A JP62056503 A JP 62056503A JP 5650387 A JP5650387 A JP 5650387A JP S63224427 A JPS63224427 A JP S63224427A
- Authority
- JP
- Japan
- Prior art keywords
- light
- signal
- intermediate frequency
- polarization
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 40
- 230000010287 polarization Effects 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 11
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical group CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/614—Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/64—Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、信号光をヘテロダイン検波する偏波ダイバシ
テイ光受信方法およびその装置に係り、特に、高感度、
低コスト、且つ、小型の装置を実現するに好適な方法お
よびその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarization diversity optical reception method and apparatus for heterodyne detection of signal light, and in particular, to
The present invention relates to a method and device suitable for realizing a low-cost and compact device.
光が有する波としての性質を利用して情報の伝達を行う
コヒーレント光伝送では、信号光の偏波状態変動に起用
して、受信される信号の対雑音比(SNR)が低下する
という問題が発生するため。Coherent optical transmission, which uses the wave properties of light to transmit information, has the problem of reducing the signal-to-noise ratio (SNR) of the received signal due to fluctuations in the polarization state of signal light. To occur.
その対策が重要である。上記対策のひとつとして、偏波
ダイバシテイ光受信方法とその装置が、従来から提案さ
れている。偏波タイバシティ光受信とは、信号光の偏波
状態変動に起因する受信信号の電力低下を抑圧すること
によりSNR低下を抑圧するものである。Countermeasures are important. As one of the above-mentioned measures, polarization diversity optical reception methods and devices have been proposed in the past. Polarization tie diversity optical reception suppresses a decrease in SNR by suppressing a decrease in the power of a received signal due to a change in the polarization state of signal light.
従来の偏波ダイバシテイ光受信方法およびその装置に関
しては、例えば「アイ・オー・オー・シーJ ’83.
1983年6月27日〜30日、予稿集第386頁〜3
87頁(100C’83. June 27−30.1
083. Technical Digest pp、
386.−387)において論じられている。Regarding the conventional polarization diversity optical reception method and its device, see, for example, "I.O.C. J '83.
June 27-30, 1983, Proceedings No. 386-3
87 pages (100C'83. June 27-30.1
083. Technical Digest pp.
386. -387).
従来の方法およびその装置では、まず、信号光は偏光分
離器で直交するふたつの偏波成分に分離される。分離さ
れたふたつの成分はそれぞれ、同じ周波数を有する参照
光と混合される。ふたつの混合光はそれぞれ異なる受光
器でヘテロダイン検波される。ふたつの検波信号は加算
され、ひとつの信号として出力される。この結果、信号
光の偏波状態に変動が生じた場合1例えば、信号光が直
線偏波となり、一方の受光器に入力する信号光が零とな
った場合でも、信号光はすべて他方の受光器に入力する
ため、受信信号電力は零とはならない、即ち、SNHの
低下が抑圧される。In the conventional method and device, first, a signal light is separated into two orthogonal polarization components by a polarization splitter. The two separated components are each mixed with a reference beam having the same frequency. The two mixed lights are heterodyne detected by different receivers. The two detected signals are added and output as one signal. As a result, if the polarization state of the signal light changes (1) For example, even if the signal light becomes linearly polarized and the signal light input to one receiver becomes zero, all the signal light will be received by the other receiver. Since the signal is input to the receiver, the received signal power does not become zero, that is, the decrease in SNH is suppressed.
上記従来技術では、下記の問題があった61、信号光の
一部が偏光分離器において反射を受け、受光器に入力す
る信号光強度が低下するため、光受信装置の感度が低下
する。The above-mentioned conventional technology has the following problem 61: Part of the signal light is reflected by the polarization splitter, and the intensity of the signal light input to the light receiver is reduced, resulting in a reduction in the sensitivity of the optical receiver.
2、偏光分離器の損失により、信号光が偏光分離器を通
過する過程で減衰を受け、受光器に入力する信号光強度
が低下するため、光受信装置の感度が低下する。2. Due to the loss of the polarization splitter, the signal light is attenuated in the process of passing through the polarization splitter, and the intensity of the signal light input to the optical receiver is reduced, resulting in a reduction in the sensitivity of the optical receiver.
3、ふたつの混合光を得るために、混合器が2個必要と
なり、光受信装置が高コスト化する。3. In order to obtain two mixed lights, two mixers are required, which increases the cost of the optical receiver.
4、ふたつの混合光をそれぞれヘテロダイン検波するた
めに、受光器およびそれに付随する電気装置!! (i
l源、増幅器等)、光学部品(レンズ等)もそれぞれ2
組必要となり1光受信装置が大型化、高コスト化する。4. A photoreceiver and associated electrical equipment for heterodyne detection of the two mixed lights! ! (i
2 sources, amplifiers, etc.) and optical components (lenses, etc.).
