JPS63210145A - Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom - Google Patents
Porous polytetrafluoroethylene material, its production and directional resistor prepared therefromInfo
- Publication number
- JPS63210145A JPS63210145A JP62042355A JP4235587A JPS63210145A JP S63210145 A JPS63210145 A JP S63210145A JP 62042355 A JP62042355 A JP 62042355A JP 4235587 A JP4235587 A JP 4235587A JP S63210145 A JPS63210145 A JP S63210145A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- ptfe
- stretching
- porous
- polytetrafluoroethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001343 polytetrafluoroethylene Polymers 0.000 title claims abstract description 81
- 239000004810 polytetrafluoroethylene Substances 0.000 title claims abstract description 81
- -1 polytetrafluoroethylene Polymers 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 239000000463 material Substances 0.000 title abstract description 29
- 239000000843 powder Substances 0.000 claims abstract description 41
- 239000000835 fiber Substances 0.000 claims abstract description 37
- 239000010687 lubricating oil Substances 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 239000006185 dispersion Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 22
- 150000001340 alkali metals Chemical class 0.000 claims description 22
- 238000009736 wetting Methods 0.000 claims description 14
- 239000002923 metal particle Substances 0.000 claims description 8
- 229910001111 Fine metal Inorganic materials 0.000 claims description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 15
- 239000011148 porous material Substances 0.000 abstract description 10
- 238000000465 moulding Methods 0.000 abstract description 6
- 238000010908 decantation Methods 0.000 abstract description 3
- 238000001704 evaporation Methods 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 3
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 abstract description 3
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 27
- 238000005096 rolling process Methods 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000011163 secondary particle Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000006115 defluorination reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- URXNVXOMQQCBHS-UHFFFAOYSA-N naphthalene;sodium Chemical compound [Na].C1=CC=CC2=CC=CC=C21 URXNVXOMQQCBHS-UHFFFAOYSA-N 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical group N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000002473 artificial blood Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
- Organic Insulating Materials (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はポリテトラフルオロエチレン(以゛ト、PTF
Eと称す)多孔質体および該多孔質体を用いた指向性抵
抗体に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to polytetrafluoroethylene (PTF).
The present invention relates to a porous body (referred to as E) and a directional resistor using the porous body.
(従米の技術)
PTFEの延伸による多孔質体技術は、例えば特公昭4
2−13560号公報、特公昭51−18991号公報
等に記載されている。(Technology of Jubei) Porous material technology by stretching PTFE was developed, for example, in the
It is described in Japanese Patent Publication No. 2-13560, Japanese Patent Publication No. 18991-1980, etc.
上記延伸法は、未焼成のPTFE粉末にナフサのような
液状潤滑剤を加えて成る混和物を押出等によシ所定形状
に成形しく所謂、ペースト成形)、該成形物から潤滑剤
を蒸発、抽出等により除去しく@滑剤の除去は次工程の
延伸時に行なってもよ(、或いは延伸後に行なってもよ
い)、次いで成形物をPTFEの融点よりも低い温度で
延伸して多孔質体するものである。The above stretching method involves forming a mixture of unfired PTFE powder and a liquid lubricant such as naphtha into a predetermined shape by extrusion or the like (so-called paste molding), evaporating the lubricant from the molded product, The lubricant can be removed by extraction or the like.@The lubricant can be removed during the next step of stretching (or it can be done after stretching), and then the molded product is stretched at a temperature lower than the melting point of PTFE to form a porous body. It is.
而して、従来の延伸法によって得られる多孔質体のミク
ロ構造は上記の特公昭51−18991号公報に開示さ
れている。即ち、第7図に示す如く、この多孔質体1は
多数の小繊維2と点在状の結節3から成り、小繊維2は
一方向に配向される(1軸延伸の場合、延伸方向に沿っ
て配向される)と共に結節3はその長軸方向が小繊維2
の配向方向と直交する方向(延伸方向に直交する方向)
に沿って配列しており、且つ結節が小繊維によって連結
されている。なお、上記多孔質体のミクロ構造は電子顕
微鏡によっても観察し得る。第8図はその一例を示し、
走査型電子顕微鏡写真図(倍率500倍)である。The microstructure of a porous body obtained by the conventional stretching method is disclosed in the above-mentioned Japanese Patent Publication No. 18991/1983. That is, as shown in FIG. 7, this porous body 1 consists of a large number of fibrils 2 and scattered nodules 3, and the fibrils 2 are oriented in one direction (in the case of uniaxial stretching, the fibrils 2 are oriented in the stretching direction). ) and the nodule 3 has its long axis along the fibril 2
direction perpendicular to the orientation direction (direction perpendicular to the stretching direction)
The tubercles are arranged along the same lines, and the nodules are connected by fibrils. Note that the microstructure of the porous body can also be observed using an electron microscope. Figure 8 shows an example,
It is a scanning electron micrograph (magnification: 500 times).
そして、かようなミクロ構造を有する延伸PTFE多孔
質体は導電体の構成材料として使用されることがあシ、
例えば特開昭60−225750号公報に記載されてい
るように、その表面に接着層を介して金属箔を積層せし
め、プリント基板として用いることが提案されている。The expanded porous PTFE material having such a microstructure may be used as a constituent material of an electric conductor.
For example, as described in Japanese Unexamined Patent Publication No. 60-225750, it has been proposed to laminate a metal foil on the surface of the substrate via an adhesive layer and use it as a printed circuit board.
上記延伸PTFE多孔質体と金属箔の積層体は当然のこ
とながら、金属箔面の互いに直交する2方向における電
気抵抗はほぼ同じ(等方性)である。Naturally, the laminate of the expanded porous PTFE body and metal foil has approximately the same electrical resistance (isotropy) in two directions perpendicular to each other on the surface of the metal foil.
(発明が解決しようとする問題点)
ところで、現在のところ、PTFE多孔質体を用いた指
向性抵抗体、即ち、所定表面における互に直交する2方
向の電気抵抗が異なる物品(表面の電気抵抗が指向性を
示す物品)は得られていない。(Problems to be Solved by the Invention) Currently, directional resistors using a porous PTFE material, that is, articles with different electrical resistances in two orthogonal directions on a given surface (surface electrical resistance (objects exhibiting directivity) have not been obtained.
勿論、上記特公昭42−13560号公報には延伸法に
よるPTFE多孔質体の製造に際し、カーボンブラック
を使用し得ることの開示がある。しかしながら、カーボ
ンブランクを使用して、この方法を適用して得られる多
孔質体の表面の電気抵抗は等方性であり、異方性ではな
い。Of course, the above-mentioned Japanese Patent Publication No. 42-13560 discloses that carbon black can be used in producing a porous PTFE material by a stretching method. However, the electrical resistance of the surface of a porous body obtained by applying this method using a carbon blank is isotropic, not anisotropic.