As a result, a single optical receiver becomes larger and more expensive.
5、受光器および電気装置がそれぞれ2組必要となるた
め、装置の消費電力が高くなり、光受信装置の運用経費
が高くなる。5. Since two sets of optical receivers and two electrical devices are each required, the power consumption of the devices increases and the operational cost of the optical receiver increases.
6、光受信装置の消費電力が高いため、装置の発熱量も
大きくなり、装置の冷却に要するコストが高くなる。6. Since the power consumption of the optical receiving device is high, the amount of heat generated by the device is also large, which increases the cost required for cooling the device.
7.2個の受光器の特性を近いものとするために、多数
の受光器の中から特性が近い2個の受光器を選別する必
要があり、装置が高コスト化する。7. In order to make the characteristics of the two light receivers similar, it is necessary to select two light receivers with similar characteristics from a large number of light receivers, which increases the cost of the device.
本発明の目的は、上記問題を解決し、高感度。The purpose of the present invention is to solve the above problems and provide high sensitivity.
低コスト、且つ、小型の偏波ダイバシテイ光受信方法と
その装置を実現することにある。The object of the present invention is to realize a low-cost and compact polarization diversity optical reception method and device.
上記目的は、周波数が異なるふたつの光偏波面が略90
度を成すようにした参照光と信号光とを混合し、この混
合光をヘテロダイン検波し、この検波信号を搬送波周波
数が異なる第1.第2中間周波信号に分離し、この2つ
の信号をそれぞれ第1、第2ベースバンド信号変換し、
この2つのベースバンド信号を加算することにより達成
される。The above purpose is to have two optical polarization planes with different frequencies at approximately 90°
A reference light and a signal light having different carrier frequencies are mixed, this mixed light is subjected to heterodyne detection, and this detected signal is transmitted to a first wave having a different carrier frequency. Separating into a second intermediate frequency signal, converting these two signals into first and second baseband signals, respectively,
This is achieved by adding these two baseband signals.
ヘテロダイン検波は、信号光の搬送波周波数とは異なる
周波数を有する参照光を信号光に混合し、この混合光を
受光器に入力し、この受光器の出力信号として、信号光
撮送波と参照光の差の周波数の搬送波を有する中間周波
信号を得るものである。Heterodyne detection mixes a reference light with a frequency different from the carrier frequency of the signal light into the signal light, inputs this mixed light into a light receiver, and outputs the signal light, the transmitted wave, and the reference light as the output signals of the light receiver. This is to obtain an intermediate frequency signal having a carrier wave with a frequency difference between .
こ、こで、中間周波信号の電力は、信号光の中で、参照
光の偏波面に平行な成分の強度に比例する。Here, the power of the intermediate frequency signal is proportional to the intensity of the component parallel to the polarization plane of the reference light in the signal light.
従って、信号光の偏波状態変動により、参照光の偏波面
に平行な成分の強度が変動すると、それに比例して中間
周波信号の電力も変動する。中間周波信号電力の最小値
は零であり、信号光の偏波面が参照光の偏波面に直交し
た場合に上記最小値が得られる。Therefore, when the intensity of the component parallel to the polarization plane of the reference light changes due to a change in the polarization state of the signal light, the power of the intermediate frequency signal also changes in proportion to it. The minimum value of the intermediate frequency signal power is zero, and the minimum value is obtained when the polarization plane of the signal light is orthogonal to the polarization plane of the reference light.
本発明では、受光器出力として、搬送波周波数が異なる
ふたつの中間周波信号の和を得る。これは、周波数が異
なるふたつの光が参照光に含まれるためである。さらに
、上記ふたつの中間周波信号の電力は、信号光の直交す
るふたつの偏波成分の強度にそれぞれ比例する。これは
、参照光を構成するふたつの光の偏波面が略90度を成
すためである。従って、一方の中間周波信号は、参照光
を構成する一方の光と、その偏波面に平行な信号光の成
分とから得られる。さらに、他方の中間周波信号は、信
号光の残りの成分と、参照光の中の他方の光とから得ら
れる。よって、信号光のいかなる偏波状態変動に対して
も、上記ふたつの中間周波信号の電力の和は零とならな
い。In the present invention, the sum of two intermediate frequency signals having different carrier frequencies is obtained as the photoreceiver output. This is because the reference light includes two lights with different frequencies. Furthermore, the powers of the two intermediate frequency signals are proportional to the intensities of the two orthogonal polarization components of the signal light. This is because the planes of polarization of the two lights forming the reference light form approximately 90 degrees. Therefore, one intermediate frequency signal is obtained from one of the lights forming the reference light and a component of the signal light parallel to the plane of polarization. Further, the other intermediate frequency signal is obtained from the remaining components of the signal light and the other light among the reference lights. Therefore, the sum of the powers of the two intermediate frequency signals does not become zero, no matter what polarization state variation of the signal light.
さらに、ふたつの中間周波信号は、その搬送周波数が異
なるため、濾波器により分離できる。分離後の中間周波
信号は、それぞれベースバンド信号(搬送波周波数は零
)に変換した後に加算することにより、ひとつの信号に
することができる。Furthermore, since the two intermediate frequency signals have different carrier frequencies, they can be separated by a filter. The separated intermediate frequency signals can be made into one signal by converting them into baseband signals (carrier frequency is zero) and then adding them.
従って、この信号の電力は、信号光の偏波状態に係わら
ず、零とはならない。即ち、信号対雑音比(SNR)の
低下は抑圧される。しかも、上記の効果は、偏光分離器
を用いることなく、且つ、ひとつの受光器を用いて実現
することができろ。Therefore, the power of this signal does not become zero regardless of the polarization state of the signal light. That is, the reduction in signal-to-noise ratio (SNR) is suppressed. Furthermore, the above effects can be achieved without using a polarization splitter and by using one light receiver.
本発明の一実施例を第1図に示す。同図において、1a
および1bは参照光で、互いに周波数が異なり、且つ、
偏波面が略90度を成す。2は信号光である。3は、参
照光1a、lbおよび信号光2の混合光である。4は、
混合光3をヘテロダイン検波して得られた検波信号であ
る。5aおよび5bは、それぞれ信号光と2つの参照光
とにより得られた中間周波信号である。6aおよび6b
は、それぞれ中間周波信号5aおよび5bから得られる
ベースバンド信号である。7は、ベースバンド信号6a
と6bとを加算した信号であり、本装置の出力信号であ
る。8は、信号光2を通す光ファイバである。9は、参
照光1aおよび1bを出力する局部発振器である。10
aおよび10bは、局部発振器9を構成する光源であり
、単一モードで発振するレーザ等で実現できる6例えば
、半導体レーザを使用する場合には、それぞれの活性層
のpn接合面が相互に略90度を成すように半導体レー
ザを配置すれば、参照光1aおよび1bの偏波面は略9
0度を成す、11は、参照光la、lbおよび信号光2
を混合して混合光3を出力する光混合器である。12は
、光混合器11を構成する光カプラである。光カプラは
、単一モード光ファイバや、方向性結合器等により実現
できる。13はヘテロダイン検波器である。、14は、
混合器3をヘテロダイン検波する受光器であり、PIN
−PD (ピン−フォト・ダイオード)やAPD (ア
バランシェ・フォト・ダイオード)等で実現できる。図
中のVaは、受光器14に印加する電圧を意味している
。15は、検波信号4から送信信号を復現する復調器で
ある。16は、検波信号4を分岐する分岐器である。1
7a及び17bはそれぞれ帯域濾波器である。帯域濾波
器17aは、信号光2と参照光1aとから得られた中間
周波信号のみを通過させ、帯域濾波器17bは、信号光
2と参照光1bとから得られた中間周波信号のみを通過
させる。18a及び18bはそれぞれ包絡線検波器であ
る。中間周波信号5aは検波器18bにより、また、中
間周波信号5bは検波器18bによりそれぞれベースバ
ンド信号6a、6bに変換される。19はベースバンド
信号6a、と6bとを加算する加算器である。An embodiment of the present invention is shown in FIG. In the same figure, 1a
and 1b are reference lights, which have different frequencies, and
The plane of polarization forms approximately 90 degrees. 2 is a signal light. 3 is a mixed light of the reference lights 1a, lb and the signal light 2. 4 is
This is a detection signal obtained by heterodyne detection of the mixed light 3. 5a and 5b are intermediate frequency signals obtained by a signal light and two reference lights, respectively. 6a and 6b
are baseband signals obtained from intermediate frequency signals 5a and 5b, respectively. 7 is a baseband signal 6a
and 6b, and is the output signal of this device. 8 is an optical fiber through which the signal light 2 passes. 9 is a local oscillator that outputs reference beams 1a and 1b. 10
a and 10b are light sources constituting the local oscillator 9, which can be realized by a laser that oscillates in a single mode, etc. 6 For example, when a semiconductor laser is used, the pn junction planes of the respective active layers are approximately parallel to each other. If the semiconductor lasers are arranged at 90 degrees, the polarization planes of reference beams 1a and 1b will be approximately 90 degrees.