(問題点を解決するだめの手段)
本発明者達はPTFE多孔質体技術の改良を検討中に、
従来の延伸法による多孔質体とは異なる新規なミクロ構
造を有する多孔質体を製造する技術を開発した。そして
、更に検討を進め、上記新規ミクロ構造の多孔質体を用
いると指向性抵抗体が得られる事実をも見出し1本発明
を完成するに至った。(Another means to solve the problem) The inventors of the present invention, while considering improvements to the PTFE porous material technology,
We have developed a technology to produce porous bodies with a new microstructure that is different from porous bodies produced by conventional stretching methods. Further investigation led to the discovery that a directional resistor can be obtained by using the porous body with the novel microstructure described above, leading to the completion of the present invention.
長繊維同志の結着により形状保持していることを特徴と
するものである。It is characterized by its shape being maintained by the binding of long fibers together.
また5本発明の他の態様に係る指向性抵抗体は。Further, 5 directional resistors according to other aspects of the present invention are as follows.
一方向に沿って配向された多数のPTFE長繊維から成
り、且つ長繊維同志の結着により形状保持している多孔
質体であシ、該多孔質体表面における長繊維配向方向の
電気抵抗が、該長繊維配向方向に直交する方向の電気抵
抗よりも小さいことを特徴とするものである。It is a porous body consisting of a large number of PTFE long fibers oriented in one direction and whose shape is maintained by binding of the long fibers, and the electrical resistance in the long fiber orientation direction on the surface of the porous body is , the electric resistance in the direction perpendicular to the long fiber orientation direction is smaller than that in the direction perpendicular to the long fiber orientation direction.
第1図は本発明に係るPTFE多孔質体のミクロ構造を
示している。ここに図示されたPTFE多孔質多孔上体
1向に沿って配向された多数の長繊維4から成り、長繊
維同志は結着5しており、この結着により形状保持能が
付与されている。FIG. 1 shows the microstructure of the porous PTFE material according to the present invention. The porous PTFE body shown here is composed of a large number of long fibers 4 oriented along one direction, and the long fibers are bound together 5, and this binding provides shape retention ability. .
そして、長繊維同志の結着の形状は例えば5aのように
比較的短かい部分で行なわれることもあり、5bの如く
長い部分で行なわれることもある。The long fibers may be bound to each other in a relatively short portion, such as 5a, or in a long portion, such as 5b.
結着の長さはいずれであってもよいが、大部分は約0.
03μ毒以上であると思われる。また、各長繊維の直径
、気孔率および気孔の孔径は何ら限定されるものではな
いが、通常、0.02〜3μm、5〜95%および0.
02〜50μ毒である。The length of the bond can be any length, but most are about 0.
It seems to be more than 03μ poison. Furthermore, the diameter, porosity, and pore diameter of each long fiber are not limited at all, but are usually 0.02 to 3 μm, 5 to 95%, and 0.02 to 3 μm.
02-50μ poisonous.
本発明に係るPTFE多孔質体は上記のようなミクロ構
造を有するものであり、従来のPTFE多孔質体が前記
した如く、結節が点在し、この点在する結節が多数の小
繊維によって連結されたものであるのに比べ、結節が実
質上存在しない点で著しい差異がある。The PTFE porous body according to the present invention has the above-mentioned microstructure, and as described above, the conventional PTFE porous body is dotted with nodules, and these dotted nodules are connected by a large number of small fibers. A notable difference is that there are virtually no nodules compared to those that have been removed.
また、従来のPTFE多孔質体はそれを構成する繊維が
結節によって分断されており、従って、繊維の長さは通
常約5〜500μmと比較的短かいものである。これに
対し1本発明に係る多孔質体においては結節による繊維
の分断は生じておらず。Furthermore, the fibers constituting the conventional PTFE porous body are divided by knots, and therefore the length of the fibers is usually relatively short, about 5 to 500 μm. On the other hand, in the porous body according to the present invention, fiber division due to nodules did not occur.
繊維はより長いものとなる。従って1本発明においては
多孔質体の構成要素の1つである繊維を「長繊維」と命
名する。The fibers become longer. Therefore, in the present invention, fibers that are one of the constituent elements of the porous body are named "long fibers".
かような本発明の多孔質体は従来品と同様に絶縁被覆材
、フィルター、滑り材、人工血管等への適用が期待され
る。The porous body of the present invention is expected to be applied to insulating coating materials, filters, sliding materials, artificial blood vessels, etc. in the same way as conventional products.
また、この多孔質体は一方向に光を選択的に透過する性
質、所謂「偏光特性」を示すことも判明している。従来
のPTFE多孔質多孔装体は偏光特性を有するものは知
られておらず5偏光特性の保有は本発明に係る多孔質体
の特徴の1つと言える。It has also been found that this porous material exhibits a property of selectively transmitting light in one direction, a so-called "polarization property." No conventional PTFE porous body is known to have polarizing properties, and the possession of polarizing properties is one of the characteristics of the porous body according to the present invention.
次に1本発明に係るPTFE多孔質多孔装体の一例につ
いて述べる。この方法は、未焼成のPTFE粉末を非湿
潤性液体中に分散せしめて撹拌することにより、該粉末
を微細化せしめ2次にこの分散液に液状潤滑剤を添加す
ることにより、微細化せしめられたPTFE粉末を液状
潤滑剤側に移行せしめ、その後非湿潤性液体を除去し、
次いで該粉末と液状潤滑剤の混和物を圧延成形した後、
該成形物から液状潤滑剤を除去し、次に該成形物をロー
ル延伸によI)1軸方向に延伸するものである。Next, an example of the PTFE porous packaging according to the present invention will be described. In this method, unfired PTFE powder is dispersed in a non-wetting liquid and stirred to make the powder fine.Secondly, a liquid lubricant is added to this dispersion to make the powder fine. transfer the PTFE powder to the liquid lubricant side, then remove the non-wetting liquid,
Next, after rolling the mixture of the powder and liquid lubricant,
The liquid lubricant is removed from the molded product, and then the molded product is stretched in the I) uniaxial direction by roll stretching.
上記゛−−一
方法においては、ペースト成形に先立ちPTFE粉末が
処理される。この処理はPTFE粉末の微細化および該
微細化に用いる非湿潤性液体からの液状潤滑剤への微細
化粉末の移行の2段階から成る。In one method, the PTFE powder is treated prior to paste molding. This process consists of two steps: micronization of the PTFE powder and transfer of the micronized powder from the non-wetting liquid used for the micronization to a liquid lubricant.
ここで、PTFE粉末の微細化について、説明する。本
発明に用いられるPTFE粉末は、一般にファインパウ
ダーと称されるもので、市販ファインパウダーは重合反
応によって生成されるPTFEの一次粒子と該−炭粒子
の多数個が凝集した二次粒子の混合形態を呈するが、二
次粒子の含有量が一次粒子のそれに比べてはるかに多い
。そして、この二次粒子の粒径は5通常、数十μm〜数
百μmである。Here, the refinement of PTFE powder will be explained. The PTFE powder used in the present invention is generally referred to as fine powder, and the commercially available fine powder is in the form of a mixture of primary particles of PTFE produced by a polymerization reaction and secondary particles formed by agglomerating a large number of charcoal particles. However, the content of secondary particles is much larger than that of primary particles. The particle size of these secondary particles is usually several tens of micrometers to several hundred micrometers.