11 is the reference light la, lb and the signal light 2
This is an optical mixer that mixes the light and outputs mixed light 3. 12 is an optical coupler that constitutes the optical mixer 11. The optical coupler can be realized using a single mode optical fiber, a directional coupler, or the like. 13 is a heterodyne detector. , 14 is
It is a light receiver that heterodyne detects the mixer 3, and the PIN
- Can be realized with PD (pin-photo diode), APD (avalanche photo diode), etc. Va in the figure means the voltage applied to the light receiver 14. 15 is a demodulator that reconstructs the transmitted signal from the detected signal 4. 16 is a splitter that branches the detected signal 4. 1
7a and 17b are bandpass filters, respectively. The bandpass filter 17a passes only the intermediate frequency signal obtained from the signal light 2 and the reference light 1a, and the bandpass filter 17b passes only the intermediate frequency signal obtained from the signal light 2 and the reference light 1b. let 18a and 18b are envelope detectors, respectively. The intermediate frequency signal 5a is converted into baseband signals 6a and 6b by the detector 18b, and the intermediate frequency signal 5b is converted by the detector 18b, respectively. 19 is an adder that adds the baseband signals 6a and 6b.
以下第2図、第3図を参照しながら1本実施例の動作を
説明する。第2図は、各部の光の偏波面を、また、第3
図は、各信号の周波数スペクトルを模式的に表わしたも
のである。参照光1aの偏波面を第2図(a)に(電界
振幅: ELOV ) +参照光1bの偏波面を第2図
(b)に(電界振幅:ELO)l)それぞれ示す、参照
光1aと1bの偏波面は、互いに略90度を成すため、
両者の関係は、第2図(c)のようになる。The operation of this embodiment will be described below with reference to FIGS. 2 and 3. Figure 2 shows the polarization plane of light in each part and the third
The figure schematically represents the frequency spectrum of each signal. The polarization plane of the reference light 1a is shown in FIG. 2(a) (electric field amplitude: ELOV) + the polarization plane of the reference light 1b is shown in FIG. 2(b) (electric field amplitude: ELO), respectively. Since the polarization planes of 1b are approximately 90 degrees to each other,
The relationship between the two is as shown in FIG. 2(c).
一方、信号光2が直線偏波である場合を例として考える
と、信号光2の偏波面は第2図(d)のようになる。同
図において、Esは信号光2の電界振幅である。Esv
およびESHは、Esの成分の中で、それぞれE Lo
t/およびE LOHに平行な成分である。EsnとE
sとが成す角度をθとすると。On the other hand, if we consider as an example the case where the signal light 2 is a linearly polarized wave, the polarization plane of the signal light 2 will be as shown in FIG. 2(d). In the figure, Es is the electric field amplitude of the signal light 2. Esv
and ESH are E Lo among the components of Es, respectively.
t/ and the component parallel to E LOH. Esn and E
Let θ be the angle formed by s.
信号光の偏波状態はθにより表現でき、次式が成立する
。The polarization state of the signal light can be expressed by θ, and the following equation holds.
但し、0≦0≦90゜
混合光3の偏波面を第2図(e)に示す。同図のように
、EしOvとEsv、またE Li’)HとEsHは、
それぞれ平行である。このため、混合光3が受光器に入
力され、その結果得られる検波信号I (t)は次式で
表わされる。However, 0≦0≦90° The plane of polarization of the mixed light 3 is shown in FIG. 2(e). As shown in the same figure, EshiOv and Esv, and ELi')H and EsH are
They are parallel to each other. Therefore, the mixed light 3 is input to the photoreceiver, and the resulting detected signal I (t) is expressed by the following equation.
I (t)”Ia (t)+Ib (t)
・・自−(2)イ旦し、Ia (t)=D−Esv−E
Lov−cos [2g(fs−fv)+δa]1b(
t)=D−E聞・El、oH−cos[2πげa fn
)+δb]式(2)において、Dは受光器により決まる
定数であり、fv 、fsおよびfsはそれぞれ参照光
la、lbの周波数および信号光2の搬送波周波数であ
る(第3図(a)、(b)参照)。また、δ8およびδ
bは位相差である。さらに、Xa(t)は、参照光1a
と信号光2とから得られた中間周波信号を表わし、その
搬送波周波数は(fs fv)となっている。また、
工h(t)は、参照光1bと信号光2とから得られた中
間周波信号を表わし、搬送波周波数は(fs−fH)と
なっている。従って、式(2)は、検波信号I (t)
がふたつの中間周波信号Ia(t)およびI b(t
)の和で表わされることを示している。第3図(C)に
は、検波信号I (t)の周波数スペクトルを示す。同
図では、右側の破線内のスペクトルがI a(t )を
、また、左側の破線内のスペクトルがIb(t)を表わ
している。I (t)”Ia (t)+Ib (t)
...self-(2) itanshi, Ia (t)=D-Esv-E
Lov-cos [2g(fs-fv)+δa]1b(
t)=D−E−El, oH−cos[2πgea fn
)+δb] In equation (2), D is a constant determined by the receiver, and fv, fs and fs are the frequencies of the reference beams la and lb and the carrier wave frequency of the signal beam 2, respectively (Fig. 3(a), (see (b)). Also, δ8 and δ
b is the phase difference. Furthermore, Xa(t) is the reference beam 1a
represents an intermediate frequency signal obtained from signal light 2 and signal light 2, and its carrier frequency is (fs fv). Also,
h(t) represents an intermediate frequency signal obtained from the reference light 1b and the signal light 2, and the carrier wave frequency is (fs-fH). Therefore, equation (2) is expressed as the detected signal I (t)
are two intermediate frequency signals Ia(t) and Ib(t
). FIG. 3(C) shows the frequency spectrum of the detected signal I(t). In the figure, the spectrum within the dashed line on the right side represents Ia(t), and the spectrum within the dashed line on the left side represents Ib(t).