と配力法においては、先ず、PTFEファインパウダー
とPTFEK対する湿潤性を有しない液体(非湿潤性液
体)を混合し、該パウダーを分散させ、この分散液を撹
拌する。この際のパウダーと非湿潤性液体の混合割合は
5種々の条件によって変わり得るが1通常、パウダー1
00重量部に対し、非湿潤性液体1000〜10000
重量部である。In the distribution method, first, PTFE fine powder and a liquid that does not wet PTFEK (non-wetting liquid) are mixed, the powder is dispersed, and this dispersion is stirred. The mixing ratio of powder and non-wetting liquid at this time may vary depending on various conditions;
00 parts by weight of non-wetting liquid 1000-10000
Parts by weight.
この撹拌はPTFEファインパウダー中の二次粒子にお
ける凝集状態を解除乃至減少せしめ、二次粒子の粒径を
減少させる(粉末の微細化)ために行なうものであり1
粒径が約10μm以下好ましくは約0.04〜0.2μ
mになるように、撹拌速度および時間を設定して行なう
のがよい。また、撹拌はミキサー等により行なうことが
でき、その結果。This stirring is performed to release or reduce the agglomeration state of the secondary particles in the PTFE fine powder and to reduce the particle size of the secondary particles (refining the powder).
Particle size is about 10 μm or less, preferably about 0.04 to 0.2 μm
It is preferable to set the stirring speed and time so that the stirring speed is 100 m. In addition, stirring can be performed using a mixer, etc., and the result.
PTFEファインパウダーの体積は見掛は上約7倍以上
に増力Hする。The volume of the PTFE fine powder is apparently increased by about 7 times or more.
なお、上記「非湿潤性液体」は主として極性溶媒であり
、後述の液状潤滑剤と相溶性を有しないものと定義でき
、そのような液体の具体例としてはメタノール、エタノ
ール、水等を挙げることができる。Note that the above-mentioned "non-wetting liquid" is mainly a polar solvent and can be defined as one that is not compatible with the liquid lubricant described below, and specific examples of such liquids include methanol, ethanol, water, etc. Can be done.
かようにして、PTFEファインパウダーを微細化せし
めた後、この分散液に非湿潤性液体と相溶しなり液状潤
滑剤を添加する。液状潤滑剤の添加量は該潤滑剤の種類
等によって変わり得るが5通常は、 PTF’Eパウダ
ー1.00 y量部に対し、400〜600重量部であ
る。After the PTFE fine powder has been pulverized in this manner, a liquid lubricant that is compatible with the non-wetting liquid is added to the dispersion. Although the amount of liquid lubricant added may vary depending on the type of the lubricant, it is usually 400 to 600 parts by weight per 1.00 y parts of PTF'E powder.
上記液状潤滑剤は従来からPTFEのペースト成形に用
いられているものの中からPTFEと親和性が高く且つ
非湿潤性液体との相溶性を有しないものを適宜選択して
使用でき、その好適例として、ポリクロロトリフルオロ
エチレンを挙げることができる。The above-mentioned liquid lubricant can be appropriately selected from among those conventionally used for PTFE paste molding, and has a high affinity for PTFE and no compatibility with non-wetting liquids. , polychlorotrifluoroethylene.
微細化されたPTFEファインパウダーを含む分散液に
液状潤滑剤を添加すると、非湿潤性液体と液状潤滑剤は
相溶せずに分離し、一方、 PTFEファインパウダー
は両液体に対する親和性の差によって液状潤滑剤側へ移
行する。従って、非湿潤性液体はデカンテーション等の
操作により系外に除去でき、PTFEファインパウダー
と液状潤滑剤の混和物、即ち、ペースト状物が得られる
このべ−スト状物は成分的にはPTFEファインパウ
ダーと液状潤滑剤から成り、前記従来の延伸法に用いる
ペースト状物と類似する。しかしながら、 PTFEフ
ァインパウダーにおける二次粒子が微細化されている点
、および液状潤滑剤の含有量が多い(ペースト状物中の
パウダーは60容量%以下)点で前記従来の延伸法に用
いるペースト状物と大きな差異がある。因みに、従来の
延伸法に用いるペースト状物はPTFEパウダー100
重量部に対し。When a liquid lubricant is added to a dispersion containing finely divided PTFE fine powder, the non-wetting liquid and the liquid lubricant are not compatible and separate, while the PTFE fine powder is separated due to the difference in affinity for both liquids. Shift to liquid lubricant side. Therefore, the non-wetting liquid can be removed from the system by an operation such as decantation, and a mixture of PTFE fine powder and liquid lubricant, that is, a paste-like product is obtained. It consists of fine powder and liquid lubricant, and is similar to the paste-like material used in the conventional stretching method. However, since the secondary particles in the PTFE fine powder are fine and the content of liquid lubricant is high (the powder in the paste is 60% by volume or less), the paste used in the conventional stretching method is There is a big difference between things. Incidentally, the paste-like material used in the conventional stretching method is PTFE powder 100
Per weight part.
液状潤滑剤15〜100重量部程度であり、一方。On the other hand, the liquid lubricant is about 15 to 100 parts by weight.
本発明のそれは上記した如<、PTFEパウダー100
重量部に対し、400〜600重量部である。The present invention is made of PTFE powder 100 as described above.
The amount is 400 to 600 parts by weight.
この方法においては、上述の如き前処理を施した後、更
に非湿潤性液体を除去して得られるペースト状物が次に
圧延成形工程に供せられる。圧延成形は、アルミ板のよ
うな剛性支持材上にペースト状物を置き一方向に圧力を
加えて該ペースト状物をシート状とし1次に圧力を除き
シートを圧延方向が一致するように2つ折り以上に折り
たたみ、再び前記圧延方向に圧力を加える方法にて行な
うのがよい(シートの折りたたみとその後の再加圧を1
サイクルとし% 2サイクル以上行なってもよい)。In this method, after performing the above-mentioned pretreatment, the non-wetting liquid is further removed to obtain a paste-like material, which is then subjected to a rolling process. In rolling forming, a paste is placed on a rigid support material such as an aluminum plate, and pressure is applied in one direction to form the paste into a sheet.The pressure is then removed and the sheet is rolled in the same direction. It is best to fold the sheet in half or more and apply pressure again in the rolling direction (folding the sheet and then applying pressure again)
% 2 cycles or more may be performed).
上記方法においては、かような圧延成形によって得られ
るシート状物から液状潤滑剤が除去され。In the above method, the liquid lubricant is removed from the sheet material obtained by such rolling.
次いでロール延伸が行なわれる。Roll stretching is then performed.
液状潤滑剤の除去は、抽出、蒸発あるいはこれらを組み
合わせた方法によシ行なうことができる。The liquid lubricant can be removed by extraction, evaporation, or a combination thereof.
また、ロール延伸とは液状潤滑剤を除去したシート状物
をロール表面に沿わして配置せしめ、これに圧延方向に
引張り力(延伸力)を作用せしめる方法である。Further, roll stretching is a method in which a sheet-like material from which liquid lubricant has been removed is placed along the roll surface, and a tensile force (stretching force) is applied to it in the rolling direction.
そして、このロール延伸は(a)シート状物をロール表
面に沿わして配置せしめ、該シートを1回延伸する方法
、(b)上記(a)のようにして延伸したシートを2つ
折り以上に折シたたんで重ね合わせるか或いは所定寸法
に切断して重ね合わせ(重ね合わされた各層の延伸方向
は同方向)、再度ロール延伸する方法(重ね合わせおよ
びその後のロール延伸を1サイクルとし、2サイクル以
上行なってもよい)のいずれで行なってもよい。(a)
法よりも(b)法の方が結着部の長い多孔質体が得られ
、また(b)法においては重ね合わせおよびその後のロ
ール圧延のサイクル数が増えると長繊維の直径が太くな
る傾向がある。This roll stretching method involves (a) placing a sheet-like material along the roll surface and stretching the sheet once, and (b) folding the sheet stretched as in (a) above in two or more. A method of folding and stacking, or cutting to a predetermined size and stacking (stretching direction of each stacked layer is the same direction), and roll stretching again (superimposing and subsequent roll stretching are one cycle, 2 cycles Any of the above methods may be used. (a)
Method (b) yields a porous body with longer binding parts than method (b), and method (b) tends to increase the diameter of long fibers as the number of cycles of overlapping and subsequent roll rolling increases. There is.
上記ロール延伸に際してはロールはPTFEの融点より
も低い温度、好ましくは約150〜300℃に維持され
る。During the roll stretching, the rolls are maintained at a temperature lower than the melting point of PTFE, preferably about 150 to 300°C.
また、延伸率は特に限定されるわけではないが、(a)
法による場合は約500〜1500%が好ましく。In addition, although the stretching rate is not particularly limited, (a)
When using the method, it is preferably about 500 to 1500%.
(b)法による場合は各サイクルのそれを各々約150
〜300%に設定するのが好ましいものである。(b) in each cycle, approximately 150
It is preferable to set it to ~300%.
更に、上記ロール延伸に先立ち、シート状物をPTFE
の融点以下の温度で1方向(ロール延伸と同方向)に予
備延伸を施すこともできる。この際の延伸率は約200
%以下であり、かような予備延伸の実施により、ロール
延伸時の延伸が容易に行なえるようになる。Furthermore, prior to the roll stretching, the sheet material is coated with PTFE.
Preliminary stretching can also be performed in one direction (the same direction as the roll stretching) at a temperature below the melting point of . The stretching ratio at this time is approximately 200
% or less, and by performing such preliminary stretching, stretching during roll stretching can be easily performed.
なお、この方法による場合、ロール延伸後に多孔質体の
延伸状態を保持して加熱処理するのが好ましく、該加熱
をPTFEの融点以上の温度で行なえば、焼成された多
孔質体が得られる。In addition, in the case of this method, it is preferable to maintain the stretched state of the porous body after roll stretching and heat treatment, and if the heating is performed at a temperature equal to or higher than the melting point of PTFE, a fired porous body can be obtained.
かような方法によシ何故に前記した如き新規ミクロ構造
を有するPTFE多孔質体が得られるかは未だ解明され
ていない。しかしながら、後述の実施例にも示されてい
るように目的とする多孔質体が得られることが確認され
た。It is not yet clear why a porous PTFE material having the above-mentioned novel microstructure can be obtained by such a method. However, as shown in the Examples below, it was confirmed that the desired porous body could be obtained.
次いで1本発明の他の態様に係る指向性導電体について
述べる。この導電体は前記のPTFE多孔質体と同じミ
クロ構造を有するものであり、長繊維の配向方向の電気
抵抗が、長繊維の配向方向に直交する方向のそれよりも
小さいものである。Next, a directional conductor according to another aspect of the present invention will be described. This conductor has the same microstructure as the above-described porous PTFE material, and its electrical resistance in the direction of orientation of the long fibers is smaller than that in the direction perpendicular to the direction of orientation of the long fibers.
前記の新規ミクロ構造を有する多孔質体に対する指向性
の付与は1例えば該多孔質体にアルカリ金属処理を施す
ことによって達成される。Directivity can be imparted to the porous body having the novel microstructure by, for example, treating the porous body with an alkali metal.
このアルカリ金属処理は、ナトリウム、カリウム、リチ
ウム等のアルカリ金属を含む液体アンモニア溶液あるい
はアルカリ金属のナフタレン錯体のテトラヒドロフラン
もしくはジメトキシエタン溶液中に、該多孔質体を浸漬
する方法によるのが簡便で好適であるが、多孔質体の一
表面を処理するような場合は塗布や流延等の方法も適用
できる。This alkali metal treatment is easily and preferably carried out by immersing the porous body in a liquid ammonia solution containing an alkali metal such as sodium, potassium, or lithium, or in a tetrahydrofuran or dimethoxyethane solution of a naphthalene complex of an alkali metal. However, when one surface of a porous body is treated, methods such as coating and casting can also be applied.
なお、アルカリ金属処理溶液の市販品としては、金属ナ
トリウムのナフタレン錯体のジメトキシエタン溶液であ
る「テトラエッチ(潤工社製)」がある。As a commercially available alkali metal treatment solution, there is "Tetra Etch (manufactured by Junkosha)" which is a dimethoxyethane solution of a naphthalene complex of sodium metal.
この処理に用いる溶液中におけるアルカリ金属のナフタ
レン錯体濃度は1通常0.03〜0.5モル/l好まし
くは0.05〜0.3モ/I// lである。錯体濃度
が希薄すぎると処理効果が得られないことがあり、濃厚
すぎるとPTFE多孔質体の大巾な強度低下を招来する
ことがある。The concentration of the alkali metal naphthalene complex in the solution used for this treatment is usually 0.03 to 0.5 mol/l, preferably 0.05 to 0.3 mol/l. If the complex concentration is too dilute, the treatment effect may not be obtained, and if it is too concentrated, the strength of the porous PTFE material may be significantly reduced.
かような溶液を用いてPTFE多孔質体を処理するとき
、アルカリ金属のナフタレン錯体濃度、浸漬時間(通常
10〜600秒)或いは塗布、流延の回数によ多処理効
果の差異が生ずる。従って、これらの条件を適宜選択す
ることにより、指向性の程度の異なる抵抗体を得ること
ができる。When a porous PTFE material is treated with such a solution, the treatment effect varies depending on the concentration of the alkali metal naphthalene complex, the immersion time (usually 10 to 600 seconds), or the number of times of coating and casting. Therefore, by appropriately selecting these conditions, resistors with different degrees of directivity can be obtained.
アルカリ金属処理されたPTFE多孔質体の処理面には
アルカリ金属のフッ化物塩や炭酸塩が付着しているので
、テトラヒドロフラン洗浄や超音波洗浄により、これら
塩を除去する。Since alkali metal fluoride salts and carbonates adhere to the treated surface of the alkali metal-treated PTFE porous body, these salts are removed by tetrahydrofuran cleaning or ultrasonic cleaning.