従って、検波信号4を分岐し、それぞれ、第3図(c)
の破線で示される通過特性を有する帯域濾波器17aお
よび17bに入力すると、17aの出力として信号ra
(t)を、また、17bの出力として信号I+、(t)
を得ることが出来る。さらに、信号I a(t )およ
びIb(t)を、それぞれ包絡線検波器18aおよび1
8bに入力すると、信号はベースバンド信号となり、そ
の振幅は下式で表わされる。Therefore, the detected signal 4 is branched, respectively, as shown in FIG. 3(c).
When input to bandpass filters 17a and 17b having the pass characteristic shown by the broken line, the signal ra is output as the output of 17a.
(t), and the signal I+, (t) as the output of 17b.
can be obtained. Furthermore, the signals I a(t ) and Ib(t) are input to envelope detectors 18a and 1, respectively.
When input to 8b, the signal becomes a baseband signal, and its amplitude is expressed by the following formula.
Ia’ (t) =D −Esv −ELov=D
Es −Eしov−sinθ・・・・・・(3)
Ib’ (t) =D−Eso・Et、oH=DEs−
Etanocosθ上式のIa’ (t)およびib’
(t)を加算器19で加算すると、その出力信号7とし
て、下式の信号を得る。Ia' (t) =D -Esv -ELov=D
Es -Esov-sinθ...(3) Ib' (t) =D-Eso・Et, oH=DEs-
Ia' (t) and ib' of Etano cos θ above formula
When (t) is added by the adder 19, a signal expressed by the following formula is obtained as the output signal 7.
I’ (t) =Ia’ (t) +Ib’ (t)=
DEs @ (ELO!/ 拳 sinθ+Et、on
−cos(J) −(4)式(4)で表わされる
本実施例の出力信号は、いかなる0の値に対しても零と
はならない。即ち、信号光のいかなる偏波状態に対して
も、出力信号I’ (t)を得ることができる。I' (t) = Ia' (t) + Ib' (t) =
DEs @ (ELO!/ Fist sinθ+Et, on
-cos(J)-(4) The output signal of this embodiment expressed by equation (4) does not become zero for any value of 0. That is, the output signal I'(t) can be obtained for any polarization state of the signal light.
第4図は復調器15の別の実施例である。本実施例は、
参照光1aおよび1bの光強度を略一致させ、且つ、ベ
ースバンド信号6aおよび6bを加算する前にそれぞれ
略二乗するものである。従って加算器19の前に二乗検
波器20a、20bを備える。上記条件を式により表現
すると下式を得る。FIG. 4 shows another embodiment of the demodulator 15. In this example,
The light intensities of the reference beams 1a and 1b are made substantially equal to each other, and the baseband signals 6a and 6b are each substantially squared before being added. Therefore, square law detectors 20a and 20b are provided before the adder 19. Expressing the above conditions by a formula, we obtain the following formula.
・・・・・・(5)
上式(5)を整理して、式(3)を代入すると、出力信
号I’ (t)として次式を得る。(5) By rearranging the above equation (5) and substituting equation (3), the following equation is obtained as the output signal I' (t).
I’ (t) cow (D ・ Es ・
PLO)” ・・・・・・(6)上式(6)は
、式(5)の条件が満足される場合の出力信号I’ (
t)は、θに依存しないこと、即ち、信号光の偏波状態
に係わらず出力信号は一定値となることを示している。I' (t) cow (D・Es・
PLO)''...(6) The above equation (6) calculates the output signal I' (
t) indicates that it does not depend on θ, that is, the output signal has a constant value regardless of the polarization state of the signal light.
従って、信号電力も一定となる。式(5)の第1式の条
件は、 ELOI/およびE LOHを出力する光源の
駆動電流等を調節することにより実現できる。また、式
(5)の第2式の条件は、二乗検波器として、ダイオー
ドあるいは電界効果トランジスタを用いることにより実
現できる。本実施例によれば、第1図の場合と同様の効
果を得ると同時に、信号光の偏波状態に係わらず、出力
信号の電力を一定にできるという効果を得る。Therefore, the signal power is also constant. The condition of the first equation of equation (5) can be realized by adjusting the drive current of the light source that outputs ELOI/and ELOH. Further, the condition of the second equation of equation (5) can be realized by using a diode or a field effect transistor as a square law detector. According to this embodiment, the same effect as in the case of FIG. 1 is obtained, and at the same time, the power of the output signal can be made constant regardless of the polarization state of the signal light.