かようにして得られる指向性抵抗体は、処理面における
長繊維配向方向の電気抵抗と該方向に直交する方向の電
気抵抗の比が1=2〜1:8である。そして、電気抵抗
は長繊維配向方向のそれが約10OKΩ〜105MΩ/
crnであり、該方向に直交する方向のそれが約数百に
Ω〜10’MΩ/儒である。The directional resistor thus obtained has a ratio of electrical resistance in the long fiber orientation direction on the treated surface to electrical resistance in a direction perpendicular to the orientation direction of 1=2 to 1:8. The electrical resistance in the long fiber orientation direction is approximately 10 OKΩ to 105 MΩ/
crn, and that in the direction orthogonal to this direction is approximately several hundred Ω to 10' MΩ/F.
ここで、PTFE多孔質体のアルカリ金属処理によって
生ずる現象について説明する。Here, a phenomenon caused by alkali metal treatment of a porous PTFE material will be explained.
第5図はアルカリ金属処理(ナトリウム・ナフタレン錯
体のテトラヒドロフラン溶液を使用)前後におけるPT
FE多孔質シート表面のX線光電子分光(以下、ESC
Aと称す)スペクトルを示している。Figure 5 shows PT before and after alkali metal treatment (using a tetrahydrofuran solution of sodium naphthalene complex).
X-ray photoelectron spectroscopy (hereinafter referred to as ESC) on the surface of the FE porous sheet
A) spectrum is shown.
この図から判るように、処理によって−CF2−のC1
8ピークが消失し、一方、炭化水素のC18ビークが犬
きくなっている。更に、処理によってF18ビークは消
失し、逆に018 ピークが犬きくなっている。As can be seen from this figure, C1 of -CF2-
8 peak has disappeared, while the hydrocarbon C18 peak has become sharper. Furthermore, the F18 peak disappears due to the processing, and the 018 peak becomes sharper.
第6図は第5図のESCAスペクトルをとるのに供した
と同じ2つの試料およびアルカリ金属処理後、更に臭素
処理を施した試料の3者についての赤外線吸収スペクト
ルを示している。FIG. 6 shows infrared absorption spectra for three samples: the same two samples used for taking the ESCA spectra in FIG. 5, and a sample treated with an alkali metal and further treated with bromine.
この第6図から判るように、ナトリウム処理によって、
1580cm および1390cm のピークが出
現している。前者のピークはC=C伸縮振動に帰属され
るもので、通常の孤立二重結合のピーク1640〜16
80crrL に比べ、かなり低波数側にシフトして
いる。このことは、上記C=Cで表わされる二重結合が
共役系になっていることを示す。As can be seen from this Figure 6, by sodium treatment,
Peaks at 1580 cm and 1390 cm appear. The former peak is attributed to C=C stretching vibration, and is similar to the normal isolated double bond peak 1640-16.
Compared to 80crrL, it has shifted considerably to the lower wavenumber side. This shows that the double bond represented by C=C is a conjugated system.
後者のピークはC=C二重結合に由来するCH0面内変
角振動に帰属されるものである。そして。The latter peak is attributed to the CH0 in-plane bending vibration originating from the C=C double bond. and.
臭素処理により、これら両ピー りは消失し、一方、1
710cIIL に新たなピークが出現する。このピ
ークはアルカリ金属処理によp PTFE多孔質体に生
成されたものが、臭素処理によって顕在化したものであ
る。By bromine treatment, both of these peels disappeared, while 1
A new peak appears at 710cIIL. This peak was generated in the p-PTFE porous material by the alkali metal treatment, but became apparent by the bromine treatment.
即ち、アルカリ金属処理により、 PTFE多孔質体の
処理面において脱フッ素化が生じ、この脱フッ素化のた
めに飽和あるいは不飽和炭化水素骨格およびカルボニル
基、カルボキシ基が生成され、また主鎖の炭化水素骨格
には共役二重結合が存在するようになる。That is, by alkali metal treatment, defluorination occurs on the treated surface of the porous PTFE material, and due to this defluorination, saturated or unsaturated hydrocarbon skeletons, carbonyl groups, and carboxy groups are generated, and the main chain is carbonized. Conjugated double bonds now exist in the hydrogen skeleton.
ところで、非多孔質PTFE成形品に対するアルカリ金
属処理は、例えば、非多孔質PTFEシートを支持体と
する粘着テープ製造に際し、粘着剤の支持体に対する投
錨性向上のために行なわれており公知である。Incidentally, alkali metal treatment of a non-porous PTFE molded product is carried out, for example, in the production of an adhesive tape using a non-porous PTFE sheet as a support, in order to improve the anchoring ability of the adhesive to the support, and is well known. .
そして、PTFE多孔質体のアルカリ金属処理によるE
S CAスペクトルおよび赤外線吸収スペクトルは、従
来から知られている非多孔質PTFE成形品に対するア
ルカリ金属処理によるそれと同じである。Then, E by alkali metal treatment of the PTFE porous body
The SCA spectrum and infrared absorption spectrum are the same as those obtained by conventionally known alkali metal treatment of non-porous PTFE molded articles.
しかしながら、 PTFE多孔質体をアルカリ金属処理
したときは指向性を付与でき、一方、非多孔質PTFE
成形品を同様に処理しても上記特性は付与できない。However, when porous PTFE is treated with an alkali metal, it can be given directivity, whereas non-porous PTFE
Even if a molded article is treated in the same way, the above characteristics cannot be imparted.
このことから、本発明に係る抵抗体における電気抵抗の
指向性はその詳細は未解明であるが、ア19 。From this, the details of the directionality of electrical resistance in the resistor according to the present invention are not yet clear, but A19.
ルカリ金属処理と該処理に供される多孔質体のミクロ構
造の相乗作用によるものであることが推論される。、
次に、前記PTFE多孔質体に対する指向性付与のもう
一つの例について述べる。PTFE多孔質体に対する指
向性の付与は該多孔質体の表面に金、銀、銅等の導電性
を有する無数の微細金属粒子の密着によっても達成され
る。It is inferred that this is due to the synergistic effect of the alkali metal treatment and the microstructure of the porous body subjected to the treatment. Next, another example of imparting directionality to the PTFE porous body will be described. Directivity can also be imparted to the porous PTFE body by adhering countless fine conductive metal particles such as gold, silver, copper, etc. to the surface of the porous body.
多孔質体表面への微細金属粒子の密着は1例えば蒸着、
スパッタリングにより行なうことができる。Adhesion of fine metal particles to the surface of a porous body can be achieved by 1, for example, vapor deposition,
This can be done by sputtering.
而して、多孔質体表面に密着せしめられた金属粒子の各
々を目視によって判別することはできず、あたかも多孔
質体表面に金属薄膜が形成されたように視認される。Therefore, it is not possible to visually distinguish each of the metal particles closely attached to the surface of the porous body, and the metal particles are visually recognized as if a thin metal film had been formed on the surface of the porous body.
しかしながら、これを電子願微鏡にて観察(倍率は例え
ば5000〜10000倍程度)すると、個々の金属粒
子を見ることができる。この多孔質体表面に密着してい
る金属粒子の大きさは、密着の方法や作業条件等に応じ
て変わり得るが、通常は約100〜25oXである。そ
して、多孔質体の長繊維の配向方向(延伸方向)の電気
抵抗は、該方向に直交する方向のそれよりも小さくなる
。これら両方向の電気抵抗の比は特に限定されるわけで
はないが、通常は1:2〜1 : 100程度である。However, when this is observed using an electronic microscope (magnification is approximately 5,000 to 10,000 times), individual metal particles can be seen. The size of the metal particles adhering to the surface of the porous body may vary depending on the method of adhesion, working conditions, etc., but is usually about 100 to 25 oX. The electrical resistance in the orientation direction (stretching direction) of the long fibers of the porous material is smaller than that in the direction perpendicular to the orientation direction. Although the ratio of electrical resistance in both directions is not particularly limited, it is usually about 1:2 to 1:100.
そして、更に、具体的に述べると、長繊維の配向方向の
電気抵抗は約0.1Ω〜100KΩであり、該方向に直
交する方向のそれは約1Ω〜IOMΩである。More specifically, the electric resistance in the orientation direction of the long fibers is approximately 0.1Ω to 100KΩ, and that in the direction orthogonal to this direction is approximately 1Ω to IOMΩ.
上記のようなPTFE多孔質体表面への微細金属粒子の
密着によシ、何故、指向性が付与できるかは明らかでは
ないが、いずれにしても下記実施例にも示されている如
く、これによって得られる抵抗体は明瞭な電気的指向性
を示すことが確認された。It is not clear why directivity can be imparted by the close contact of fine metal particles to the surface of the PTFE porous material as described above, but in any case, as shown in the following example, this It was confirmed that the resistor obtained by this method showed clear electrical directivity.
そして、本発明に係る抵抗体は、電気的指向性の故に1
種々の分野への適用が期待し得る。The resistor according to the present invention has 1 due to its electrical directivity.
Application to various fields can be expected.
適用riJ能と思われる一例について述べる。シート状
の指向性抵抗体を電気抵抗の低い方向が周方向になるよ
うにしてロール状に巻き、これに電圧を印加すると、ロ
ールの軸方向(長さ方向)には電流が流れ難いため、高
周波数においては鉄芯にコイルを巻き付け、これに電圧
を印加した場合と同状態となり、L分を生ずる。そして
、このL分と電極間容量とにより、上記ロール巻きした
抵抗体は発振性シートとして機能し得るようKなる。An example of what seems to be an applicable RIJ function will be described. When a sheet-like directional resistor is wound into a roll with the direction of low electrical resistance facing the circumferential direction and a voltage is applied to it, it is difficult for current to flow in the axial direction (lengthwise direction) of the roll. At high frequencies, the state is the same as when a coil is wound around an iron core and a voltage is applied to it, producing an L component. Then, due to this L and the interelectrode capacitance, the rolled resistor becomes K so that it can function as an oscillating sheet.
ところで1本出願人は特願昭58−4548号において
1発振性シートに課電し、高周波電波を発振させること
により、該シードに接触する2種の液体の混/″液から
両者を分離し得るととを述べた。By the way, in Japanese Patent Application No. 58-4548, the present applicant applied a voltage to an oscillating sheet to oscillate high-frequency radio waves, thereby separating two liquids from a mixed liquid that came into contact with the seed. He said he would get it.
従って、本発明の指向性抵抗体は単独或いは特願昭58
−4548号において提案されたフッ素樹脂成形体を基
材として得られる発振性フッ素樹脂成形体と複合して1
発振体として用い得る。Therefore, the directional resistor of the present invention may be used alone or in
- Composite the fluororesin molded article proposed in No. 4548 with an oscillating fluororesin molded article obtained as a base material.
Can be used as an oscillator.
(実施例) 以下、実施例により本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1
未焼成のPTFEファインパウダー(ダイキン社製、商
品名F103)8重量部をメタノール100重量部中に
分散せしめ、高切断能ミキサーにより9500rpmの
高速で10分間撹拌する。この撹拌によシバウダーの平
均粒径は約500μmから約10μ濯に微細化されると
共に見掛は容積が約7倍に膨張した。Example 1 8 parts by weight of unfired PTFE fine powder (manufactured by Daikin Corporation, trade name F103) is dispersed in 100 parts by weight of methanol, and stirred for 10 minutes at a high speed of 9500 rpm using a high cutting power mixer. As a result of this stirring, the average particle size of the shibauder was refined from about 500 μm to about 10 μm, and the apparent volume expanded to about 7 times.
次に、この分散液に液状潤滑剤であるポリクロロトリフ
ルオロエチレンの低重合物(ダイキン社製、商品名ダイ
フロイル# 20 )40重量部を添加する。この添加
によシ液相は上部にメタノール、下部にダイフロイルが
位置するように相分離し、PTFEパウダーは親和性の
強いダイフロイル側に移行し、分散する。Next, 40 parts by weight of a low polymer of polychlorotrifluoroethylene (manufactured by Daikin Corporation, trade name: Daifloil #20), which is a liquid lubricant, is added to this dispersion. As a result of this addition, the liquid phase undergoes phase separation such that methanol is located at the top and Dyfloil is located at the bottom, and the PTFE powder moves to the Dyfloil side where it has a strong affinity and is dispersed.
次に、メタノールをデカンテーションにより糸外に除去
し、PTFEファインパウダーとダイ7゜イルから成る
ペースト状物を得る。Next, methanol is removed from the thread by decantation to obtain a paste consisting of PTFE fine powder and die 7° oil.
このペースト状物をアルミ板とに置き圧延ロールを走行
させ厚さ約1〜2鴎に展延する。この展延物を4つ折シ
して重ね合わせ、再び圧延ロールを走行させて厚さを約
1〜2IIllIとする。更に、この重ね合わせとその
後の圧延を10サイクシ行ない、厚さ約1順のシート状
物を得る。This paste-like material is placed on an aluminum plate and rolled with rolling rolls to a thickness of about 1 to 2 mm. This rolled product is folded into four pieces and stacked on top of each other, and the rolling rolls are run again to give a thickness of about 1 to 2 IIllI. Further, this stacking and subsequent rolling are repeated 10 cycles to obtain a sheet-like product with a thickness of about 1.
次に、このンート状物金トリクロルエチレン中に浸漬し
、ダイフロイルを抽出除去する。Next, this tunnel-like material is immersed in gold trichlorethylene to extract and remove the dichloroil.
その後、該シート状物を石英ロール(温度は260℃に
維持)の表面に沿わし、ロール円周方向に1軸延伸(延
伸率は800%)して、厚さ80μmのPTFE多孔質
体を得た。Thereafter, the sheet-like material was placed along the surface of a quartz roll (temperature maintained at 260°C) and uniaxially stretched in the circumferential direction of the roll (stretching rate: 800%) to form a PTFE porous body with a thickness of 80 μm. Obtained.