第5図は1局部発振器9の別の実施例である。FIG. 5 shows another embodiment of one local oscillator 9.
本実施例は、局部発振器9を、1個の光源で実現してい
る。同図において、10は、単一モード半導体レーザ等
の光源である。21は偏光ビームスプリッタ等の偏光分
離器であり、光[10の出力光を偏光分離器21に入力
することにより、出力光を偏波面が略90度を成すふた
つの光24aおよび24bに分離することができる・特
に光源10の出力光が直線偏波であり、その偏波面と偏
光分離器21の偏光軸とが略45度を成すように偏光分
離器21および光源1oの角度を調整すれば、ふたつの
光の強度を略一致させることができる。、22は、光2
4aの進行方向を調節するミラーである。23は、光2
4aの周波数を変える光周波数変換器である623は、
音響光学結晶や電気光学結晶を用いることにより実現で
きる。例えば、音響光学結晶を用いた光周波数変換器は
、市販されている。光周波数変換器23から出力される
光を参照光1aとし、光24bをそのまま参照光1bと
することにより、1個の光源10を用いて局部発振器9
を実現することができる。In this embodiment, the local oscillator 9 is realized by one light source. In the figure, 10 is a light source such as a single mode semiconductor laser. 21 is a polarization separator such as a polarization beam splitter, and by inputting the output light of the light [10 to the polarization separator 21, the output light is separated into two lights 24a and 24b whose polarization planes are approximately 90 degrees. In particular, if the output light of the light source 10 is linearly polarized, and the angles of the polarization splitter 21 and the light source 1o are adjusted so that the plane of polarization and the polarization axis of the polarization splitter 21 form approximately 45 degrees, , it is possible to substantially match the intensities of the two lights. , 22 is light 2
This is a mirror that adjusts the traveling direction of 4a. 23 is light 2
623, which is an optical frequency converter that changes the frequency of 4a, is
This can be achieved by using an acousto-optic crystal or an electro-optic crystal. For example, optical frequency converters using acousto-optic crystals are commercially available. By using the light output from the optical frequency converter 23 as the reference light 1a and using the light 24b as the reference light 1b, the local oscillator 9 can be generated using one light source 10.
can be realized.
本実施例によれば、第1図の場合と同様の効果を得ると
同時に、光源の数を半減できるので、装置を低コスト化
することができるという効果を得る。According to this embodiment, the same effect as in the case of FIG. 1 can be obtained, and at the same time, the number of light sources can be halved, so that the cost of the apparatus can be reduced.
本発明によれば、次の効果を有する偏波ダイバシテイ光
受信方法とその装置を得る。According to the present invention, a polarization diversity optical reception method and apparatus having the following effects are obtained.
1、従来、信号光の減衰の原因となっていた偏光分離器
を用いないため、光受信装置の感度を高くすることがで
きる。1. Since a polarization splitter, which conventionally causes signal light attenuation, is not used, the sensitivity of the optical receiver can be increased.
2、従来、2個必要であった混合器を半数の1個にでき
るため、光受信装置を低コスト化できる。2. Since the number of mixers that conventionally required two can be reduced to one, the cost of the optical receiver can be reduced.
3、従来、2組必要であった受光器、それに付随する電
気装置および光学部品を半数の1組にできるため、光受
信装置を小型化、低コスト化できると同時に、消費電力
を低下できるため装置の運用経費も低下でき、さらに、
装置の発熱量を低下できるため、装置の冷却に要するコ
ストも低下できる。3. The number of optical receivers and associated electrical equipment and optical components that conventionally required two sets can be reduced to one set, making it possible to reduce the size and cost of the optical receiving device and at the same time reduce power consumption. Equipment operating costs can also be reduced, and
Since the amount of heat generated by the device can be reduced, the cost required for cooling the device can also be reduced.
4、従来、2個の受光器を用いるために必要とされた受
光器の選別が不要となり、光受信装置のコストを低下で
きる。4. The selection of light receivers that was conventionally required when using two light receivers is no longer necessary, and the cost of the optical receiver can be reduced.