この多孔質体の表面のミクロ構造は第2図として示す走
査型電子顕微鏡写真図(倍率は2000倍)のとおシで
あった。第2図において、4は長繊維であシ、各々一方
向に沿って配向されている(延伸方向に沿って配向され
ている)。5は多孔質体1中に多数存在する結着であり
、これによシ該多孔質体1のシート形状が保持されてい
る。The microstructure of the surface of this porous body was as shown in the scanning electron micrograph shown in FIG. 2 (magnification: 2000 times). In FIG. 2, numerals 4 are long fibers, each oriented in one direction (orientated along the stretching direction). Reference numeral 5 denotes a large number of bonds present in the porous body 1, which maintains the sheet shape of the porous body 1.
実施例2
実施例1で用いたと同じシート状物(ダイフロイルを抽
出除去したもの)を温度150℃において。Example 2 The same sheet-like material used in Example 1 (from which Daifloyl was extracted and removed) was heated to 150°C.
延伸率が150%になるように1軸方向に予備延伸する
。Preliminary stretching is carried out in the uniaxial direction so that the stretching ratio becomes 150%.
次に5実施例1と同条件で予備延伸方向と同方向に延伸
率300%に延伸する。Next, under the same conditions as in Example 1, the film was stretched in the same direction as the preliminary stretching direction to a stretching ratio of 300%.
その後5このシートを延伸方向の中央部で切断し、延伸
方向が同じになるように重ね合わせ、再度同方向にロー
ル延伸する(温度290 ”C、延伸率200%)。更
に、この重ね合わせおよびその後の圧延を4サイクル行
なって、厚さ100μ毒のPTFE多孔質体を得た。Thereafter, this sheet is cut at the center in the stretching direction, overlapped so that the stretching direction is the same, and rolled stretched again in the same direction (temperature 290"C, stretching ratio 200%).Furthermore, this overlapping and Subsequent rolling was performed for 4 cycles to obtain a porous PTFE body with a thickness of 100 μm.
この多孔質体の表面および厚さ方向切断面のミクロ構造
は第3図および第4図として示す走査型電子顕微鏡写真
図(倍率はいずれも2000倍)のとおりであった。The microstructure of the surface and cross-section in the thickness direction of this porous body was as shown in the scanning electron micrographs shown in FIGS. 3 and 4 (both magnifications were 2000 times).
第3図および第4図において、4は長繊維であシ、一方
向に沿って配向され、長繊維同志は結着5し、多孔質体
のシート形状が保持されている。In FIGS. 3 and 4, long fibers 4 are oriented in one direction, and the long fibers are bound together 5 to maintain the sheet shape of the porous body.
実施例3
実施例2によって得られたPTFE多孔質シートfc3
c7rL角に切断し、ガラス管壁に固定し、これをアル
カリ金属処理液中に浸漬して、その片面を処理し、その
後テトラヒドロフランによって洗浄し、更に同液中で3
0分間超音波洗浄した後に風乾し、シート状の指向性抵
抗体を得た。Example 3 PTFE porous sheet fc3 obtained in Example 2
It was cut into c7rL squares, fixed to the glass tube wall, immersed in an alkali metal treatment solution, treated on one side, then washed with tetrahydrofuran, and further treated in the same solution for 30 minutes.
After ultrasonic cleaning for 0 minutes, air drying was performed to obtain a sheet-like directional resistor.
なお、アルカリ金属処理液としては、ナトリウム・ナフ
タレン錯体濃度0.05モル/lのテトラヒドロフラン
溶液を用い、浸漬時間は10秒、30秒および60秒に
設定した。A tetrahydrofuran solution with a sodium-naphthalene complex concentration of 0.05 mol/l was used as the alkali metal treatment solution, and the immersion times were set to 10 seconds, 30 seconds, and 60 seconds.
得られた指向性抵抗体の電気抵抗特性を知るため、該シ
ートの長繊維配向方向(延伸方向)において2個の電極
を距離lαで配置すると共に該方向に直交する方向にお
いても同様に2個の電極を配置し、両方向の電気抵抗を
測定した。結果を下記第1表に示す。なお、測定は直流
安定化電源(タケダ理研社製6120型)およびエレク
トロメータ(タケダ理研社製8411型)ft用いて行
なった。In order to know the electrical resistance characteristics of the obtained directional resistor, two electrodes were arranged at a distance lα in the long fiber orientation direction (stretching direction) of the sheet, and two electrodes were similarly arranged in the direction perpendicular to this direction. electrodes were placed and the electrical resistance in both directions was measured. The results are shown in Table 1 below. The measurement was performed using a DC stabilized power supply (model 6120, manufactured by Takeda Riken Co., Ltd.) and an electrometer (model 8411, manufactured by Takeda Riken Co., Ltd.).
第 1 表
実施例4
実施例2で得られたPTFE多孔質体の片面に公知の抵
抗加熱式蒸着装置を用い銀を蒸着する。Table 1 Example 4 Silver was deposited on one side of the PTFE porous body obtained in Example 2 using a known resistance heating type deposition apparatus.
タングステンボード上に所定量の鉄片をセットし、荒引
きおよび本引きを20分間および30分分間法行ない蒸
着室k I X 10−’ Torrに維持する。A predetermined amount of iron pieces is set on a tungsten board, and rough drawing and main drawing are carried out for 20 minutes and 30 minutes, and the deposition chamber is maintained at k I X 10-' Torr.
次いで、タングステンボードに75Vの電圧を急速に印
加し、鉄片の溶融が認められたら電圧印加を急速に中止
する。この間2〜3秒程度である。Next, a voltage of 75 V is rapidly applied to the tungsten board, and when melting of the iron piece is observed, the voltage application is rapidly stopped. This time is about 2 to 3 seconds.
鉄片が消失するまで、電圧の印加、中止を繰り返し行な
って、指向性抵抗体を得た。A directional resistor was obtained by repeatedly applying and stopping voltage until the iron piece disappeared.
なお、蒸着に際しては多孔質体を適当な大きさに切断す
ると共にその片面に15朋×25耶の切欠部に有スフ:
、ホリエチレンテレフタレートフィルム(厚さ100μ
想)を配置し、多孔質体の端縁部を粘着テープによって
該フィルムに固定し、蒸着時の熱による収縮を防止する
ようにして、前記切欠部によって露出している部分(面
積375 vtA )に銀を蒸着せしめた。In addition, during vapor deposition, the porous body is cut into an appropriate size, and a cutout of 15 mm x 25 mm is formed on one side of the porous body.
, polyethylene terephthalate film (thickness 100μ
The edges of the porous body are fixed to the film with adhesive tape to prevent shrinkage due to heat during vapor deposition, and the portion exposed by the cutout (area 375 vtA) is silver was vapor-deposited.
得られた指向性抵抗体の電気抵抗特性を知るため、該シ
ートの長繊維の配向方向において2個の電極を距離11
mで配置すると共に該方向に直交する方向においても同
様に2個の電極を配置し1両方向の電気抵抗を測定した
。結果を下記第2表に示す。なお、測定はデジタルマル
チメーター(ヒユーレットバラカード社製3438A)
を用いて行なった。In order to understand the electrical resistance characteristics of the obtained directional resistor, two electrodes were placed at a distance of 11 mm in the direction of orientation of the long fibers of the sheet.
Two electrodes were similarly arranged in a direction perpendicular to this direction, and the electrical resistance in both directions was measured. The results are shown in Table 2 below. The measurement was performed using a digital multimeter (3438A manufactured by Hulett Barakad).
This was done using
第2表
(発明の効果)
本発明によれば、従来とは異なる新、親なミクロ構造を
有する多孔質体および電気的指向性を有する抵抗体を提
供できる。Table 2 (Effects of the Invention) According to the present invention, it is possible to provide a porous body having a new and unique microstructure different from conventional ones and a resistor having electrical directivity.
第1図および第2〜4図は本発明に係るPTFE多孔質
体のミクロ構造を示す模式図および走査型電子顕微鏡写
真図、第5図は該多孔質体のアルカリ金属処理前後にお
けるESCAスペクトル図、第スペクトル図、第7図お
よび第8図は従来品のミクロ構造を示す模式図および走
査型電子顕微鏡写真図である。
l・・・PTFE多孔質体 4・・・長繊維5・・・
結着Figures 1 and 2 to 4 are schematic diagrams and scanning electron micrographs showing the microstructure of the porous PTFE material according to the present invention, and Figure 5 is an ESCA spectrum diagram of the porous material before and after alkali metal treatment. , the spectrogram, and FIGS. 7 and 8 are schematic diagrams and scanning electron micrographs showing the microstructure of conventional products. l... PTFE porous material 4... Long fiber 5...
conclusion
Claims (5)
オロエチレン長繊維から成り、且つ長繊維同志の結着に
より形状保持していることを特徴とするポリテトラフル
オロエチレン多孔質体。(1) A polytetrafluoroethylene porous body comprising a large number of polytetrafluoroethylene long fibers oriented in one direction, and retaining its shape by binding the long fibers together.
中に分散せしめて撹拌することにより、該粉末を微細化
せしめ、次にこの分散液に液状潤滑剤を添加することに
より、微細化せしめられたポリテトラフルオロエチレン
粉末を液状潤滑剤側に移行せしめ、その後非湿潤性液体
を除去し、次いで、該粉末と液状潤滑剤の混和物を圧延
成形した後、該成形物から液状潤滑剤を除去し、次に該
成形物をロール延伸により1軸方向に延伸することを特
徴とするポリテトラフルオロエチレン多孔質体の製造法
。(2) Polytetrafluoroethylene powder is dispersed in a non-wetting liquid and stirred to make the powder fine, and then a liquid lubricant is added to this dispersion to make the powder fine. The polytetrafluoroethylene powder is transferred to the liquid lubricant side, the non-wetting liquid is removed, and the mixture of the powder and the liquid lubricant is rolled and formed, and then the liquid lubricant is removed from the formed product. . A method for producing a polytetrafluoroethylene porous body, which comprises: then stretching the molded product in a uniaxial direction by roll stretching.
オロエチレン長繊維から成り、且つ長繊維同志の結着に
より形状保持している多孔質体であり、該多孔質体表面
における長繊維配向方向の電気抵抗が、該長繊維配向方
向に直交する方向の電気抵抗よりも小さいことを特徴と
する指向性抵抗体。(3) A porous body consisting of a large number of polytetrafluoroethylene long fibers oriented in one direction and whose shape is maintained by binding of the long fibers, and the long fiber orientation on the surface of the porous body. A directional resistor characterized in that an electric resistance in a direction is smaller than an electric resistance in a direction perpendicular to the long fiber orientation direction.
の範囲第3項記載の指向性抵抗体。(4) A directional resistor according to claim 3, wherein the porous body is treated with an alkali metal.
属粒子が密着せしめられて成る特許請求の範囲第3項記
載の指向性抵向体。(5) A directional resistance body according to claim 3, wherein countless fine metal particles are closely attached to at least one surface of a porous body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62042355A JPS63210145A (en) | 1987-02-25 | 1987-02-25 | Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62042355A JPS63210145A (en) | 1987-02-25 | 1987-02-25 | Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63210145A true JPS63210145A (en) | 1988-08-31 |
Family
ID=12633723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62042355A Pending JPS63210145A (en) | 1987-02-25 | 1987-02-25 | Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63210145A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020172716A (en) * | 2019-04-09 | 2020-10-22 | 東ソー株式会社 | Manufacturing method of fluororesin staple fiber |
-
1987
- 1987-02-25 JP JP62042355A patent/JPS63210145A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020172716A (en) * | 2019-04-09 | 2020-10-22 | 東ソー株式会社 | Manufacturing method of fluororesin staple fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5681615A (en) | Vacuum flash evaporated polymer composites | |
TWI333221B (en) | Cathode foil for capacitor and method for manufacturing the same | |
WO2006109690A1 (en) | Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor | |
US20220328843A1 (en) | Electroconductive composite structure and method for producing same | |
JP2015526382A (en) | Graphene sheet and manufacturing method thereof | |
Cetinkaya et al. | A different method for producing a flexible LiMn 2 O 4/MWCNT composite electrode for lithium ion batteries | |
JP2022031192A (en) | Flexible self-supporting electrode for supercapacitor, and manufacturing method and application thereof | |
US3009979A (en) | Positive electrode | |
JP2001508471A (en) | Material having high electrical conductivity at room temperature and method for producing the same | |
JPS63210145A (en) | Porous polytetrafluoroethylene material, its production and directional resistor prepared therefrom | |
US10176932B2 (en) | Method of manufacturing graphene composite including ultrasonic-wave pulverization post-treatment process and method of manufacturing active material using the same | |
KR102561229B1 (en) | Method for chemical binding of the dielectric to the electrode after their assembly | |
JP4266420B2 (en) | Carbon sheet and manufacturing method thereof | |
CN112435776B (en) | Flexible conductive film and preparation method thereof | |
EP1155818A1 (en) | Multilayered film and process for producing the same | |
CN113788476A (en) | System and method for continuously preparing graphene film | |
KR20060032157A (en) | Method for producing electrode for electric double layer capacitor | |
CN219540160U (en) | Graphene alcohol solution production device capable of forming self-assembled film | |
JP2001230158A (en) | Method of manufacturing polarizable electrode for capacitor | |
WO2008123577A1 (en) | Carbon particle film production method, multilayer electrode production method and electric double layer capacitor manufacturing method | |
KR20090010822A (en) | Ac/cnt composite electrode using electrostatic attraction and method for manufacturing the same | |
JP2915812B2 (en) | Transfer adhesion method of fine particle film | |
JP6164067B2 (en) | Carbon nanotubes and dispersions thereof, and free-standing films and composite materials | |
JPS63199246A (en) | Directional electrically conductive body | |
JPS63174213A (en) | Directional conductor |