第1図は本発明の一実施例を示すブロック図。
第2図は第1図の実施例における各部の光の偏波面を示
す図、第3図は第1図の実施例における各部の信号の周
波数スペクトルを示す図、第4図は復調器の別の実施例
を示すブロック図、第5図は局部発振器の別の実施例を
示すブロック図である。
1・・・参照光、2・・・信号光、3・・・混合光、4
・・・検波信号、5・・・中間周波信号、6・・・ベー
スバンド信号、7・・・出力信号、8・・・光ファイバ
、9・・・局部発振器。
10・・・光源、11・・・光混合器、12・・・光カ
ブラ、13・・・ヘテロダイン検波器、14・・・受光
器、15・・・復調器、16・・・分岐器、17・・・
帯域濾波器、18・・・包絡線検波器、19・・・加算
器、20・・・二乗検波器、21・・・偏光分離器、2
2・・・ミラー、23・・・光周波数変換器。FIG. 1 is a block diagram showing one embodiment of the present invention. Figure 2 is a diagram showing the polarization plane of light in each part in the embodiment shown in Figure 1, Figure 3 is a diagram showing the frequency spectrum of the signal in each part in the embodiment shown in Figure 1, and Figure 4 is a diagram showing different demodulators. FIG. 5 is a block diagram showing another embodiment of the local oscillator. 1...Reference light, 2...Signal light, 3...Mixed light, 4
Detection signal, 5 Intermediate frequency signal, 6 Baseband signal, 7 Output signal, 8 Optical fiber, 9 Local oscillator. 10... Light source, 11... Optical mixer, 12... Optical coupler, 13... Heterodyne detector, 14... Light receiver, 15... Demodulator, 16... Brancher, 17...
Bandpass filter, 18... Envelope detector, 19... Adder, 20... Square law detector, 21... Polarization separator, 2
2... Mirror, 23... Optical frequency converter.
Claims (1)
すようにした第1、第2参照光と信号光とを混合し、こ
の混合光をヘテロダイン検波し、この検波信号を搬送波
周波数が異なる第1、第2中間周波信号に分離し、この
2つの中間周波信号をそれぞれ第1、第2ベースバンド
信号に変換し、この2つのベースバンド信号を加算する
ことにより出力信号を得ることを特徴とする偏波ダイバ
シテイ光受信方法。 2、特許請求の範囲第1項において、上記第1、第2参
照光の光強度を略一致させ、且つ、上記第1、第2ベー
スバンド信号を加算する前にそれぞれ略二乗することを
特徴とする偏波ダイバシテイ光受信方法。 3、特許請求の範囲第1項又は第2項において、上記第
1、第2参照光は、1個の単一モード半導体レーザの出
力光をふたつに分岐し、この分岐光の少なくとも一方を
周波数変換して得ることを特徴とする偏波ダイバシテイ
光受信方法。 4、周波数が異なる第1、第2参照光を偏波面が略90
度を成すようにして出力する手段と、ふたつの上記第1
、第2参照光と信号光とを混合する手段と、この混合光
をヘテロダイン検波する手段と、この検波信号を搬送波
周波数が異なる第1、第2中間周波信号に分離する手段
と、第1、第2中間周波信号をそれぞれ第1、第2ベー
スバンド信号に変換する手段と、第1、第2ベースバン
ド信号を加算する手段とから構成される偏波ダイバシテ
イ光受信装置。[Claims] 1. Mixing the first and second reference lights and the signal light in which the polarization planes of the two lights with different frequencies form approximately 90 degrees, performing heterodyne detection on this mixed light, and By separating the detected signal into first and second intermediate frequency signals with different carrier frequencies, converting these two intermediate frequency signals into first and second baseband signals, and adding these two baseband signals. A polarization diversity optical reception method characterized by obtaining an output signal. 2. Claim 1, characterized in that the light intensities of the first and second reference beams are made substantially equal, and the first and second baseband signals are each substantially squared before being added. A polarization diversity optical reception method. 3. In claim 1 or 2, the first and second reference beams split the output light of one single mode semiconductor laser into two, and at least one of the branched lights has a frequency. A polarization diversity optical reception method characterized by obtaining polarization diversity. 4. The polarization plane of the first and second reference beams with different frequencies is approximately 90
a means for outputting the output in such a way as to achieve a certain degree;
, means for mixing the second reference light and the signal light, means for heterodyne detection of the mixed light, means for separating the detected signal into first and second intermediate frequency signals having different carrier frequencies; A polarization diversity optical receiver comprising means for converting a second intermediate frequency signal into first and second baseband signals, respectively, and means for adding the first and second baseband signals.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62056503A JPS63224427A (en) | 1987-03-13 | 1987-03-13 | Method and device for polarization diversity optical reception |
CA000561067A CA1308440C (en) | 1987-03-13 | 1988-03-10 | Optical receiving method utilizing polarization diversity and apparatus for carrying out the same |
US07/166,984 US5140453A (en) | 1987-03-13 | 1988-03-11 | Optical receiving method utilizing polarization diversity and apparatus for carrying out the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62056503A JPS63224427A (en) | 1987-03-13 | 1987-03-13 | Method and device for polarization diversity optical reception |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63224427A true JPS63224427A (en) | 1988-09-19 |
Family
ID=13028918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62056503A Pending JPS63224427A (en) | 1987-03-13 | 1987-03-13 | Method and device for polarization diversity optical reception |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63224427A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0521494A2 (en) * | 1991-07-04 | 1993-01-07 | CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. | A coherent optical-fibre communications system using polarisation modulation |
JP2007067663A (en) * | 2005-08-30 | 2007-03-15 | Nippon Telegr & Teleph Corp <Ntt> | Optical-wireless fusion communications system and its method |
JP2007135138A (en) * | 2005-11-14 | 2007-05-31 | Nippon Telegr & Teleph Corp <Ntt> | System and method for polarization independent two-way optical communication employing coherent optical communication scheme |
JPWO2006001362A1 (en) * | 2004-06-24 | 2007-08-02 | 日本電信電話株式会社 | Optical-wireless communication system and optical-wireless communication method |
JP2019054429A (en) * | 2017-09-15 | 2019-04-04 | 富士通株式会社 | Transmitting device, receiving device, transmitting method, and reception method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5913434A (en) * | 1982-07-14 | 1984-01-24 | Nec Corp | Method of optical heterodyne detection |
JPS6249338A (en) * | 1985-08-28 | 1987-03-04 | Nec Corp | Optical heterodyne/homodyne detecting receiver |
-
1987
- 1987-03-13 JP JP62056503A patent/JPS63224427A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5913434A (en) * | 1982-07-14 | 1984-01-24 | Nec Corp | Method of optical heterodyne detection |
JPS6249338A (en) * | 1985-08-28 | 1987-03-04 | Nec Corp | Optical heterodyne/homodyne detecting receiver |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0521494A2 (en) * | 1991-07-04 | 1993-01-07 | CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. | A coherent optical-fibre communications system using polarisation modulation |
JPWO2006001362A1 (en) * | 2004-06-24 | 2007-08-02 | 日本電信電話株式会社 | Optical-wireless communication system and optical-wireless communication method |
US7583896B2 (en) | 2004-06-24 | 2009-09-01 | Nippon Telegraph And Telephone Corporation | Optical-wireless hybrid transmission system and optical-wireless hybrid transmission method |
JP2007067663A (en) * | 2005-08-30 | 2007-03-15 | Nippon Telegr & Teleph Corp <Ntt> | Optical-wireless fusion communications system and its method |
JP4540062B2 (en) * | 2005-08-30 | 2010-09-08 | 日本電信電話株式会社 | Optical-wireless fusion communication system and method |
JP2007135138A (en) * | 2005-11-14 | 2007-05-31 | Nippon Telegr & Teleph Corp <Ntt> | System and method for polarization independent two-way optical communication employing coherent optical communication scheme |
JP4627033B2 (en) * | 2005-11-14 | 2011-02-09 | 日本電信電話株式会社 | Polarization-independent bidirectional optical communication system and polarization-independent bidirectional optical communication method using coherent optical communication system |
JP2019054429A (en) * | 2017-09-15 | 2019-04-04 | 富士通株式会社 | Transmitting device, receiving device, transmitting method, and reception method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0409260B1 (en) | Receiver for coherent optical communication | |
EP0365028B1 (en) | A heterodyne receiver for coherent optical communication | |
US5003626A (en) | Dual balanced optical signal receiver | |
CA1250897A (en) | Optical fibre transmission system with polarization modulation and heterodyne coherent detection | |
EP0245026B1 (en) | Optical heterodyne mixers providing image-frequency rejection | |
CA1308440C (en) | Optical receiving method utilizing polarization diversity and apparatus for carrying out the same | |
US3970838A (en) | Dual channel phase locked optical homodyne receiver | |
US4063084A (en) | Dual channel optical homodyne receiver | |
JPS59122140A (en) | Optical heterodyne detector | |
JPS63224427A (en) | Method and device for polarization diversity optical reception | |
EP0260745A1 (en) | Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device | |
CN115542565B (en) | 90-degree space optical mixer insensitive to polarization | |
US5477369A (en) | Device for optical heterodyne or homodyne detection of an optical signal beam and receiver provided with such a device | |
GB2214381A (en) | Optical phase-diversity receivers | |
CN117318829A (en) | Integrated coherent receiving chip | |
EP0310174B1 (en) | Device for optical heterodyne or homodyne detection of an optical signal beam and receiver provided with such a device | |
CN115437160A (en) | Polarization insensitive space optical mixer | |
JP2974077B2 (en) | Receiver for coherent optical communication | |
JPH0671232B2 (en) | Double balanced polarization diversity receiver | |
JPH0418493B2 (en) | ||
RU2094948C1 (en) | Receiver | |
JPS63272131A (en) | Method and device for receiving polarization diversity light | |
JPH03259632A (en) | Optical heterodyne polarized wave diversity receiver | |
JPS62245741A (en) | Polarization diversity optial reception | |
JP2668410B2 (en) | Image rejection mixer |